
Variance Component 
Estimation

a.k.a.
Non-Sphericity

Correction



Overview
• Variance-Covariance Matrix
• What is (and isn’t) sphericity?
• Why is non-sphericity a problem?
• How do proper statisticians solve it?
• How did SPM99 solve it.
• How does SPM2 solve it?
• What is all the fuss?
• Some 2nd level examples.



Variance-Covariance matrix
Length of Swedish men Weight of Swedish men

Each completely characterised by µ (mean) and σ2 (variance),

i.e. we can calculate p(l|µ,σ2) for any l

µ=180cm, σ=14cm (σ2=200) µ=80kg, σ=14kg (σ2=200)



Variance-Covariance matrix
• Now let us view length and weight as a 2-

dimensional stochastic variable (p(l,w)).

180

80
µ =

200 100

100 200
Σ = p(l,w|µ,Σ)



What is (and isn’t) sphericity?

Sphericity ↔ iid ↔ N(µ,Σ=σ2I)
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Variance quiz

Height

Weight

# hours watching
telly per day



Variance quiz

Height

Weight

# hours watching
telly per day



Variance quiz

Height

Weight

# hours watching
telly per day

Shoe size



Variance quiz

Height

Weight

# hours watching
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Shoe size



Example:
”The rain in Norway stays mainly in Bergen”

or
”A hundred years of gloominess”

Daily rainfall for 1950 Daily rainfall for 20th century



The rain in Bergen continued
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The rain in Bergen

Residual error
for 1900

Residual error
for Dec 31

Residual error for 
Dec 30 and Dec 31



The rain in Bergen concluded
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Why is non-sphericity a problem?

Marginal

p(l,w)

p(l)

Conditional

p(l|w=90kg)

c.f. Blonde hair and blue eyes



How do ”proper” statisticians solve
it? (they cheat)

• Greenhouse-Geisser (Satterthwaite) correction.
• Correction factor (n-1)-1 ≤ ε ≤ 1

200 100

100 200
Σ = ε=0.8

ε=0.069

Σ =

We thought we had
100*365=36500 points.

It was 2516

Remember?



More Greenhouse-Geisser

Σ=

Σ=

Σ=

ε=0.107→df=8.60

ε=0.473→df=37.8

ε=0.999→df=79.9



How was it solved in SPM99? 
• Remember, If we know Σ we can correct df.
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smoothing filter
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uncorrelated error

Observed
error

So we smooth
some more



Why on earth would we do that??
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Because the effects of S makes K 
inconsequential. I.e. we can do a 

Greenhouse-Geisser based on (the 
known) K.
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We ”precolour” with K



Hope SPM2 is a bit more clever than that.

=

K ze

Same underlying model (AR) A matrix inverse K-1 undoes
what K did

K-1 K

=

K-1 eẑ ^

SPM2 tries to estimate the 
matrix K-1, that undoes what K 
did. If we can find that we can

”pre-whiten” the data, i.e. make 
them uncorrelated.



Well, how on earth can we do that?

E{zzT}= E =σ2I=

Σ=E{eeT}=E{KzzTKT} =σ2KKT=

I.e. K is the matrix root of Σ, so all we need to do is estimate it.



Remember how we estimated Σ for 
the rain in Bergen?
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The rain in Bergen
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Σ=^ That’s pretty much
what SPM2 does too.



Matrix model…

ε= β +Y X

data matrix design matrix

parameter
matrix

error
matrix+ ?= × ?

voxelsvoxels

scansscans

estimate parameters
by least-squares

β̂



Restricted Maximum Likelihood

εβ += Xy ?)(εCov observed

Q1

Q2

ReMLReML
estimated
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Maximum Likelihood
• If we have a model and know it’s

parameters we can calculate the likelihood 
(sort of) of any data point.
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Maximum Likelihood
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Maximum Likelihood
• If we have a model and know it’s

parameters we can calculate the likelihood 
(sort of) of any data point.
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Maximum Likelihood
• And we can calculate the likelihood of the 

entire data vector. 
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But, does that really make us any
happier?

• In reality we don’t know the parameters of 
our model. They are what we want to 
estimate.

You have your data Calculate your likelihoods

p=0.069*0.162*0.003* ... =1.86*10-30

Not brilliant!

