The general linear model and Statistical Parametric Mapping I: Introduction to the GLM

Alexa Morcom

and Stefan Kiebel, Rik Henson, Andrew Holmes & J-B Poline

Overview

- Introduction
- Essential concepts
 - Modelling
 - Design matrix
 - Parameter estimates
 - Simple contrasts
- Summary

Some terminology

- SPM is based on a mass univariate approach that fits a model at each voxel
 - Is there an effect at location X? Investigate localisation of function or functional specialisation
 - How does region X interact with Y and Z? Investigate behaviour of networks or functional integration
- A General(ised) Linear Model
 - Effects are linear and additive
 - If errors are normal (Gaussian), General (SPM99)
 - If errors are not normal, Generalised (SPM2)

Parametric

- one sample *t*-test
- two sample *t*-test
- paired *t*-test
- ANOVA
- ANCOVA
- correlation
- linear regression
- multiple regression
- *F*-tests
- etc...

all cases of the (univariate)

General Linear Model

Or, with non-normal errors, the

Generalised Linear Model

Parametric

- one sample *t*-test
- two sample *t*-test
- paired *t*-test
- ANOVA
- ANCOVA
- correlation
- linear regression
- multiple regression
- *F*-tests
- etc...

all cases of the (univariate)

General Linear Model

Or, with non-normal errors, the

Generalised Linear Model

Parametric

- one sample *t*-test
- two sample *t*-test
- paired *t*-test
- ANOVA
- ANCOVA
- correlation
- linear regression
- multiple regression
- F-tests
- etc...

• Multivariate?

all cases of the (univariate)

General Linear Model

Or, with non-normal errors, the

Generalised Linear Model

® PCA/SVD, MLM

Parametric

- one sample *t*-test
- two sample *t*-test
- paired *t*-test
- ANOVA
- ANCOVA
- correlation
- linear regression
- multiple regression
- F-tests
- etc...
- Multivariate?
- Non-parametric?

all cases of the (univariate)

General Linear Model

Or, with non-normal errors, the

Generalised Linear Model

® PCA/SVD, MLM

® SnPM

Why modelling?

Why?

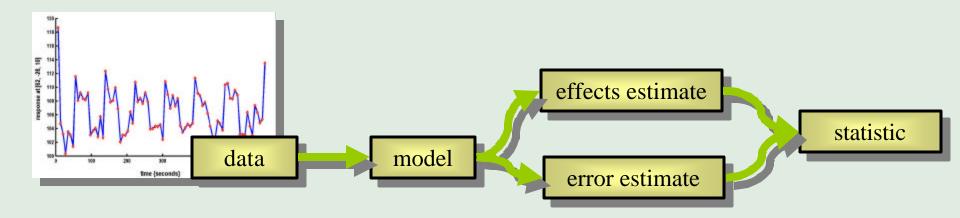
Make inferences about effects of interest

How?

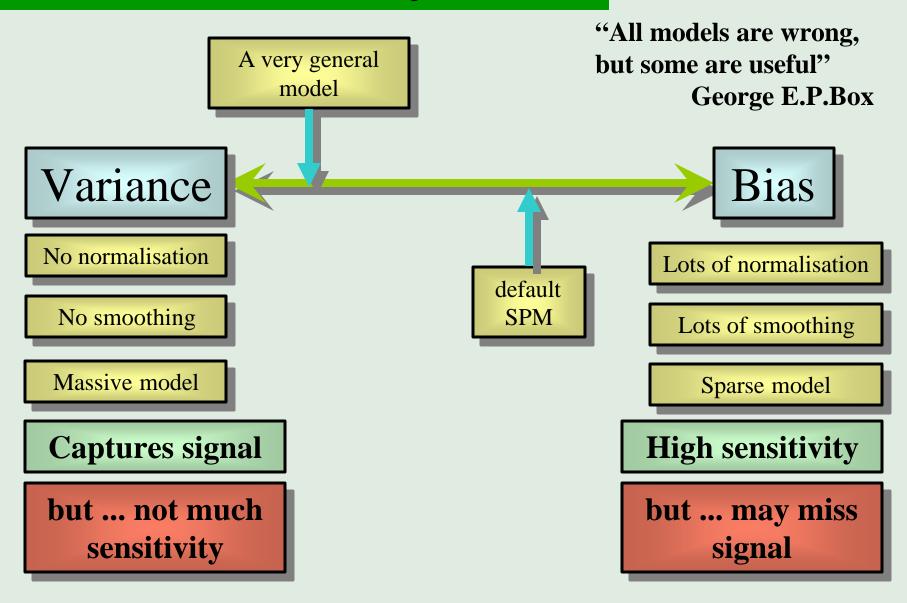
- 1. Decompose data into effects and error
- 2. Form statistic using estimates of effects and error

Model?

