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• Function of blood oxygenation, flow, 
volume (Buxton et al, 1998)

• Peak (max. oxygenation) 4-6s 
poststimulus; baseline after 20-30s

• Initial undershoot can be observed 
(Malonek & Grinvald, 1996)

• Similar across V1, A1, S1…

• … but differences across:
other regions (Schacter et al 1997) 
individuals (Aguirre et al, 1998)

•• Function of blood oxygenation, flow, Function of blood oxygenation, flow, 
volume (Buxton et al, 1998)volume (Buxton et al, 1998)

•• Peak (max. oxygenation) 4Peak (max. oxygenation) 4--6s 6s 
poststimuluspoststimulus; baseline after 20; baseline after 20--30s30s

•• Initial undershoot can be observed Initial undershoot can be observed 
((MalonekMalonek & & GrinvaldGrinvald, 1996), 1996)

•• Similar across V1, A1, S1…Similar across V1, A1, S1…

•• … but differences across:… but differences across:
other regions (other regions (SchacterSchacter et al 1997) et al 1997) 
individuals (Aguirre et al, 1998)individuals (Aguirre et al, 1998)
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• Early event-related fMRI studies 
used a long Stimulus Onset 
Asynchrony (SOA) to allow BOLD 
response to return to baseline

• However, if the BOLD response is 
explicitly modelled, overlap between 
successive responses at short SOAs
can be accommodated…

• … particularly if responses are 
assumed to superpose linearly

• Short SOAs are more sensitive…

•• Early eventEarly event--related fMRI studies related fMRI studies 
used a long Stimulus Onset used a long Stimulus Onset 
Asynchrony (SOA) to allow BOLD Asynchrony (SOA) to allow BOLD 
response to return to baselineresponse to return to baseline

•• However, if the BOLD response is However, if the BOLD response is 
explicitly explicitly modelledmodelled, overlap between , overlap between 
successive responses at short successive responses at short SOAsSOAs
can be accommodatedcan be accommodated……

•• … particularly if responses are … particularly if responses are 
assumed to superpose linearlyassumed to superpose linearly

•• Short Short SOAsSOAs are more sensitive…are more sensitive…
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General Linear (Convolution) ModelGeneral General Linear Linear (Convolution) (Convolution) ModelModel

GLM for a single voxel:

y(t)  = u(t) ⊗  h(τ) + ε(t)

u(t) = neural causes (stimulus train)

u(t) = ∑ δ (t - nT)

h(τ) = hemodynamic (BOLD) response

h(τ) = ∑ ßi fi (τ)

fi(τ) = temporal basis functions

y(t)  = ∑ ∑ ßi fi (t - nT)  + ε(t)

y =          X ß +  ε

GLM for a single voxel:

y(t)  = u(t) ⊗  h(τ) + ε(t)

u(t) = neural causes (stimulus train)

u(t) = ∑ δ (t - nT)

h(τ) = hemodynamic (BOLD) response

h(τ) = ∑ ßi fi (τ)

fi(τ) = temporal basis functions

y(t)  = ∑ ∑ ßi fi (t - nT)  + ε(t)

y =          X ß +  ε

Design 
Matrix

convolution

T  2T  3T ...

u(t) h(τ)=∑ ßi fi (τ)

sampled each scan
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General Linear Model (in SPM)General Linear Model (in SPM)General Linear Model (in SPM)

Auditory words 
every 20s

SPM{F}SPM{F}

0          time {0          time {secssecs}        30}        30

Sampled every TR = 1.7s
Design matrix, Design matrix, XX

[x(t)[x(t)⊗⊗ƒƒ11((ττ) | x(t)) | x(t)⊗⊗ƒƒ22((ττ) |...]) |...]
…

Gamma functions Gamma functions ƒƒii((ττ) of  ) of  
peristimulus time peristimulus time ττ
((OrthogonalisedOrthogonalised))
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x2 x3

A word about down-samplingA word about downA word about down--samplingsampling

T=16, TR=2s

Scan0 1

o

T0=9 o
T0=16
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Temporal Basis FunctionsTemporal Basis FunctionsTemporal Basis Functions

• Fourier Set
Windowed sines & cosines
Any shape (up to frequency limit)
Inference via F-test

•• Fourier SetFourier Set
Windowed Windowed sinessines & cosines& cosines
Any shape (up to frequency limit)Any shape (up to frequency limit)
Inference via FInference via F--testtest
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Temporal Basis FunctionsTemporal Basis FunctionsTemporal Basis Functions

• Finite Impulse Response
Mini “timebins” (selective averaging)
Any shape (up to bin-width)
Inference via F-test

•• Finite Impulse ResponseFinite Impulse Response
Mini “Mini “timebinstimebins” (selective averaging)” (selective averaging)
AAnyny shapeshape (up to bin(up to bin--widthwidth))
Inference via FInference via F--testtest
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Temporal Basis FunctionsTemporal Basis FunctionsTemporal Basis Functions

• Fourier Set
Windowed sines & cosines
Any shape (up to frequency limit)
Inference via F-test

• Gamma Functions
Bounded, asymmetrical (like BOLD)
Set of different lags
Inference via F-test

• “Informed” Basis Set
Best guess of canonical BOLD response
Variability captured by Taylor expansion 
“Magnitude” inferences via t-test…?