”Guess” values for the 
parameters, here µ=7 and 

σ2=1



But, does that really make us any
happier?

• So, let us try some other values for the 
parameters.

p=1.38*10-15

Not bad!

µ=5, σ2=4

p=9.41*10-13

Wow!

µ=5, σ2=1.5

µ=4.95, σ2=0.79

p=5.28*10-12

And we have a winner
(an ML estimate)!

And, that is actually
how simple it is 

(promise)!



But, does that really make us any
happier? (Yeah!)

• Let us say we have a more complicated model

• We still have our data (y)
• We can still calculate the likelihood for each choice of 
β=[β1 β2 ...] and λ=[λ1 λ2].

• And, of course, we can still chose those that maximise the 
likelihood.
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e.g.
(Rather typical

first level
fMRI model)where Σ(λ) = λ1 + λ2



What is all the fuss then?
• Did you ever wonder about the (n-1) when

estimating sample variance?
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What is all the fuss then?
• Did you ever wonder about the (n-1) when

estimating sample variance?

etc…



Or seen slightly differently
• Data (20 points) drawn from an N(5,1) distribution.

Likelihood as function
of µ and σ2

µ and σ2 at the 
location of the peak is 

the ML-estimate

And seen as an image

N.B. location of max 
for σ2 depends on 

estimate of µ



Or seen slightly differently
• Data (20 points) drawn from an N(5,1) distribution.

Likelihood as function
of µ and σ2

µ and σ2 at the 
location of the peak is 

the ML-estimate

And seen as an image

ML-estimate

σ2 max as 
function of µ

Unbiased estimate



And the same for estimating serial
correlations (c.f. Durbin-Watson)



Hur man än vänder sig är 
rumpan bak

Σ = E{eeT} = E{êêT} XCov(β)XT+

This is what
we want

This is what
we observe

This we can
calculate if…

…we know this. Bummer!

True variance-
covariance

matrix

Sample variance-
covariance

matrix

Effects of error
in parameter 

estimates

ReML/EM



Multi-subject analysis…?

p < 0.001 (uncorrected)

p < 0.05 (corrected)

SPM{t}

SPM{t}

α1
^

α2
^

α3
^

α4
^

α5
^

α6
^

σ2
ε

^

α• – c.f. σ2
ε / nw

—̂

σ2
ε

^

σ2
ε

^

σ2
ε

^

σ2
ε

^

σ2
ε

^

– c.f.

estimated mean 
activation image



σ2
ε

^

…random effects
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timecourses at [ 03, -78, 00 ] contrast images

p < 0.001 (uncorrected)

SPM{t}

(no voxels significant at p < 0.05 (corrected))



Non-sphericity for 2nd level models

– Errors are independent 
but not identical

– Errors are not 
independent 
and not identical

Error Covariance



Error can be Independent but Non-Identical when…

1) One parameter but from different groups 
e.g. patients and control groups

2) One parameter but design matrices differ across subjects 
e.g. subsequent memory effect

Non-Sphericity

=1Q =2Q



Error can be Non-Independent and Non-Identical when…

1) Several parameters per subject
e.g. Repeated Measurement design

2) Conjunction over several parameters
e.g. Common brain activity for different cognitive processes

3) Complete characterization of the hemodynamic response 
e.g. F-test combining HRF, temporal derivative and dispersion regressors

Non-Sphericity



Stimuli: Auditory Presentation (SOA = 4 secs) of
(i) words and (ii) words spoken backwards 

Subjects: (i)  12 control subjects
(ii) 11 blind subjects

Scanning: fMRI, 250 scans per subject, block design

Example I

Q. What are the regions that activate for real words relative to
reverse words in both blind and control groups?

U. Noppeney et al.



2nd Level

Controls Blinds

Independent but Non-Identical Error

1st Level

Conjunction
between the

2 groups

Controls and Blinds



motion actionvisualsound

Stimuli: Auditory Presentation (SOA = 4 secs) of words

• Subjects: (i)  12 control subjects

•Scanning: fMRI, 250 scans per subject, block design

Example 2

“jump” “click” “pink” “turn”

Q. What regions are affected by the semantic content of 
the words ?

U. Noppeney et al.



Non-Independent and Non-Identical Error

1st Leve motion sound visual action

2nd Level

?
=

?
=

?
=

F-test