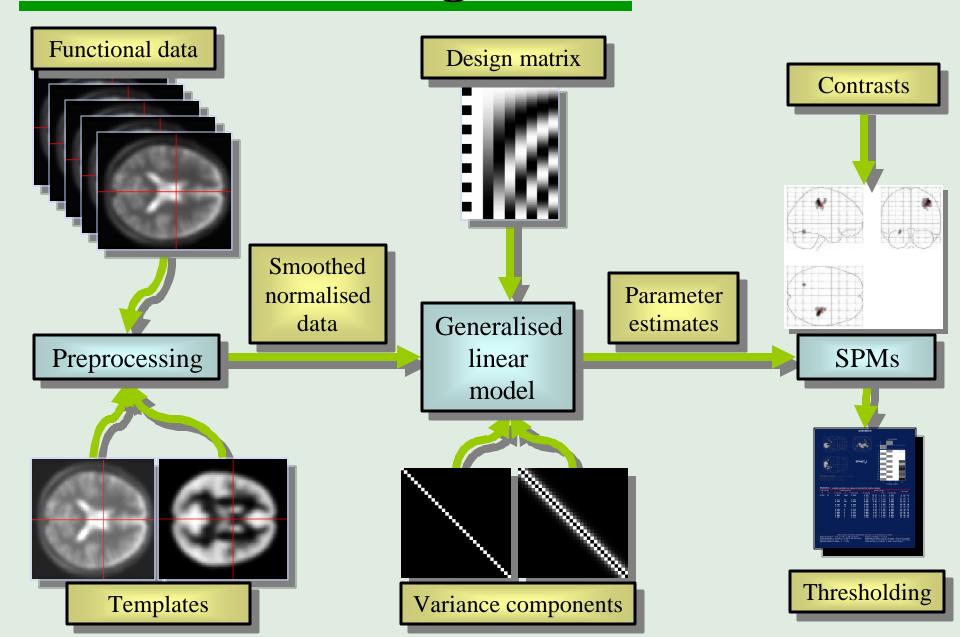
Use any available knowledge



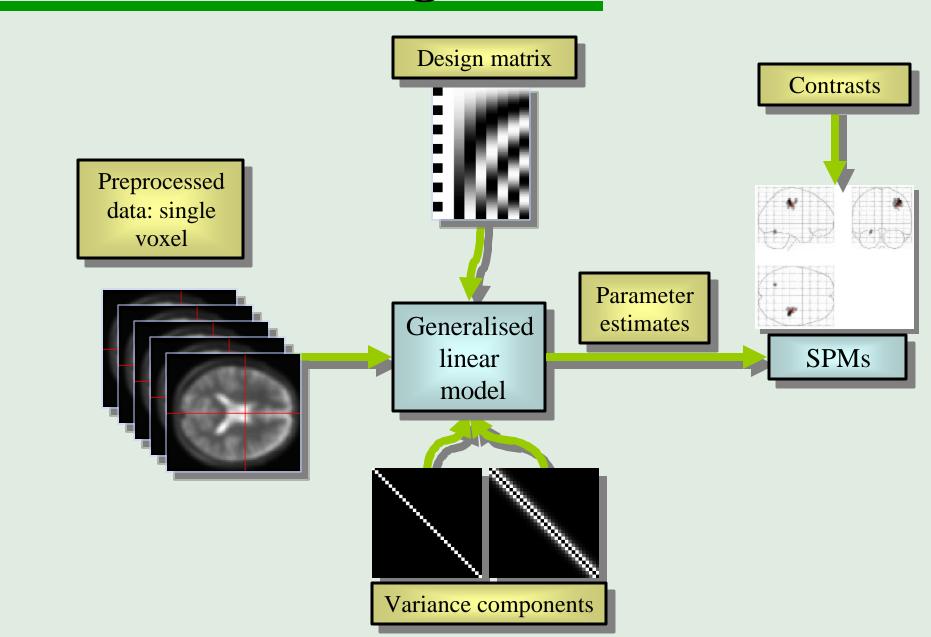
Choose your model



Modelling with SPM



Modelling with SPM



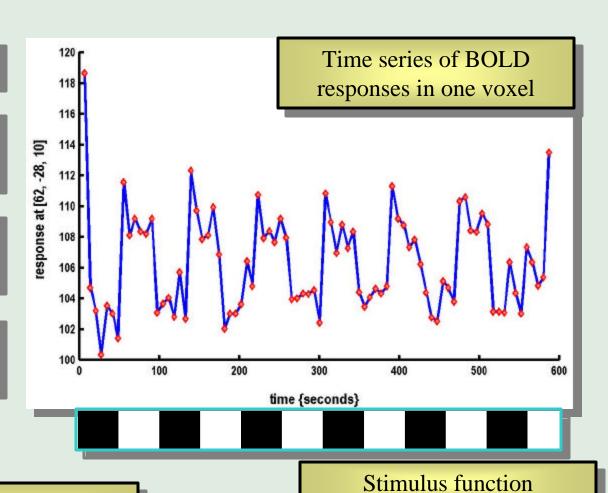
fMRI example

One session

Passive word listening versus rest

7 cycles of rest and listening

Each epoch 6 scans with 7 sec TR



Question: Is there a change in the BOLD response between listening and rest?

GLM essentials

- The model
 - Design matrix: Effects of interest
 - Design matrix: Confounds (aka effects of no interest)
 - Residuals (error measures of the whole model)
- Estimate effects and error for data
 - Parameter estimates (aka betas)
