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Smoothing

Before convolution Convolved with a circle Convolved with a Gaussian

Each voxel after smoothing effectively 
becomes the result of applying a weighted 
region of interest (ROI).



Smoothing
zWhy smooth?
yPotentially increase sensitivity
yInter-subject averaging
yIncrease validity of SPM

zSmoothing is a convolution with a Gaussian 
kernel

Gaussian convolution 
is separable
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Within-subject Registration
zAssumes there is no shape change, and 

motion is rigid-body
zUsed by [realign] and [coregister] functions
zThe steps are:
zzRegistrationRegistration -- i.e. Optimising the parameters i.e. Optimising the parameters 

that describe a rigid body transformation that describe a rigid body transformation 
between the source and reference imagesbetween the source and reference images
zzTransformationTransformation -- i.e. Rei.e. Re--sampling according to sampling according to 

the determined transformationthe determined transformation



Affine Transforms
zRigid-body transformations are a subset
zParallel lines remain parallel 
zOperations can be represented by: 

x1 = m11x0 + m12y0 + m13z0 + m14

y1 = m21x0 + m22y0 + m23z0 + m24

z1 = m31x0 + m32y0 + m33z0 + m34 

zOr as matrices:
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2D Affine Transforms
zTranslations by tx and ty
yx1 = x0 + tx

yy1 = y0 + ty

zRotation around the origin by Θ radians
yx1 =  cos(Θ) x0 + sin(Θ) y0

yy1 = -sin(Θ) x0 + cos(Θ) y0

zZooms by sx and sy
yx1 = sx x0

yy1 = sy y0

zShear
zx1 = x0 + h y0
zy1 =  y0



2D Affine Transforms
zTranslations by tx and ty
yx1 = 1 x0 + 0 y0 + tx

yy1 = 0 x0 + 1 y0 + ty

zRotation around the origin by Θ radians
yx1 =  cos(Θ) x0 + sin(Θ) y0 + 0
yy1 = -sin(Θ) x0 + cos(Θ) y0 + 0

zZooms by sx and sy:
yx1 = sx x0 + 0 y0 + 0
yy1 = 0 x0  + sy y0 + 0

zShear
zx1 = 1 x0 + h y0 + 0
zy1 = 0 x0 + 1 y0 + 0



3D Rigid-body Transformations
zA 3D rigid body transform is defined by:
y3 translations - in X, Y & Z directions
y3 rotations - about X, Y & Z axes

zThe order of the operations matters
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Voxel-to-world Transforms
zAffine transform associated with each image
yMaps from voxels (x=1..nx, y=1..ny, z=1..nz) to some 

world co-ordinate system. e.g.,
⌧Scanner co-ordinates - images from DICOM toolbox
⌧T&T/MNI coordinates - spatially normalised

zRegistering image B (source) to image A 
(target) will update B’s vox-to-world mapping
yMapping from voxels in A to voxels in B is by
⌧A-to-world using MA, then world-to-B using MB

-1

⌧ MB
-1 MA



Left- and Right-handed Coordinate 
Systems
zAnalyze™ files are stored in a left-handed system
zTalairach & Tournoux uses a right-handed system
zMapping between them requires a flip
yAffine transform with a negative determinant



Optimisation
zOptimisation involves finding some “best” 

parameters according to an “objective 
function”, which is either minimised or 
maximised
zThe “objective function” is often related to 

a probability based on some model

Value of parameter

Objective 
function

Most probable solution 
(global optimum)

Local optimumLocal optimum



Objective Functions for Image 
Registration
zIntra-modal
yMean squared difference (minimise)
yNormalised cross correlation (maximise)
yEntropy of difference (minimise)

zInter-modal (or intra-modal)
yMutual information (maximise)
yNormalised mutual information (maximise)
yEntropy correlation coefficient (maximise)
yAIR cost function (minimise)



Mean-squared Difference

zMinimising mean-squared difference works 
for intra-modal registration (realignment)
zSimple relationship between intensities in 

one image, versus those in the other
yAssumes normally distributed differences



Gauss-newton Optimisation
zWorks best 

for least-
squares
zMinimum is 

estimated 
by fitting a 
quadratic at 
each 
iteration



• Match images from same 
subject but different 
modalities:

– anatomical localisation of 
single subject activations

– achieve more precise 
spatial normalisation of 
functional image using 
anatomical image.

