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¢ Make sure we know all about the estimation (fitting) part ...

¢ Make sure we understand the testing procedures . t- and F-tests

* A bad model ... And a better one

¢ Correlation in our model : do we mind ?

* A (nearly) real example



One voxel = One test (t, F, ...)
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fMRI voxel time course



Regression example...
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Regression example...
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Fit the GLM



...revisited : matrix form

B

error

= Bixf() + Bx1 + &
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Add more reference functions ...
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Fitting the model = finding some of the betas

= minimising the sum of square of the residuals S?
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| Summary ... |

¢ We put in our model regressors (or covariates) that represent
how we think the signal is varying (of interest and of no interest

alike)

¢ Coefficients (= parameters) are estimated using the Ordinary
Least Squares (OLS) or Maximum Likelihood (ML) estimator.

¢ These estimated parameters (the “betas”) on the
scaling of the regressors. But entered with SPM, regressors are

normalised and comparable.

¢ The residuals, their sum of squares and the resulting tests (t,F),
depend on the scaling of the regressors.



¢ Make sure we all know about the estimation (fitting) part ...

* Make sure we understand t and F tests

* A (nearly) real example
* A bad model ... And a better one

¢ Correlation in our model : do we mind ?



T test - one dimensional contrasts - SPM{#}

¢’=10000000

biib, by b, bs ...

A contrast = a linear combination of parameters: ¢” x [3

box-car amplitude > 0 ?

B,>07?
=>

Compute 1xb, + 0xb, + 0xb; + 0xb, + Oxb, +. ..
and

divide by estimated standard deviation

contrast of
estimated ’
s,

parameters
T = —_

\I variance \IS2C ’(X’X)*E

estimate




contrast of

o o estimated
How is this computed ? (t-test) R

Estimation [X, XJ 16, 8] \ tmt ______
Y=Xp+e¢ & ~ 62 N(0,I) (v at one position)
b=XX""XY (b: estimate of B) ->
e=Y-Xb (e: estimate of &)

S2 = ( e’e/ ( n - p) ) (s: estimate of G, n: time points, p: parameters)
>

T R N R e
Var(C ’b) — S2C' ,(X,)() +C (compute for each contrast c)

t=c’b/sqri(s’c’(X’X)"c) (b >
)

compute thet images ->

under the null hypothesis H, : t ~ Student-t( df ) df = n-p



F-test (SPM{I}) : a reduced model or ...

Tests multiple linear hypotheses : Does X1 model anything ?

: True (reduced) model is X,

additional
variance
accounted for
by tested effects

Q2 — S,? F=

error
variance
estimate

. F ~ (S2? - $?)/8?
This (full) model ? Or this one?



F-test (SPM{I}) : a reduced model or ...
multi-dimensional contrasts ?

tests multiple linear hypotheses. Ex : does DCT set model anything?
: True model is X :B50=(0000..) test HH,: ¢ " xb=0?

Xy  X; (Bso) X, 00100000
00:010000
¢ =00001000
00000100
00000010
00000001

This model ? Or this one ?




additional

variance accounted for
How is this computed ? (F-test) Ayt i
Error

variance

Estimation [Y, X] [b, s] estimate

Y=XpB+e e ~N(0, o2 I)
Y=X,B, T g go~N(, 0,2 1) X, X Reduced

1 _ v v+ VoYV
bO i (XO XO) XO 4
€yp — Y - XO bO (e, estimate of €,)
S 20 : ( €0 ‘e 0/ ( n - pO) ) (S, estimate of Gy, n. time, p,: parameters)
Test [b, s, c] [ess, F]

FN(SO-S) /S2 -> image

-> image of F :

under the null hypothesis : F ~ F(p - p0, n-p)



¢ Make sure we all know about the estimation (fitting) part ...

* Make sure we understand t and F tests

* A (nearly) real example : testing main effects and interactions

* A bad model ... And a better one

¢ Correlation in our model : do we mind ?



A real example (aimost 1)

Experimental Design ¢ > Design Matrix

Factorial design with 2 factors : modality and category
2 levels for modality (eg Visual/Auditory)
3 levels for category (eg 3 categories of words)

VAC,C,C,
Cl
V
C2
C3 . S
C 1 design orthogonality
C2
A

C3




Asking ourselves some questions ...

VAC,C,C,
Test C1 > C2 c=[001-100]
Test V> A ¢=[1-10000]
[001000]
Test C1,C2,C3 ? (F) c=[000100]
[000010]

Test the interaction MxC ?

design orthogonality

 Design Matrix not orthogonal
* Many contrasts are non estimable

* Interactions MxC are not modelled




Modelling the interactions




Asking ourselves some questions ...

. . Test C1>C2 : ¢=[11-1-10 0 0]
Test V> A : ¢c=[1-11-11-10]
Test the categories :

[1 1-1-1 0 0 O]

c= [00 1 1-1-10]
[1 10 0-1-10]

Test the interaction MxC :

[1 -1-110 0 0]

c= [0 O 1 -1-11 0]
[1 -10 0-11 0]

* Design Matrix orthogonal design orthogonality

» All contrasts are estimable
 Interactions MxC modelled
* [f no interaction ... ? Model 1s too “big” ! .