 - Quantify specific effects using contrasts of parameter estimates

• Statistic

- Compare estimated effects the contrasts with appropriate error measures
- Are the effects surprisingly large?

GLM essentials

The model

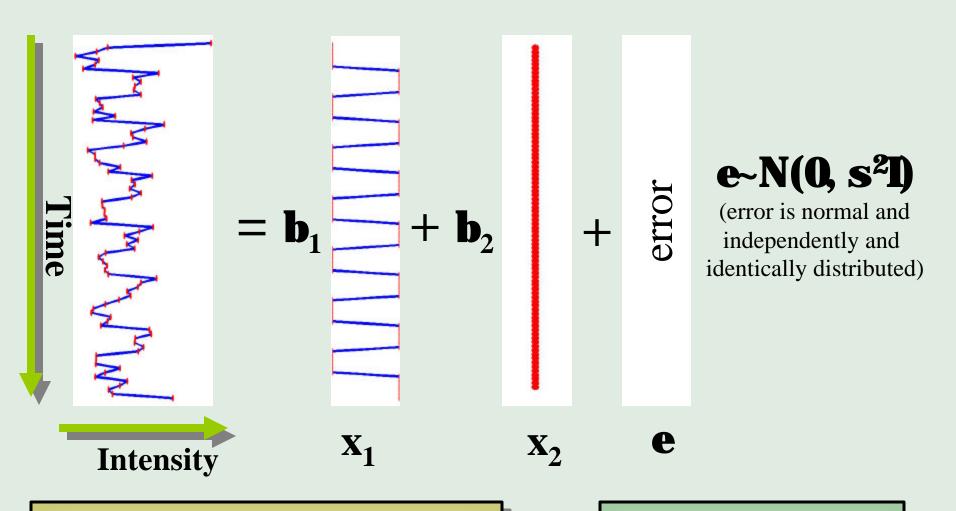
- Design matrix: Effects of interest
- Design matrix: Confounds (aka effects of no interest)
- Residuals (error measures of the whole model)
- Estimate effects and error for data
 - Parameter estimates (aka betas)
 - Quantify specific effects using contrasts of parameter estimates

• Statistic

- Compare estimated effects the contrasts with appropriate error measures
- Are the effects surprisingly large?

