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Overview of SPM Analysis

fMRI time-series Design matrix Statistical Parametric Map
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Smoothing

Each voxel after smoothing effectively
becomes the result of applying a weighted
region of interest (ROI).

Before convolution Convolved with a circle Convolved with a Gaussian
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Smoothing

Why smooth?
Potentially increase sensitivity
Inter-subject averaging
Increase validity of SPM

Smoothing Is a convolution with a Gaussian
kernel

Gaussian convolution . =~
s separable Jf Sage =
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Within-subject Registration

Assumes there Is no shape change, and
motion Is rigid-body

Used by [realign] and [coregister] functions

The steps are:

stRegistration - i.e. Optimising the parameters
that describe a rigid body transformation
between the source and reference images

s Transformation - i.e. Re-sampling according to
the determined transformation



Affine Transforms
Rigid-body transformations are a subset
Parallel lines remain parallel

Operations can be represented by:
X1 = My Xg + MY + MizZg + Myy

Y1 = My Xg T MyoYg T MogZg T Myy

Z1 = M3 Xg T M3oYp T M33Zg T Mgy

Or as matrices: @qu emll M, Mz My,U &0
m m u u

Y:MX 1u a 21 m,, 23 24(1- &0(]
gzg gn?,l m32 m33 m343 é 03

¢lg 0 0 O 14§ ¢glg



2D Affine Transforms

Translations by t, and t,
X1 = Xo v tx
Vit yO i ty

Rotation around the origin by Q radians
X; = €0s(Q) X, +SIN(Q) Yo
Y1 = -sIN(Q) Xq + €os(Q) Yo

Zooms by s, and s, Shear
X1 = Sx Xo X1 = Xo t N Yo
Y1 =Sy Yo Y1= Yo



2D Affine Transforms

Translations by t, and t,
X;=1X,+0y,+t,
Y1=0Xp+1yg+t,

Rotation around the origin by Q radians
X; = €0S(Q) X +sIN(Q) o+ O
Y1 = -SIn(Q) Xq + €0s(Q) yg + O
Zooms by s, and s, : Shear
X; =8, Xgt0Yyy+0 X;=1Xg+hyg+O0
Y1 =0 X +S,Ypt 0 V1=0Xp+t1lys+0



3D Rigid-body Transformations

A 3D rigid body transform is defined by:
3 translations - In X, Y & Z directions

3 rotations - about X, Y & Z axes

The order of the operations matters
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Voxel-to-world Transforms

Affine transform associated with each image

Maps from voxels (x=1..n,, y=1..n,, z=1..n,) to some
world co-ordinate system. e.g.,
Scanner co-ordinates - images from DICOM toolbox
T&T/MNI coordinates - spatially normalised

Registering image B (source) to image A
(target) will update B's vox-to-world mapping
Mapping from voxels in A to voxels in B Is by

A-to-world using M,, then world-to-B using M;!
Mgt M,



Left- and Right-handed Coordinate
Systems

Analyze™ files are stored in a left-handed system
Talairach & Tournoux uses a right-handed system

Mapping between them requires a flip
Affine transform with a negative determinant

Left-Handed Right-Handed

£
"
- B g s




Optimisation

Optimisation involves finding some “best”
parameters according to an “objective
function”, which is either minimised or

maximised

The “objective function” is often related to
a probability based on some model

: : Most probable solution
Objective | (global optimum)

function ; Local optimum

Local optimum

Value of parameter



Objective Functions for Image
Registration

Intra-modal
Mean squared difference (minimise)
Normalised cross correlation (maximise)
Entropy of difference (minimise)

Inter-modal (or intra-modal)
Mutual information (maximise)
Normalised mutual information (maximise)
Entropy correlation coefficient (maximise)
AIR cost function (minimise)



Mean-squared Difference

Original Joint Histogram Final Joint Histogram

L -

Minimising mean-squared difference works
for intra-modal registration (realignment)

Simple relationship between intensities In
one Image, versus those In the other

Assumes normally distributed differences



Gauss-newton Optimisation

Works best
for least-
squares
Minimum IS
estimated
by fitting a
guadratic at
each
Iteration




Inter-modal registration

 Match images from same
subject but different
modalities:

—anatomical localisation of
single subject activations

—achieve more precise
spatial normalisation of
functional image using
anatomical image.