Asking ourselves some questions ... With a

C,C, C,C,C,C,
VAVAVA

24 6B 31012

more flexible model

TestC1 >C2 ?
Test C1 different from C2 ?

from
c= [1 1 -1l -1

-
-
-
| S—

to

c= [1010-10-1 0000 00]
[01 01 0-1 0-100000]
becomes an F test!

Test V>A?
c= [10-1010-1010-100]

1s possible, but is OK only if the regressors coding
for the delay are all equal



¢ Make sure we all know about the estimation (fitting) part ...

* Make sure we understand t and F tests

* A (nearly) real example

* A bad model ... And a better one

¢ Correlation in our model : do we mind ?



A model ...

True signal and observed signal (---)

Model ( , pic at 6sec)
TRUE signal (blue, pic at 3sec)

Fitting (b1 = 0.2, mean = 0.11)

Residual (still contains some signal)

=> Test for the green regressor not significant



A model ...

B,=0.22
B,=0.11

Residual Variance = 0.3

P(Y| B, =0)=>
p-value = 0.1
(t-test)

P(Y| B, =0)=>
p-value = 0.2
(F-test)




» model ...

True signal + observed signal

Model ( and rcd)
and true signal ( ---)

: temporal derivative of
the

Global fit (blue)
and partial fit ( & red)
Adjusted and fitted signal

Residual (a smaller variance)

=> t-test of the green regressor significant
=> F-test very significant
=> t-test of the red regressor very significant



model ...

B,=0.22
B,=2.15
B,=0.11

Residual Var = 0.2

P(Y| B, =0)
+ p-value = 0.07
(t-test)

P(Y[ B, =0,p,=0)
- p-value = 0.000001
(F-test)



Flexible models :

design orthogonality




Summary ... (2)

® The residuals should be looked at ...!

¢ Test flexible models if there is little a priori
information

¢ [n general, use the F-tests to look for an
overall effect, then look at the response
shape

¢ Interpreting the test on a single parameter (one
regressor) can be difficult: cf the delay or

magnitude situation
*BRING ALL PARAMETERS AT THE 2nd LEVEL



Plan

¢ Make sure we all know about the estimation (fitting) part ...

* Make sure we understand t and F tests

* A (nearly) real example

* A bad model ... And a better one

* Correlation in our model : do we mind ?

design orthogonality design orthogonality




between regressors

True signal

Model ( and

Fit ( : global fit)

Residual




between regressors

B,=0.79
B,= 0.85
B3 = 0.06
Residual var. = 0.3
P(Y| B, =0)
p-value = 0.08
(t-test)

P(Y[ B, =0)
p-value = 0.07
(t-test)

& P(Y|B,=0,p,=0)
p-value = 0.002
(F-test)




between regressors - 2

true signal

Model ( and rcd)
regressor has been

orthogonalised with respect to the one
< remove everything that correlates with
the regressor
Fit

Residual




between regressors -2

(| B0 |

~ I

b,=1.47
b,= 0.85
b3 = 0.06

Residual var. = 0.3
P(Y| B, = 0)
p-value = 0.0003
(t-test)

P(Y|B,=0)
p-value = 0.07
(t-test)

€ P(Y|B,=0,p,=0)
p-value = 0.002
(F-test)



_q Design orthogonality :

Black = completely correlated White = completely orthogonal

Corr(1,1)  Corr(1,2)

A\ /

. when there are more than 2 regressors (C1,C2,C3,...),

you may think that there is little correlation (light grey) between
them, but C1 + C2 + C3 may be correlated with C4 + C5



Summary ... (3)

¢ We implicitly test for an additional effect only, be careful if
there is correlation

¢ Orthogonalisation = decorrelation
- This is not generally needed
- Parameters and test on the non modified regressor change

¢ [t is always simpler to have orthogonal regressors and therefore
designs !

¢ [n case of correlation, use [F-tests to see the overall
significance. There is generally no way to decide to which
regressor the « common » part should be attributed to




Convolution
model

Design and
contrast

SPM(t) or
SPM(F)

Fitted and
adjusted data
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gt
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peri=stimulus time




| Conclusion : check your models |

o Check your residuals/model
- multivariate toolbox

o Check your HRF form
- HRF toolbox

» Check group homogeneity
- Distance toolbox






Implicit or explicit decorrelation (or

orthogonalisation)

Space of X

This generalises when testing
several regressors (F tests)

cf Andrade et al., Neurolmage, 1999

AN

test of C2 in the
implicit 1 model

test of C1 in the
explicit = model




P | “completely” correlated ... |

101

011
Y:AXb‘Fe; X= 101

011

/1N

Cond 1 Cond?2 Mean

Space of X

Parameters are in general ! Some contrasts have no meaning;:

c=[100] 1is not estimable (no specific information in the first regressor);

c=[1-10] 1sestimable;