Regression model

General case

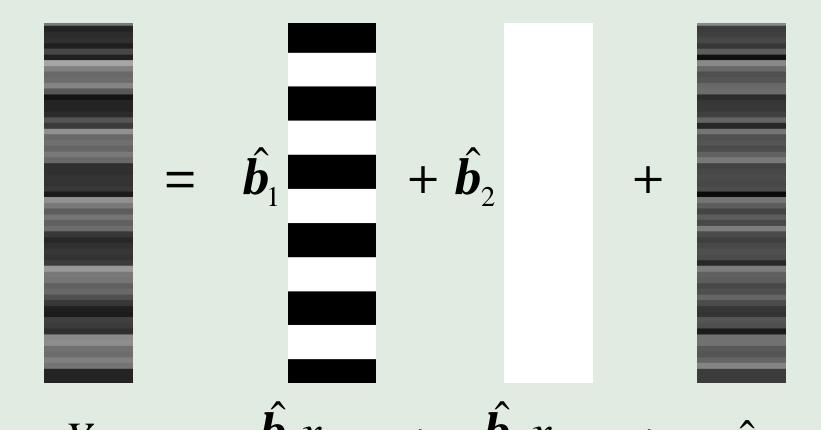


Question: Is there a change in the BOLD response between listening and rest?

Hypothesis test: $\beta_1 = 0$? (using t-statistic)

Regression model

General case



Model is specified by

- l. Design matrix X
- 2. Assumptions about ε

Matrix formulation

$$Y_{i} = b_{1} x_{i} + b_{2} + e_{i}$$
 $i = 1,2,3$

$$Y_{1} = b_{1} x_{1} + b_{2} \times 1 + e_{1}$$

$$Y_{2} = b_{1} x_{2} + b_{2} \times 1 + e_{2}$$

$$Y_{3} = b_{1} x_{3} + b_{2} \times 1 + e_{3}$$
dummy variables

$$\begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \mathbf{Y}_3 \end{bmatrix} = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{e}_1 \\ \mathbf{b}_1 \end{bmatrix} + \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{bmatrix}$$

$$\underline{\mathbf{Y}} = \underline{X} \qquad \underline{\mathbf{b}} + \underline{\mathbf{e}}$$

Matrix formulation

Hats = estimates

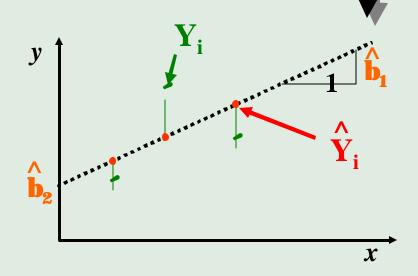
Linear regression

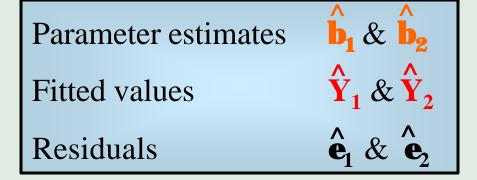
$$Y_i = b_1 x_i + b_2 + e_i$$
 $i = 1,2,3$

$$Y_1 = \mathbf{b_1} \ x_1 + \mathbf{b_2} \times 1 + \mathbf{e_1}$$
 $Y_2 = \mathbf{b_1} \ x_2 + \mathbf{b_2} \times 1 + \mathbf{e_2}$
 $Y_3 = \mathbf{b_1} \ x_3 + \mathbf{b_2} \times 1 + \mathbf{e_3}$
dummy variables

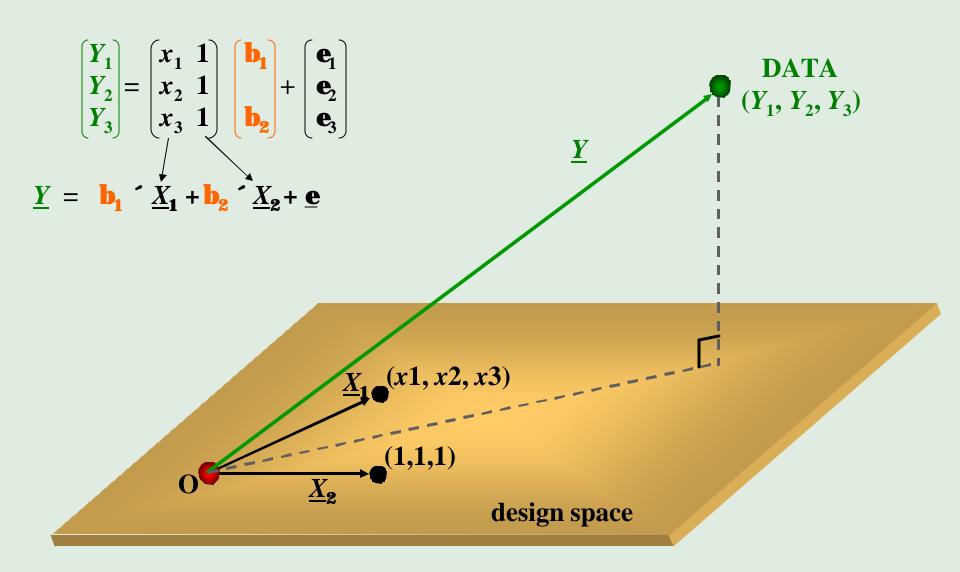
$$\begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \mathbf{Y}_3 \end{bmatrix} = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_1 \\ \mathbf{b}_1 \end{bmatrix} + \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{bmatrix}$$

