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Overview

• Multiple Comparisons Problem
– Which of my 100,000 voxels are “active”?

• SnPM
– Permutation test to find threshold
– Control chance of any false positives (FWER)
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Nonparametric Inference:
Permutation Test

• Assumptions
– Null Hypothesis Exchangeability

• Method
– Compute statistic t
– Resample data (without replacement), compute t*

– {t*} permutation distribution of test statistic
– P-value =  #{ t* > t }  /  #{ t* }

• Theory
– Given data and H0, each t* has equal probability
– Still can assume data randomly drawn from population
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Nonparametric Inference
• Parametric methods

– Assume distribution of
statistic under null
hypothesis

– Needed to find P-values, uα

• Nonparametric methods
– Use data to find 

distribution of statistic
under null hypothesis

– Any statistic!

5%

Parametric Null Distribution

5%

Nonparametric Null Distribution
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Permutation Test
Toy Example

• Data from V1 voxel in visual stim. experiment
A: Active, flashing checkerboard   B: Baseline, fixation
6 blocks, ABABAB     Just consider block averages...

• Null hypothesis Ho
– No experimental effect, A & B labels arbitrary

• Statistic
– Mean difference 

96.0699.7687.8399.9390.48103.00
BABABA
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Permutation Test
Toy Example

• Under Ho
– Consider all equivalent relabelings

BBBAAABABABAABBBAAABAABB

BBABAABABAABABBABAAABBBA

BBAABABAABBAABBAABAABBAB

BBAAABBAABABABABBAAABABB

BABBAABAAABBABABABAAABBB
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Permutation Test
Toy Example

• Under Ho
– Consider all equivalent relabelings
– Compute all possible statistic values

BBBAAA  -4.82BABABA  -9.45ABBBAA   1.48ABAABB   6.86

BBABAA   3.25BABAAB  -6.97ABBABA  -1.10AABBBA  -3.15

BBAABA   0.67BAABBA  -1.38ABBAAB   1.38AABBAB  -0.67

BBAAAB   3.15BAABAB   1.10ABABBA   6.97AABABB  -3.25

BABBAA  -6.86BAAABB  -1.48ABABAB   9.45AAABBB   4.82
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Permutation Test
Toy Example

• Under Ho
– Consider all equivalent relabelings
– Compute all possible statistic values
– Find 95%ile of permutation distribution

BBBAAA  -4.82BABABA  -9.45ABBBAA   1.48ABAABB   6.86

BBABAA   3.25BABAAB  -6.97ABBABA  -1.10AABBBA  -3.15

BBAABA   0.67BAABBA  -1.38ABBAAB   1.38AABBAB  -0.67

BBAAAB   3.15BAABAB   1.10ABABBA   6.97AABABB  -3.25

BABBAA  -6.86BAAABB  -1.48ABABAB   9.45AAABBB   4.82
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Permutation Test
Toy Example

• Under Ho
– Consider all equivalent relabelings
– Compute all possible statistic values
– Find 95%ile of permutation distribution

BBBAAA  -4.82BABABA  -9.45ABBBAA   1.48ABAABB   6.86

BBABAA   3.25BABAAB  -6.97ABBABA  -1.10AABBBA  -3.15

BBAABA   0.67BAABBA  -1.38ABBAAB   1.38AABBAB  -0.67

BBAAAB   3.15BAABAB   1.10ABABBA   6.97AABABB  -3.25

BABBAA  -6.86BAAABB  -1.48ABABAB   9.45AAABBB   4.82
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Permutation Test
Toy Example

• Under Ho
– Consider all equivalent relabelings
– Compute all possible statistic values
– Find 95%ile of permutation distribution

0 4 8-4-8
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Permutation Test
Strengths

• Requires only assumption of exchangeability
– Under Ho, distribution unperturbed by permutation
– Allows us to build permutation distribution

• Subjects are exchangeable
– Under Ho, each subject’s A/B labels can be flipped

• fMRI scans not exchangeable under Ho
– Due to temporal autocorrelation
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Permutation Test
Limitations

• Computational Intensity
– Analysis repeated for each relabeling
– Not so bad on modern hardware

• No analysis discussed below took more than 3 hours

• Implementation Generality
– Each experimental design type needs unique 

code to generate permutations
• Not so bad for population inference with t-tests
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MCP Solutions:
Measuring False Positives

