Dynamic Causal Modelling (DCM)

Presented by Uta Noppeney

Functional Imaging Lab

Institute of Neurology University College London

With Thanks to and Slides from Klaas Stephan

> Will Penny Karl Friston

Wellcome Dept. of Imaging Neuroscience

Functional Connectivity Eigenimage analysis and PCA Nonlinear PCA ICA Effective Connectivity Psychophysiological Interactions MAR and State space Models Structure Equation Models Volterra Models Dynamic Causal Models

Overview

- DCM Conceptual overview
- · Neural and hemodynamic levels in DCM
- · Parameter estimation
 - Priors in DCM
 - Bayesian parameter estimation in non-linear systems
- Interpretation of parameters
- · Bayesian model selection
- · Practical steps of a DCM study
- · Example: attention to visual motion

С.

Inference about DCM parameters: single-subject analysis

- Bayesian parameter estimation in DCM: Gaussian assumptions about the *a posteriori* distributions of the parameters
- Use of the cumulative normal distribution to test the probability by which a certain parameter (or contrast of parameters $c^T \eta_{\partial y}$) is above a chosen threshold γ :

$$p = \phi_N \left(\frac{c^T \eta_{\theta|y} - \gamma}{\sqrt{c^T C_{\theta|y} c}} \right) \qquad \gamma \to \eta_{\theta|y}$$

- γ can be chosen as a function of the expected half life of the neural process, e.g. γ = ln 2 / τ

Pitt & Miyung (2002), TICS

Practical steps of a DCM study - II

- Possibly definition of a new design matrix, if the "normal" design matrix does not represent the inputs appropriately.
 - NB: DCM only reads timing information of each input from the design matrix, no parameter estimation necessary.
- <u>Definition of model</u>
 via DCM-GUI or directly in MATLAB

Practical steps of a DCM study - III

- 5. DCM parameter estimation
 - cave: models with many regions & scans can crash MATLAB!
- 6. Model comparison and selection:
 - Which of all models considered is the optimal one?
 → Bayesian model selection tool
- 7. <u>Testing the hypothesis</u> Statistical test on the relevant parameters of the optimal model

Overview

- DCM Conceptual overview
- Neural and hemodynamic levels in DCM
- Parameter estimation
 Priors in DCM
 - Bayesian parameter estimation in non-linear systems
- Interpretation of parameters
- Bayesian model selection
- · Practical steps of a DCM study
- Example: attention to visual motion

A simple DCM of the visual system Visual inputs drive V1, activity then spreads to hierarchically arranged 0.26 visual areas. Motion modulates the strength of the V1 \rightarrow V5 forward connection. 0.4 The intrinsic connection V1→V5 is insignificant in V5 the absence of motion (a₂₁=-0.05). Attention increases the backward-connections IFG \rightarrow SPC and SPC \rightarrow V5. Re-analysis of data from Friston et al., NeuroImage 2003