$$\underline{\mathbf{Y}} = \underline{X} \qquad \underline{\mathbf{b}} + \underline{\mathbf{e}}$$





Geometrical perspective



GLM essentials

- The model
 - Design matrix: Effects of interest
 - Design matrix: Confounds (aka effects of no interest)
 - Residuals (error measures of the whole model)
- Estimate effects and error for data
 - Parameter estimates (aka betas)
 - Quantify specific effects using contrasts of parameter estimates
- Statistic
 - Compare estimated effects the contrasts with appropriate error measures
 - Are the effects surprisingly large?

Parameter estimation

Ordinary least squares

$$Y = X\boldsymbol{b} + \boldsymbol{e}$$

$$\hat{\boldsymbol{b}} = (X^T X)^{-1} X^T Y$$

$$\hat{\boldsymbol{e}} = Y - X\hat{\boldsymbol{b}}$$

Parameter estimates

residuals

Estimate parameters

such that

$$\sum_{t=1}^{N} \hat{\boldsymbol{e}}_{t}^{2}$$

minimal

Least squares

parameter estimate

Parameter estimation

Ordinary least squares

$$Y = X\boldsymbol{b} + \boldsymbol{e}$$

$$\hat{\boldsymbol{b}} = (X^T X)^{-1} X^T Y$$

 $\hat{\boldsymbol{e}} = Y - X\hat{\boldsymbol{b}}$

Parameter estimates

residuals = r

Error variance s^2 = (sum of) squared residuals standardised for df

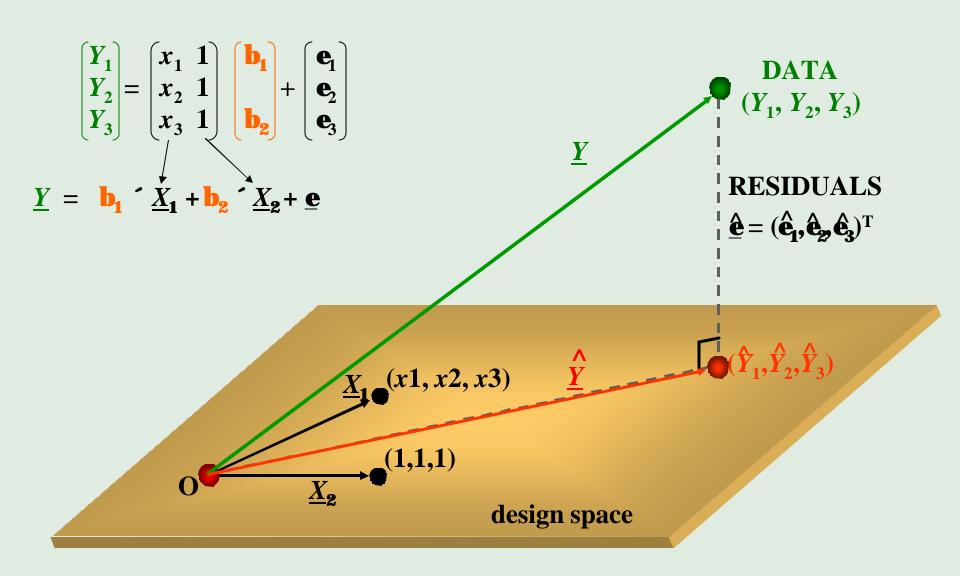
 $= r^{T}r / df$ (sum of squares)

...where **degrees of freedom df** (assuming iid):

= N - rank(X)

(=N-P if X full rank)

Estimation (geometrical)



GLM essentials

- The model
 - Design matrix: Effects of interest
 - Design matrix: Confounds (aka effects of no interest)
 - Residuals (error measures of the whole model)
- Estimate effects and error for data
 - Parameter estimates (aka betas)
 - Quantify specific effects using contrasts of parameter estimates

Statistic

- Compare estimated effects the contrasts with appropriate error measures
- Are the effects surprisingly large?