• Familywise Error Rate (FWER)
– Familywise Error

• Existence of one or more false positives

– FWER is probability of familywise error
• False Discovery Rate (FDR)

– R voxels declared active, V falsely so
• Observed false discovery rate: V/R

– FDR = E(V/R)
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FWER MCP Solutions

• Bonferroni
• Maximum Distribution Methods

– Random Field Theory
– Permutation
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FWER MCP Solutions: 
Controlling FWER w/ Max

• FWER & distribution of maximum
FWER= P(FWE)

= P(One or more voxels ≥ u | Ho)
= P(Max voxel ≥ u | Ho)

• 100(1-α)%ile of max distn controls FWER
FWER = P(Max voxel ≥ uα | Ho) ≤ α

uα
α
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FWER MCP Solutions

• Bonferroni
• Maximum Distribution Methods

– Random Field Theory
– Permutation
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Controlling FWER: 
Permutation Test

• Parametric methods
– Assume distribution of

max statistic under null
hypothesis

• Nonparametric methods
– Use data to find 

distribution of max statistic
under null hypothesis

– Again, any max statistic!

5%

Parametric Null Max Distribution

5%

Nonparametric Null Max Distribution
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Permutation Test
& Exchangeability

• Exchangeability is fundamental
– Def: Distribution of the data unperturbed by permutation
– Under H0, exchangeability justifies permuting data
– Allows us to build permutation distribution

• Subjects are exchangeable
– Under Ho, each subject’s A/B labels can be flipped

• Are fMRI scans exchangeable under Ho?
– If no signal, can we permute over time?
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Permutation Test
& Exchangeability

• fMRI scans are not exchangeable
– Permuting disrupts order, temporal autocorrelation

• Intrasubject fMRI permutation test
– Must decorrelate data, model before permuting
– What is correlation structure?

• Usually must use parametric model of correlation
– E.g. Use wavelets to decorrelate

• Bullmore et al 2001, HBM 12:61-78

• Intersubject fMRI permutation test
– Create difference image for each subject
– For each permutation, flip sign of some subjects
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Permutation Test
Other Statistics

• Collect max distribution
– To find threshold that controls FWER

• Consider smoothed variance t statistic
– To regularize low-df variance estimate
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Permutation Test
Smoothed Variance t

• Collect max distribution
– To find threshold that controls FWER

• Consider smoothed variance t statistic

t-statisticvariance

mean difference
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Permutation Test
Smoothed Variance t

• Collect max distribution
– To find threshold that controls FWER

• Consider smoothed variance t statistic

Smoothed
Variance
t-statistic

mean difference
smoothed
variance
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Permutation Test
Example

• fMRI Study of Working Memory   
– 12 subjects, block design  Marshuetz et al (2000)

– Item Recognition
• Active:View five letters, 2s pause,

view probe letter, respond
• Baseline: View XXXXX, 2s pause,

view Y or N, respond

• Second Level RFX
– Difference image, A-B constructed

for each subject
– One sample, smoothed variance t test

...

D

yes

...

UBKDA

Active

...

N

no

...

XXXXX

Baseline
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Permutation Test
Example

• Permute!
– 212 = 4,096 ways to flip 12 A/B labels
– For each, note maximum of t image
.

Permutation Distribution
Maximum  t

Maximum Intensity Projection 
Thresholded t
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Permutation Test
Example

• Compare with Bonferroni
– α = 0.05/110,776

• Compare with parametric RFT
– 110,776  2×2×2mm voxels
– 5.1×5.8×6.9mm FWHM smoothness
– 462.9 RESELs
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t11 Statistic, RF & Bonf. Thresholdt11 Statistic, Nonparametric Threshold

uRF = 9.87
uBonf = 9.80
5 sig. vox. 

uPerm = 7.67 

58 sig. vox.

Smoothed Variance t Statistic,
Nonparametric Threshold

378 sig. vox.

