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* Make sure we know all about the estimation (fitting) part ....

* Make sure we understand the testing procedures : t- and F-tests
* A bad model ... And a better one
¢ Correlation in our model : do we mind ?

* A (nearly) real example

One voxel = One test (t, F, ...)

amplitude

Statistical image
(SPM)
Temporal series
fMRI

voxel time course
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‘ B, =1 B, =100 -Fit the GLM

voxel time series box-car reference function Mean value
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voxel time series box-car reference function Mean value
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Summary ...

* We put in our model regressors (or covariates) that represent
how we think the signal is varying (of interest and of no interest
alike)

¢ Coefficients (= parameters) are estimated using the Ordinary
Least Squares (OLS) or Maximum Likelihood (ML) estimator.

¢ These estimated parameters (the “betas”) depend on the
scaling of the regressors. But entered with SPM, regressors are
normalised and comparable.

* The residuals, their sum of squares and the resulting tests (1,F),
do not depend on the scaling of the regressors.
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* Make sure we all know about the estimation (fitting) part ....

* Make sure we understand t and F tests

* A (nearly) real example
* A bad model ... And a better one

¢ Correlation in our model : do we mind ?

T test - one dimensional contrasts - SPM{z}

A contrast = a linear combination of parameters: ¢ x B

box-car amplitude >0 ?

i Bi>0?
Dby by by b ... =

¢’=10000000

Compute 1xb, + 0xb, + 0xb, + 0xb, + Oxbs +. . .
and

divide by estimated standard deviation

contrast of
estimated c 5 b
parameters

g

<P spmghy
Fer

variance
estimate

\Iszc (X'X)te

contrast of
estimated
parameters

variance
estimate

Estimation [Y, X] [b, 5]

Y=X B +¢e £~ o2 N(O,I) (Y : at one position)
b = (AX’AX)JrX’Y (b: estimate of B) —
e=Y-Xb (e: estimate of &)

s? = (e’e/(n-p))

Test [b, 52 c] [¢'b, ]

(s:_estimate of G, n: time points, p: parameters)
->|1 image ResMS

Var(c’b) = s%c’(X’X)"c
t=c’bh /Sth(SZC ’()(,)()Jr6) (c’b ->i images spm_con???

compute the t images -> | images spm_t???| )
under the null hypothesis H, : t ~ Student-t( =n-p

(compute for each contrast c)

F-test (SPM{F}) : a reduced model or ...

Tests multiple linear hypotheses : Does X1 model anything ?
Hy: True (reduced) model is X,

additional
variance
accounted for
by tested effects
—_— SOZ F=——"7"7""
error
variance
estimate

F~(S2- 8/

This (full) model ? Or this one?

F-test (SPM{F}) : a reduced model or ...
multi-dimensional contrasts ?

tests multiple linear hypotheses. Ex : does DCT set model anything?
H,: True modelis X, Hy:B;,=(000 0 ..) test Hy: ¢"xb=07?

X; (Bso) Xy 06100000
00010000

X
¢ =00001000
00000100
00000010
00000001
Ei SPM{F}

Or this one ?

This model ?

additional
variance accounted for
by tested effects

Error
variance
estimate

Estimation [Y, X] [b, 5]

Y=XPB+s & ~N(0, 62 )

Y=X,B,+¢ gg~N(0,6.21) X, X Reduced
Estimation [Y, X,] [b s,

by = (Xy' X)) X, 'Y

€)= Y- X() b() (e, estimate of €,)

(s, estimate of Gy, n: time, p,: parameters)

s%0 = (ey'ey/(n - py)

Test [b, s, ¢] [ess, F]

F~\(s)-5)/5? -> image
-> image of F :

under the null hypothesis : F ~ F(p - p0, n-p)
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* Make sure we all know about the estimation (fitting) part ....

* Make sure we understand t and F tests

‘ * A (nearly) real example : testing main effects and interactions

¢ A bad model ... And a better one

* Correlation in our model : do we mind ?

Experimental Design ™ Design Matrix

Factorial design with 2 factors : modality and category
2 levels for modality (eg Visual/Auditory)
3 levels for category (eg 3 categories of words)

Cl1

C2
C3
C1
C2
C3

VAC,GC,C,

[ PR—

10 Test C1 >C2 :c=[001-100]
20 Test V> A :c=[1-10000]
30

40 [001000]
50 Test C1,C2,C3 ? (F) c=[000100]
50 [000010]

70
a0
a0

Test the interaction MxC ?

deslan srthegonality
« Design Matrix not orthogonal
* Many contrasts are non estimable
« Interactions MxC are not modelled

|
|
|
40 i
|
|
I
.

a0
a0

Test

c=[11-1-1000]

« Interactions MxC modelled
« If no interaction ... ? Model is too “big” !