Inference - contrasts

$$Y = X\boldsymbol{b} + \boldsymbol{e}$$

A contrast = a linear combination of parameters: $c' \times b \rightarrow \text{spm_con*img}$

t-test: one-dimensional contrast, difference in means/ difference from zero

boxcar parameter > 0?

Null hypothesis: $b_1 = 0$

→ spmT_000*.img **SPM{t} map**

F-test: tests multiple linear hypotheses – does subset of model account for significant variance

Does boxcar parameter model anything?

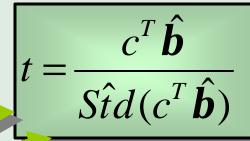
Null hypothesis: variance of tested effects = error variance

→ ess_000*.img
SPM{F} map

t-statistic - example

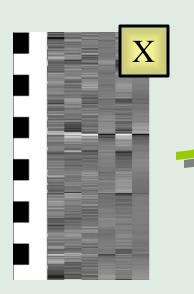
$$Y = X\boldsymbol{b} + \boldsymbol{e}$$

c = 10000000000



Contrast of parameter estimates

Variance estimate



Standard error of contrast depends on the **design**, and is larger with greater **residual error** and ,greater **covariance**/ **autocorrelation**

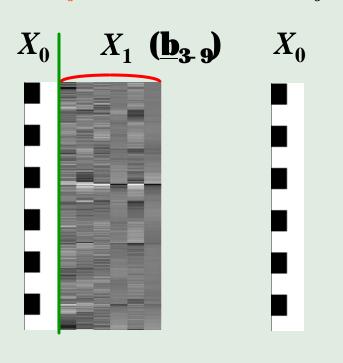
Degrees of freedom d.f. then = n-p, where n observations, p parameters

Tests for a **directional** difference in means

F-statistic - example

Do movement parameters (or other confounds) account for anything?

H₀: True model is X_0 **H**₀: $\mathbf{b}_{3-9} = (0\ 0\ 0\ 0\ ...)$ test \mathbf{H}_0 : $c' \times \mathbf{b} = 0$?



This model? Or this one?

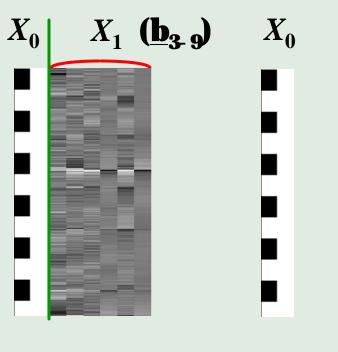
That all these betas $\mathbf{b}_{3.9}$ are zero, i.e. that no linear combination of the effects accounts for significant variance

This is a non-directional test

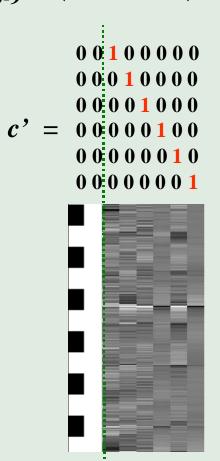
F-statistic - example

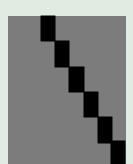
Do movement parameters (or other confounds) account for anything?

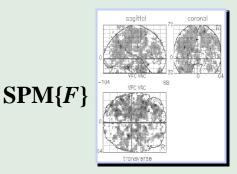
H₀: True model is X_0 **H**₀: $\mathbf{b}_{3-9} = (0\ 0\ 0\ 0\ ...)$ test **H**₀: $c' \times \mathbf{b} = 0$?



This model? Or this one?



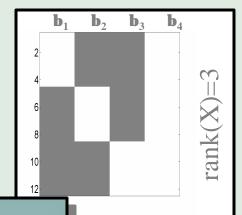




Summary so far

- The essential model contains
 - Effects of interest
- A better model?
 - A better model (within reason) means smaller residual variance and more significant statistics
 - Capturing the signal later
 - Add confounds/ effects of no interest
 - Example of movement parameters in fMRI
 - A further example (mainly relevant to PET)...