Inter-modal registration



Mutual Information

zUsed for between-modality registration
zDerived from joint histograms

zMI= ∫ab P(a,b) log2 [P(a,b)/( P(a) P(b) )]
yRelated to entropy: MI = -H(a,b) + H(a) + H(b)

• Where H(a) = -∫a P(a) log2P(a) and  H(a,b) = -∫a P(a,b) log2P(a,b)



Image Transformations
zImages are re-sampled. An example in 2D:

for y0=1..ny0 % loop over rows
for x0=1..nx0 % loop over pixels in row

x1 = tx(x0,y0,q) % transform according to q
y1 = ty(x0,y0,q) 
if 1≤x1≤ nx1 & 1≤y1≤ny1 then  % voxel in range

f1(x0,y0) = f0(x1,y1) % assign re-sampled value
end % voxel in range

end % loop over pixels in row
end % loop over rows

zWhat happens if x1 and y1 are not integers?



zNearest neighbour
yTake the value of 

the closest voxel
zTri-linear
yJust a weighted 

average of the 
neighbouring voxels
yf5 = f1 x2 + f2 x1

yf6 = f3 x2 + f4 x1

yf7 = f5 y2 + f6 y1

Simple Interpolation



B-spline Interpolation

B-splines are piecewise polynomials

A continuous function is represented by 
a linear combination of basis functions

2D B-spline basis functions 
of degrees 0, 1, 2 and 3

Nearest neighbour and 
trilinear interpolation are 
the same as B-spline 
interpolation with degrees 
0 and 1.



• Re-sampling can introduce interpolation errors
– especially tri-linear interpolation

• Gaps between slices can cause aliasing artefacts

• Slices are not acquired simultaneously
– rapid movements not accounted for by rigid body model

• Image artefacts may not move according to a rigid body model

– image distortion

– image dropout

– Nyquist ghost

• Functions of the estimated motion parameters can be modelled 
as confounds in subsequent analyses

Residual Errors from aligned fMRI



Movement by Distortion Interaction 
of fMRI
•Subject disrupts B0 field, 
rendering it inhomogeneous

=> distortions in phase-
encode direction

•Subject moves during EPI 
time series
•Distortions vary with 
subject orientation 

=> shape varies



Movement by distortion interaction



Correcting for distortion changes using 
Unwarp

Estimate 
movement 
parameters.

Estimate new distortion 
fields for each image:

• estimate rate of change 
of field with respect to 
the current estimate of 
movement parameters 
in pitch and roll.

Estimate reference from 
mean of all scans.

Unwarp time 
series.

0B ϕ∂ ∂ 0B θ∂ ∂

∆ϕ +∆θ

Andersson et al, 2001
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Spatial Normalisation - Reasons

zInter-subject averaging
yIncrease sensitivity with more subjects
⌧Fixed-effects analysis

yExtrapolate findings to the population as a whole
⌧Mixed-effects analysis

zStandard coordinate system
ye.g., Talairach & Tournoux space



Spatial Normalisation - Objective
zWarp the images such that functionally 

homologous regions from different subjects 
are as close together as possible
yProblems:
⌧No exact match between structure and function
⌧Different brains are organised differently
⌧Computational problems (local minima, not enough 

information in the images, computationally expensive)

zCompromise by correcting  gross 
differences followed by smoothing of 
normalised images



Very hard 
to define a 
one-to-one 

mapping
of cortical 

folding

Use only 
approximate 
registration.



Spatial Normalisation - Procedure

Non-linear registration

zMinimise mean squared difference from 
template image(s)

Affine registration



EPI

T2 T1 Transm

PD PET

305T1

PD T2 SS

Template Images “Canonical” images

A wider range of 
contrasts can be 
registered to a 
linear combination 
of template images.

Spatial normalisation can 
be weighted so that non-
brain voxels do not 
influence the result.

Similar weighting masks 
can be used for normalising 
lesioned brains.

Spatial Normalisation - TemplatesT1 PD

PET



Spatial Normalisation - Affine
zThe first part is a 12 

parameter affine transform
y3 translations
y3 rotations
y3 zooms
y3 shears

zFits overall shape and size

zAlgorithm simultaneously minimises
yMean-squared difference between template and source 

image
ySquared distance between parameters and their expected 

values (regularisation)



Spatial Normalisation - Non-linear
Deformations consist of a 
linear combination of smooth 
basis functions

These are the lowest 
frequencies of a 3D discrete 
cosine transform (DCT)

Algorithm simultaneously minimises
yMean squared difference between 

template and source image 
ySquared distance between 

parameters and their known 
expectation



Template
image

Affine 
registration.
(χ2 = 472.1)

Non-linear
registration

without
regularisation.

(χ2 = 287.3)

Non-linear
registration

using
regularisation.
(χ2 = 302.7)

Without 
regularisation, 
the non-linear 
spatial 
normalisation 
can introduce 
unnecessary 
warps.

Spatial Normalisation - Overfitting
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