Test V>A c=[1-11-11-10]
Test the categories :
[11-1-1000]
c= [001 1-1-10]
[110 0-1-10]
Test the interaction MxC :
[1-1-110 00]
c= [001-1-110]
[1-10 0-110]
* Design Matrix orthogonal dosion athoncalny
* All contrasts are estimable

Clcl CZCZCK C3
VAVAVA

2486 81012

TestC1>C2 ?
Test Cl different from C2 ?

from
c= [1I 1 -1 -1 0 0 0

to
c=[1010-10-1000000]
[0101 0-1 0-100000]

becomes an F test!
Test V>A?
c= [10-1010-1010-100]

is possible, but is OK only if the regressors coding
for the delay are all equal
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* Make sure we all know about the estimation (fitting) part ....

* Make sure we understand t and F tests

* A (nearly) real example

‘ ¢ A bad model ... And a better one

* Correlation in our model : do we mind ?

1 ..' I A .rl‘ \

°” SV 47T True signal and observed signal (---)
os} ¢ | A

o - oot e | Model (green, pic at 6sec)
s ) e w TRUE signal (blue, pic at 3sec)

i s s s Fitting (bl = 0.2, mean = 0.11)

Residual (still contains some signal)

- £l L

=> Test for the green regressor not significant

B,=0.22
B,=0.11

]
= +'
L
=
&

Residual Variance = 0.3

P(Y| B, =0)=>
p-value = 0.1
(t-test)

P(Y[ B, =0) =>
p-value =0.2
(F-test)

i { A ] True signal + observed signal
Model (green and red)

i 1 and true signal (blue ---)

9 B — = Red regressor : temporal derivative of|
] W E] C] % o the green regressor

] 7 Global fit (blue)

i =~ and partial fit (green & red)
L I W w Adjusted and fitted signal

; n f Residual (a smaller variance)

a E] © = C => t-test of the green regressor significant

=> F-test very significant
=> t-test of the red regressor very significan{

B,=0.22
B,=2.15
B,=0.11
s <—i " B Residual Var = 0.2
S =
— i — P(Y[B;=0)
! _ il . = + = p-value = 0.07
s — | - — (t-test)
. B = .
Y XB € p-value = 0.000001
! (F-test)

desigh aerthogonality

o 10 Zo ELR)




Summary ... (2)

* The residuals should be looked at ...!

¢ Test flexible models if there is little a priori
information

* In general, use the F-tests to look for an
overall effect, then look at the response
shape

* Interpreting the test on a single parameter (one
regressor) can be difficult: cf the delay or
magnitude situation

*BRING ALL PARAMETERS AT THE 2nd LEVEL

Plan

* Make sure we all know about the estimation (fitting) part ....
¢ Make sure we understand t and F tests
* A (nearly) real example

* A bad model ... And a better one

‘ ¢ Correlation in our model : do we mind ? ‘

design crth

#—— True signal

as *—’{ Model (green and red) ‘
i} Fit (blue : global fit)
L] El n £l - - -

Residual

Residual var. = 0.3
P(Y| B, = 0)
p-value = 0.08
(t-test)

P(Y[B,=0)
p-value =0.07
(t-test)

—
=
—
__J
—
—
-
-1
1

P(Y[B,=0,B,=0)
p-value = 0.002
(F-test)

true signal

Model (green and red)

red regressor has been
orthogonalised with respect to the green one
< remove everything that correlates with
the green regressor

——  Fit

Residual

b=147  0.79%**
b,=0.85 085

b3 =0.06 0.06

— N -, Residual var. = 0.3
e H | = P(YIB, = 0)
= H . | p-value = 0.0003
— | | — (t-test)
- i —
e —— - i | — P(Y|B,=0)
- = . | — p-value =0.07
e X . ‘ - (t-test)
—— Y XB e P(Y| By =0, B, = 0)
T p-value = 0.002
(F-test)

See « explore design »




Summary ... (3)

Black = completely correlated White = completely orthogonal . . . .
* We implicitly test for an additional effect only, be careful if
12 1 2 there is correlation

Corr(1,1)  Corr(1,2)

N\ /

* Orthogonalisation = decorrelation

- -
i . 1 ~ | 1 - This is not generally needed
. 5 h 5 - Parameters and test on the non modified regressor change
- i | 1 2 - | 12 ¢ It is always simpler to have orthogonal regressors and therefore
s designs !

* In case of correlation, use F-tests to see the overall
Beware: W}Fen there are more than 2 regressors (C1C2,C3,..), significance. There is generally no way to decide to which
you may think that there is little correlation (light grey) between regressor the « common » part should be attributed to

them, but C1 + C2 + C3 may be correlated with C4 + C5

Convolution Design and SPM(t) or Fitted and .
model contrast SPM(F) adjusted data Conclusion : check your models
[ N s « Check your residuals/model
| s % - multivariate toolbox
5 < o + Check your HRF form
- HRF toolbox
7 H| = iTh » Check group homogeneity

- Distance toolbox

. eer www.madic.org !

This generalises when testing Ly i testof C2inthe
implicit L model
several regressors (F tests)

Lei™ t testof Clin the
¢f Andrade et al., Neurolmage, 1999 explicit L model
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Cond 1 Cond 2 Mean

Parameters are not unique in general ! Some contrasts have no meaning: NON
ESTIMABLE

c¢=[100] isnot estimable (no specific information in the first regressor);

c=[1-10] is estimable;