Example PET experiment



12 scans, 3 conditions (1-way ANOVA)

$$y_j = x_{1j} b_1 + x_{2j} b_2 + x_{3j} b_3 + x_{4j} b_4 + e_j$$

where (dummy) variables:

$$\mathbf{x}_{1i} = [0,1] = condition A (first 4 scans)$$

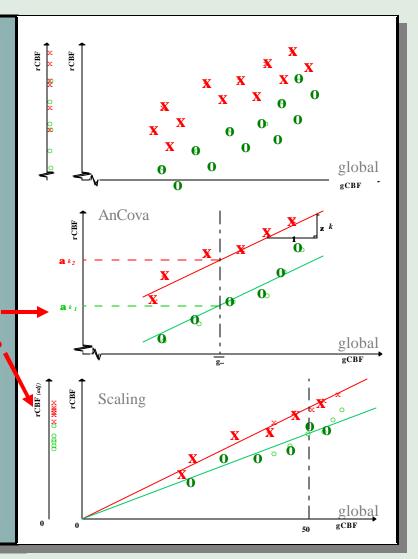
$$x_{2i} = [0,1] = condition B (second 4 scans)$$

$$x_{3i} = [0,1] = condition C (third 4 scans)$$

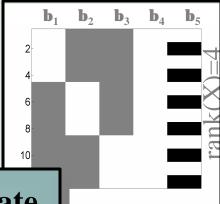
$$x_{4i} = [1] = grand mean (session constant)$$

Global effects

- May be variation in PET tracer dose from scan to scan
- Such "global" changes in image intensity (gCBF) confound local / regional (rCBF) changes of experiment
- Adjust for global effects by:
 - AnCova (Additive Model) PET?
 - Proportional Scaling fMRI?
- Can improve statistics when orthogonal to effects of interest...
- ...but can also worsen when effects of interest correlated with global



Global effects (AnCova)



12 scans, 3 conditions, 1 confounding covariate

$$y_j = x_{1j} b_1 + x_{2j} b_2 + x_{3j} b_3 + x_{4j} b_4 + x_{5j} b_5 + e_j$$

where (dummy) variables:

$$\mathbf{x}_{1i} = [0, 1] = condition A (first 4 scans)$$

$$x_{2i} = [0,1] = condition B (second 4 scans)$$

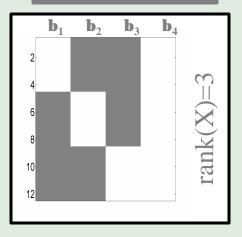
$$x_{3i} = [0,1] = condition C (third 4 scans)$$

$$x_{4i} = [1] = grand mean (session constant)$$

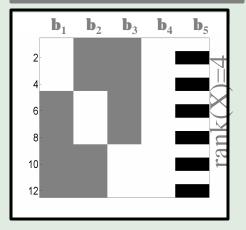
 $x_{5j} = global \ signal \ (mean \ over \ all \ voxels)$

Global effects (AnCova)

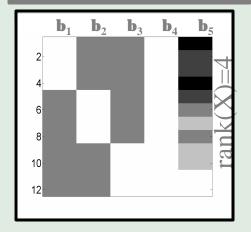
No Global



Orthogonal global



Correlated global



- Global effects not accounted for
- Maximum degrees of freedom (global uses one)
- Global effects independent of effects of interest
- Smaller residual variance
- Larger T statistic
- More significant

- Global effects
 correlated with
 effects of interest
- Smaller effect &/or larger residuals
- Smaller T statistic
- Less significant

Global effects (scaling)

- Two types of scaling: Grand Mean scaling and Global scaling
 - Grand Mean scaling is automatic, global scaling is optional
 - Grand Mean scales by 100/mean over all voxels and ALL scans (i.e, single number per session)
 - Global scaling scales by 100/mean over all voxels for EACH scan (i.e, a different scaling factor every scan)
- Problem with global scaling is that TRUE global is not (normally) known... only estimated by the mean over voxels
 - So if there is a large signal change over many voxels, the global estimate will be confounded by local changes
 - This can produce artifactual deactivations in other regions after global scaling
- Since most sources of global variability in fMRI are low frequency (drift), high-pass filtering may be sufficient, and many people do not use global scaling

Summary

- General(ised) linear model partitions data into
 - Effects of interest & confounds/ effects of no interest
 - Error
- Least squares estimation
 - Minimises difference between model & data
 - To do this, assumptions made about errors more later
- Inference at every voxel
 - Test hypothesis using contrast more later
 - Inference can be Bayesian as well as classical
- Next: Applying the GLM to fMRI