#### Nonparametric Thresholding Methods (FWE inference w/ SnPM)

Thomas Nichols, Ph.D. Assistant Professor Department of Biostatistics University of Michigan



http://www.sph.umich.edu/~nichols

USA SPM Course April 8, 2005

#### Overview

- Multiple Comparisons Problem
  Which of my 100,000 voxels are "active"?
- SnPM
  - Permutation test to find threshold
  - Control chance of any false positives (FWER)

# Nonparametric Inference: Permutation Test

- Assumptions
  - Null Hypothesis Exchangeability
- Method
  - Compute statistic *t*
  - Resample data (without replacement), compute  $t^*$
  - $\{t^*\}$  permutation distribution of test statistic
  - $P-value = \#\{ t^* > t \} / \#\{ t^* \}$
- Theory
  - Given data and  $H_0$ , each  $t^*$  has equal probability
  - Still can assume data randomly drawn from population

#### **Nonparametric Inference**

- Parametric methods
  - Assume distribution of statistic under null hypothesis
  - Needed to find P-values,  $u_{\alpha}$



- Nonparametric methods
  - Use *data* to find
     distribution of statistic
     under null hypothesis
  - Any statistic!



Data from V1 voxel in visual stim. experiment
 A: Active, flashing checkerboard B: Baseline, fixation
 6 blocks, ABABAB Just consider block averages...

| А      | В     | А     | В     | А     | В     |
|--------|-------|-------|-------|-------|-------|
| 103.00 | 90.48 | 99.93 | 87.83 | 99.76 | 96.06 |

- Null hypothesis  $H_o$ 
  - No experimental effect, A & B labels arbitrary
- Statistic
  - Mean difference

• Under  $H_o$ 

- Consider all equivalent relabelings

| AAABBB | ABABAB | BAAABB | BABBAA |
|--------|--------|--------|--------|
| AABABB | ABABBA | BAABAB | BBAAAB |
| AABBAB | ABBAAB | BAABBA | BBAABA |
| AABBBA | ABBABA | BABAAB | BBABAA |
| ABAABB | ABBBAA | BABABA | BBBAAA |

- Under  $H_o$ 
  - Consider all equivalent relabelings
  - Compute all possible statistic values

| AAABBB 4.82  | ABABAB 9.45  | BAAABB -1.48 | BABBAA -6.86 |
|--------------|--------------|--------------|--------------|
| AABABB -3.25 | ABABBA 6.97  | BAABAB 1.10  | BBAAAB 3.15  |
| AABBAB -0.67 | ABBAAB 1.38  | BAABBA -1.38 | BBAABA 0.67  |
| AABBBA -3.15 | ABBABA -1.10 | BABAAB -6.97 | BBABAA 3.25  |
| ABAABB 6.86  | ABBBAA 1.48  | BABABA -9.45 | BBBAAA -4.82 |

- Under  $H_o$ 
  - Consider all equivalent relabelings
  - Compute all possible statistic values
  - Find 95%ile of permutation distribution

| AAABBB 4.82  | ABABAB 9.45  | BAAABB -1.48 | BABBAA -6.86 |
|--------------|--------------|--------------|--------------|
| AABABB -3.25 | ABABBA 6.97  | BAABAB 1.10  | BBAAAB 3.15  |
| AABBAB -0.67 | ABBAAB 1.38  | BAABBA -1.38 | BBAABA 0.67  |
| AABBBA -3.15 | ABBABA -1.10 | BABAAB -6.97 | BBABAA 3.25  |
| ABAABB 6.86  | ABBBAA 1.48  | BABABA -9.45 | BBBAAA -4.82 |

- Under  $H_o$ 
  - Consider all equivalent relabelings
  - Compute all possible statistic values
  - Find 95%ile of permutation distribution

| AAABBB 4.82 | 2 ABABAB 9.45  | BAAABB -1.48 | BABBAA -6.86 |
|-------------|----------------|--------------|--------------|
| AABABB -3.2 | 5 ABABBA 6.97  | BAABAB 1.10  | BBAAAB 3.15  |
| AABBAB -0.6 | 7 ABBAAB 1.38  | BAABBA -1.38 | BBAABA 0.67  |
| AABBBA -3.1 | 5 ABBABA -1.10 | BABAAB -6.97 | BBABAA 3.25  |
| ABAABB 6.8  | 6 ABBBAA 1.48  | BABABA -9.45 | BBBAAA -4.82 |

- Under  $H_o$ 
  - Consider all equivalent relabelings
  - Compute all possible statistic values
  - Find 95%ile of permutation distribution



# Permutation Test Strengths

- Requires only assumption of exchangeability

  Under Ho, distribution unperturbed by permutation
  Allows us to build permutation distribution
- Subjects are exchangeable
  Under Ho, each subject's A/B labels can be flipped
- fMRI scans not exchangeable under Ho
  - Due to temporal autocorrelation

### Permutation Test Limitations

- Computational Intensity
  - Analysis repeated for each relabeling
  - Not so bad on modern hardware
    - No analysis discussed below took more than 3 hours
- Implementation Generality
  - Each experimental design type needs unique code to generate permutations
    - Not so bad for population inference with t-tests