Original Joint Histogram Final Joint Histogram

T2 weighted

T2 weighted

i

Mutual Information
iy

| = =

. o
T1 weighted T1 weighted

Used for between-modality registration
Derived from joint histograms

MI= Q, P(a,b) log, [P(a,b)/( P(a) P(b) )]
Related to entropy: MI = -H(a,b) + H(a) + H(b)

N\ N\

Where H(a) = -Q P(a) log,P(a) and H(a,b) = -Q P(a,b) log,P(a,b)



Image Transformations
Images are re-sampled. An example in 2D:

for y,=1..n,4

for x,=1..n4
X; = §,(X0:Y0,0)
Y1 = €,(X0,Y0.9)
It 1Ex,£n,, & 1£y,£n , then

F,(X0,Yo) = To(Xy,Y1)

end

end

end

What happens if x, and y, are not integers?



Simple Interpolation

Nearest neighbour |°

Take the value of
the closest voxel

Tri-linear

Just a weighted
average of the
neighbouring voxels

fs =1, X, + 1, X
o =T X, + T, X
=y, +fgy,




B-spline Interpolation

A continuous function is represented by
a linear combination of basis functions

2D B-spline basis functions
of degrees O, 1, 2 and 3

>

0.5 0_5;"2‘

Nearest neighbour and

| trilinear interpolation are
the same as B-spline

| Interpolation with degrees
O and 1.
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Residual Errors from aligned fMRI

* Re-sampling can introduce interpolation errors

— especially tri-linear interpolation

Gaps between slices can cause aliasing artefacts

Slices are not acquired simultaneously

— rapid movements not accounted for by rigid body model

Image artefacts may not move according to a rigid body model
— Image distortion
— Image dropout

— Nyquist ghost

Functions of the estimated motion parameters can be modelled
as confounds in subsequent analyses



Movement by Distortion Interaction
of TMRI

*Subject disrupts B, field,
rendering it inhomogeneous

=> distortions In phase-
encode direction

*Subject moves during EPI
time series

*Distortions vary with
subject orientation

=> shape varies




Movement by distortion interaction

Criginal position After rotation
-




Correcting for distortion changes using

Unwarp

Estimate
movement
parameters.

- J

Estimate reference from
mean of all scans.

1 !

Estimate new distortion
fields for each image:

e estimate rate of change
of field with respect to
the current estimate of
movement parameters
in pitch and roll.

r

Unwarp time
series.

- )

Andersson et al, 2001
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Spatial Normalisation - Reasons

Inter-subject averaging

Increase sensitivity with more subjects
Fixed-effects analysis

Extrapolate findings to the population as a whole
Mixed-effects analysis

Standard coordinate system
e.g., Talairach & Tournoux space



Spatial Normalisation - Objective

Warp the images such that functionally
homologous regions from different subjects
are as close together as possible
Problems:
No exact match between structure and function

Different brains are organised differently

Computational problems (local minima, not enough
Information in the images, computationally expensive)

Compromise by correcting gross
differences followed by smoothing of
normalised images



Very hardg
to define a

one-to-one|”
mapping

of cortical
folding

Use only
approximate
registration.

| =4




Spatial Normalisation - Procedure

Minimise mean squared difference from
template image(s)

Affine registration Non-linear registration



“Canonical” images

Spatial normalisation can
be weighted so that non-
brain voxels do not
influence the result.

PET

A wider range of
contrasts can be
registered to a
linear combination
of template images.

PD

Similar weighting masks
can be used for normalising
lesioned brains.

Spatial Normalisation - Templates




Spatial Normalisation - Affine

The first partisal? g
parameter affine transform

3 translations
3 rotations

3 zooms

3 shears

Fits overall shape and size

Algorithm simultaneously minimises
Mean-squared difference between template and source
Image
Squared distance between parameters and their expected
values (reqgularisation)



Spatlal Normallsatlon - Non-linear
) e DeTormations consist of a
.> {&%S Inear combination of smooth

nasis functions

|

o
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These are the lowest
frequencies of a 3D discrete
cosine transform (DCT)

i 4

*~ Algorithm simultaneously minimises
Mean squared difference between
template and source image

Squared distance between
parameters and their known
expectation




Spatial Normalisation - Overfitting
Without

regularisation, FRLAL

the non-linear r(igz'itjitz'_‘i;"
I Template

spatial e s

normalisation \__ |
can introduce

unnecessary Non-linear
; registration
warps. Non-linear \?Vlthout
registration regularisation.
using (c?2=287.3)
regularisation.
(c2 =302.7) /
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