Test Level vs. t11 Threshold



Does this Generalize?
RFT vs Bonf. vs Perm.

  t Threshold 
(0.05 Corrected) 

 df RF Bonf Perm
Verbal Fluency 4 4701.32 42.59 10.14
Location Switching 9 11.17 9.07 5.83
Task Switching 9 10.79 10.35 5.10
Faces: Main Effect 11 10.43 9.07 7.92
Faces: Interaction 11 10.70 9.07 8.26
Item Recognition 11 9.87 9.80 7.67
Visual Motion 11 11.07 8.92 8.40
Emotional Pictures 12 8.48 8.41 7.15
Pain: Warning 22 5.93 6.05 4.99
Pain: Anticipation 22 5.87 6.05 5.05

 



RFT vs Bonf. vs Perm.
  No. Significant Voxels 

(0.05 Corrected) 
  t SmVar t
 df RF Bonf Perm Perm 

Verbal Fluency 4 0 0 0 0
Location Switching 9 0 0 158 354
Task Switching 9 4 6 2241 3447
Faces: Main Effect 11 127 371 917 4088
Faces: Interaction 11 0 0 0 0
Item Recognition 11 5 5 58 378
Visual Motion 11 626 1260 1480 4064
Emotional Pictures 12 0 0 0 7
Pain: Warning 22 127 116 221 347
Pain: Anticipation 22 74 55 182 402
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Conclusions

• t random field results conservative for
– Low df & smoothness
– 9 df & ≤12 voxel FWHM;   19 df & < 10 voxel 

FWHM
(based on Monte Carlo simulations, not shown)

• Bonferroni not so bad for low smoothness
• Nonparametric methods perform well 

overall
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Monte Carlo Evaluations

• What’s going wrong?
– Normality assumptions?
– Smoothness assumptions?

• Use Monte Carlo Simulations
– Normality strictly true
– Compare over range of smoothness, df

• Previous work
– Gaussian (Z) image results well-validated
– t image results hardly validated at all!
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Monte Carlo Evaluations
Challenges

• Accurately simulating t images
– Cannot directly simulate smooth t images
– Need to simulate ν smooth Gaussian images

(ν = degrees of freedom)

• Accounting for all sources of variability
– Most M.C. evaluations use known smoothness
– Smoothness not known
– We estimated it residual images
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Monte Carlo Evaluations
• Simulated One Sample T test

– 32x32x32 Images  (32767 voxels)
– Smoothness:  0, 1.5, 3, 6,12 FWHM
– Degrees of Freedom: 9, 19, 29
– Realizations: 3000

• Permutation
– 100 relabelings
– Threshold: 95%ile of permutation distn of maximum

• Random Field
– Threshold: { u : E(χu | Ho) = 0.05 }

• Also Gaussian

Autocorrelation Function

FWHM
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Inf.
df

29
df

more

Familywise
Error
Thresholds

• RFT valid 
but 
conservative

• Gaussian not 
so bad 
(FWHM >3)

• t29 somewhat 
worse
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Inf
df

29 
df

more

Familywise
Rejection
Rates

• Need > 6 
voxel FWHM 
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• RF & Perm 
adapt to 
smoothness

• Perm & Truth 
close

• Bonferroni 
close to truth 
for low 
smoothness

19 
df

9
df

more

Familywise
Error
Thresholds
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Familywise
Rejection
Rates
• Bonf good on 

low df, 
smoothness

• Bonf bad for 
high 
smoothness

• RF only good 
for high df, 
high 
smoothness

• Perm exact

19
df

9
df

more
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Familywise
Rejection
Rates

• Smoothness 
estimation 
is not (sole) 
problem

19
df

9
df

cont
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Performance Summary

• Bonferroni
– Not adaptive to smoothness
– Not so conservative for low smoothness

• Random Field
– Adaptive
– Conservative for low smoothness & df

• Permutation
– Adaptive (Exact)
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Understanding Performance 
Differences

• RFT Troubles
– Multivariate Normality assumption

• True by simulation

– Smoothness estimation
• Not much impact

– Smoothness
• You need lots, more at low df

– High threshold assumption
• Doesn’t improve for α0 less than 0.05 (not shown)

HighThr
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Conclusions

• t random field results conservative for
– Low df & smoothness
– 9 df & ≤12 voxel FWHM;   19 df & < 10 voxel FWHM

• Bonferroni surprisingly satisfactory for low 
smoothness

• Nonparametric methods perform well overall
• More data and simulations needed

– Need guidelines as to when RF is useful
– Better understand what assumption/approximation fails
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Permutation Test
Example

• Permute!
– 212 = 4,096 ways to flip A/B labels
– For each, note max of smoothed variance t image
.

Permutation Distribution
Max Smoothed Variance t

Maximum Intensity Projection 
Threshold Sm. Var. t
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