# MCP Solutions: Measuring False Positives

- Familywise Error Rate (FWER)
  - Familywise Error
    - Existence of one or more false positives
  - FWER is probability of familywise error
- False Discovery Rate (FDR)
  - R voxels declared active, V falsely so
    - Observed false discovery rate: V/R
  - -FDR = E(V/R)

#### **FWER MCP Solutions**

- Bonferroni
- Maximum Distribution Methods
  - Random Field Theory
  - Permutation

#### FWER MCP Solutions: Controlling FWER w/ Max

- FWER & distribution of maximum FWER = P(FWE) = P(One or more voxels  $\ge u \mid H_o$ ) = P(Max voxel  $\ge u \mid H_o$ )
- $100(1-\alpha)$ % ile of max dist<sup>n</sup> controls FWER FWER = P(Max voxel  $\ge u_{\alpha} \mid H_{o}) \le \alpha$

α

 $\mathcal{U}_{\alpha}$ 

#### **FWER MCP Solutions**

- Bonferroni
- Maximum Distribution Methods
  - Random Field Theory
  - Permutation

# Controlling FWER: Permutation Test

- Parametric methods
  - Assume distribution of max statistic under null hypothesis
- Nonparametric methods
  - Use *data* to find distribution of *max* statistic under null hypothesis
  - Again, any max statistic!





# Permutation Test & Exchangeability

- Exchangeability is fundamental
  - Def: Distribution of the data unperturbed by permutation
  - Under H<sub>0</sub>, exchangeability justifies permuting data
  - Allows us to build permutation distribution
- Subjects are exchangeable
  - Under Ho, each subject's A/B labels can be flipped
- Are fMRI scans exchangeable under Ho?
  - If no signal, can we permute over time?

# Permutation Test & Exchangeability

- fMRI scans are not exchangeable
  - Permuting disrupts order, temporal autocorrelation
- *Intra*subject fMRI permutation test
  - Must decorrelate data, model before permuting
  - What is correlation structure?
    - Usually must use parametric model of correlation
  - E.g. Use wavelets to decorrelate
    - Bullmore et al 2001, HBM 12:61-78
- *Intersubject fMRI permutation test* 
  - Create difference image for each subject
  - For each permutation, flip sign of some subjects

### Permutation Test Other Statistics

Collect max distribution

To find threshold that controls FWER

Consider smoothed variance *t* statistic

To regularize low-df variance estimate

#### Permutation Test Smoothed Variance t

- Collect max distribution
  - To find threshold that controls FWER
- Consider smoothed variance t statistic



#### Permutation Test Smoothed Variance t

- Collect max distribution
  - To find threshold that controls FWER
- Consider smoothed variance *t* statistic



- fMRI Study of Working Memory
  - 12 subjects, block design Marshuetz et al (2000)
  - Item Recognition
    - Active:View five letters, 2s pause, view probe letter, respond
    - Baseline: View XXXXX, 2s pause, view Y or N, respond
- Second Level RFX
  - Difference image, A-B constructed for each subject
  - One sample, smoothed variance *t* test





- Permute!
  - $-2^{12} = 4,096$  ways to flip 12 A/B labels

– For each, note maximum of *t* image



Maximum t







Maximum Intensity Projection Thresholded t 24

- Compare with Bonferroni  $-\alpha = 0.05/110,776$
- Compare with parametric RFT
  - 110,776 2×2×2mm voxels
  - 5.1×5.8×6.9mm FWHM smoothness
  - 462.9 RESELs



 $t_{11}$  Statistic, Nonparametric Threshold



Test Level vs.  $t_{11}$  Threshold



#### $t_{11}$ Statistic, RF & Bonf. Threshold



Smoothed Variance *t* Statistic, Nonparametric Threshold 26

#### Does this Generalize? RFT vs Bonf. vs Perm.

|    | t Threshold                                                       |                                                                                |                                                                                                                                             |
|----|-------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|    | (0.05 Corrected)                                                  |                                                                                |                                                                                                                                             |
| df | RF                                                                | Bonf                                                                           | Perm                                                                                                                                        |
| 4  | 4701.32                                                           | 42.59                                                                          | 10.14                                                                                                                                       |
| 9  | 11.17                                                             | 9.07                                                                           | 5.83                                                                                                                                        |
| 9  | 10.79                                                             | 10.35                                                                          | 5.10                                                                                                                                        |
| 11 | 10.43                                                             | 9.07                                                                           | 7.92                                                                                                                                        |
| 11 | 10.70                                                             | 9.07                                                                           | 8.26                                                                                                                                        |
| 11 | 9.87                                                              | 9.80                                                                           | 7.67                                                                                                                                        |
| 11 | 11.07                                                             | 8.92                                                                           | 8.40                                                                                                                                        |
| 12 | 8.48                                                              | 8.41                                                                           | 7.15                                                                                                                                        |
| 22 | 5.93                                                              | 6.05                                                                           | 4.99                                                                                                                                        |
| 22 | 5.87                                                              | 6.05                                                                           | 5.05                                                                                                                                        |
|    | df<br>4<br>9<br>9<br>11<br>11<br>11<br>11<br>12<br>22<br>22<br>22 | t T(0.05)dfRF44701.32911.17910.791110.431110.70119.871111.07128.48225.93225.87 | tThreshold(0.05CorrecteddfRFBonf44701.3242.59911.179.07910.7910.351110.439.071110.709.07119.879.801111.078.92128.488.41225.936.05225.876.05 |

#### RFT vs Bonf. vs Perm.

Verbal Fluency Location Switching Task Switching Faces: Main Effect **Faces:** Interaction Item Recognition Visual Motion **Emotional Pictures** Pain: Warning **Pain: Anticipation** 

|    | (0.05 Corrected) |      |      |         |
|----|------------------|------|------|---------|
|    | t t              |      |      | SmVar t |
| df | RF               | Bonf | Perm | Perm    |
| 4  | 0                | 0    | 0    | 0       |
| 9  | 0                | 0    | 158  | 354     |
| 9  | 4                | 6    | 2241 | 3447    |
| 11 | 127              | 371  | 917  | 4088    |
| 11 | 0                | 0    | 0    | 0       |
| 11 | 5                | 5    | 58   | 378     |
| 11 | 626              | 1260 | 1480 | 4064    |
| 12 | 0                | 0    | 0    | 7       |
| 22 | 127              | 116  | 221  | 347     |
| 22 | 74               | 55   | 182  | 402     |

No. Significant Voyels

#### Conclusions

- *t* random field results conservative for
  - Low df & smoothness
  - 9 df & ≤12 voxel FWHM; 19 df & <10 voxel FWHM

(based on Monte Carlo simulations, not shown)

- Bonferroni not so bad for low smoothness
- Nonparametric methods perform well overall

#### **Monte Carlo Evaluations**

- What's going wrong?
  - Normality assumptions?
  - Smoothness assumptions?
- Use Monte Carlo Simulations
  - Normality strictly true
  - Compare over range of smoothness, df
- Previous work
  - Gaussian (Z) image results well-validated
  - t image results hardly validated at all!

# Monte Carlo Evaluations Challenges

- Accurately simulating *t* images
  - Cannot directly simulate smooth *t* images
  - Need to simulate v smooth Gaussian images
     (v = degrees of freedom)
- Accounting for all sources of variability
  - Most M.C. evaluations use known smoothness
  - Smoothness not known
  - We estimated it residual images

#### **Monte Carlo Evaluations**

- Simulated One Sample T test
  - 32x32x32 Images (32767 voxels)
  - Smoothness: 0, 1.5, 3, 6,12 FWHM
  - Degrees of Freedom: 9, 19, 29
  - Realizations: 3000
- Permutation
  - 100 relabelings
  - Threshold: 95% ile of permutation dist<sup>n</sup> of maximum
- Random Field

- Threshold: {  $u : E(\chi_u | H_o) = 0.05$  }

Also Gaussian



#### Familywise Error Thresholds

- RFT valid but conservative
- Gaussian not so bad (FWHM >3)
- t<sub>29</sub> somewhat worse





#### Familywise Rejection Rates

Need > 6
 voxel FWHM





#### Familywise Error Thresholds

- RF & Perm adapt to smoothness
- Perm & Truth close
- Bonferroni
   close to truth
   for low
   smoothness





#### Familywise Rejection Rates

- Bonf good on low df, smoothness
- Bonf bad for high smoothness
- RF only good for high df, high smoothness
- Perm exact





more

#### Familywise Rejection Rates

 Smoothness estimation is not (sole) problem





#### **Performance Summary**

- Bonferroni
  - Not adaptive to smoothness
  - Not so conservative for low smoothness
- Random Field
  - Adaptive
  - Conservative for low smoothness & df
- Permutation
  - Adaptive (Exact)

#### Understanding Performance Differences

- RFT Troubles
  - Multivariate Normality assumption
    - True by simulation
  - Smoothness estimation
    - Not much impact
  - Smoothness
    - You need lots, more at low df
  - High threshold assumption
    - Doesn't improve for  $\alpha_0$  less than 0.05 (not shown)

#### Conclusions

- *t* random field results conservative for
  - Low df & smoothness
  - $-9 \text{ df } \& \le 12 \text{ voxel FWHM}; 19 \text{ df } \& \le 10 \text{ voxel FWHM}$
- Bonferroni surprisingly satisfactory for low smoothness
- Nonparametric methods perform well overall
- More data and simulations needed
  - Need guidelines as to when RF is useful
  - Better understand what assumption/approximation fails

#### References

- TE Nichols and AP Holmes.
   Nonparametric Permutation Tests for Functional Neuroimaging: A Primer with Examples.
   *Human Brain Mapping*, 15:1-25, 2002.
- http://www.sph.umich.edu/~nichols

- Permute!
  - $-2^{12} = 4,096$  ways to flip A/B labels
  - For each, note max of smoothed variance *t* image



Permutation Distribution Max Smoothed Variance *t* 







Maximum Intensity Projection Threshold Sm. Var. *t* 43