•• Fourier SetFourier Set
Windowed Windowed sinessines & cosines& cosines
Any shape (up to frequency limit)Any shape (up to frequency limit)
Inference via FInference via F--testtest

•• Gamma FunctionsGamma Functions
Bounded, asymmetrical (like BOLD)Bounded, asymmetrical (like BOLD)
Set of different lagsSet of different lags
Inference via FInference via F--testtest

•• “Informed” Basis Set“Informed” Basis Set
Best guess of canonical BOLD responseBest guess of canonical BOLD response
Variability captured by Taylor expansion Variability captured by Taylor expansion 
“Magnitude” inferences via t“Magnitude” inferences via t--testtest…?…?
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Temporal Basis FunctionsTemporal Basis FunctionsTemporal Basis Functions
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Temporal Basis FunctionsTemporal Basis FunctionsTemporal Basis Functions

“Informed” Basis Set
(Friston et al. 1998)

• Canonical HRF (2 gamma functions)

plus Multivariate Taylor expansion in:
time (Temporal Derivative)
width (Dispersion Derivative)

• “Magnitude” inferences via t-test on 
canonical parameters (providing 
canonical is a good fit…more later)

• “Latency” inferences via tests on ratio
of derivative : canonical parameters 
(more later…)

““Informed” Basis SetInformed” Basis Set
((FristonFriston et al. 1998)et al. 1998)

•• Canonical HRF (2 gamma functions)Canonical HRF (2 gamma functions)

plusplus Multivariate Taylor expansion in:Multivariate Taylor expansion in:
time (time (Temporal DerivativeTemporal Derivative))
width (width (Dispersion DerivativeDispersion Derivative))

•• “Magnitude” inferences via t“Magnitude” inferences via t--test on test on 
canonical parameterscanonical parameters (providing (providing 
canonical is a good fit…more later)canonical is a good fit…more later)

•• “Latency” inferences via test“Latency” inferences via testss on on ratioratio
of of derivativederivative : : canonical parameters canonical parameters 
(more later…(more later…))

Canonical
Temporal
Dispersion
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(Other Approaches)(Other Approaches)(Other Approaches)

• Long Stimulus Onset Asychrony (SOA)
Can ignore overlap between responses (Cohen et al 1997)

… but long SOAs are less sensitive
• Fully counterbalanced designs

Assume response overlap cancels (Saykin et al 1999)
Include fixation trials to “selectively average” response 
even at short SOA (Dale & Buckner, 1997)

… but unbalanced when events defined by subject
• Define HRF from pilot scan on each subject

May capture intersubject variability (Zarahn et al, 1997) 
… but not interregional variability

• Numerical fitting of highly parametrised response functions
Separate estimate of magnitude, latency, duration (Kruggel et al 1999)

… but computationally expensive for every voxel
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Temporal Basis Sets: Which One?Temporal Basis Sets: Which One?Temporal Basis Sets: Which One?

+ FIR+ Dispersion+ TemporalCanonical

…canonical + temporal + dispersion derivatives appear sufficient
…may not be for more complex trials (eg stimulus-delay-response)
…but then such trials better modelled with separate neural components 

(ie activity no longer delta function) + constrained HRF (Zarahn, 1999) 

In this example (rapid motor response to faces, Henson et al, 2001)…
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Timing Issues : PracticalTiming Issues : PracticalTiming Issues : Practical

• Typical TR for 48 slice EPI at 
3mm spacing is ~ 4s

•• Typical TR for 48 slice EPI at Typical TR for 48 slice EPI at 
3mm spacing is ~ 4s3mm spacing is ~ 4s

Scans TR=4s
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Timing Issues : PracticalTiming Issues : PracticalTiming Issues : Practical

• Typical TR for 48 slice EPI at 
3mm spacing is ~ 4s

• Sampling at [0,4,8,12…] post-
stimulus may miss peak signal

•• Typical TR for 48 slice EPI at Typical TR for 48 slice EPI at 
3mm spacing is ~ 4s3mm spacing is ~ 4s

•• Sampling at [0,4,8,12…] postSampling at [0,4,8,12…] post--
stimulus may miss peak signalstimulus may miss peak signal

Scans

Stimulus (synchronous)

TR=4s

SOA=8s

Sampling rate=4s
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Timing Issues : PracticalTiming Issues : PracticalTiming Issues : Practical

• Typical TR for 48 slice EPI at 
3mm spacing is ~ 4s

• Sampling at [0,4,8,12…] post-
stimulus may miss peak signal

• Higher effective sampling by: 
1. Asynchrony

eg SOA=1.5TR

•• Typical TR for 48 slice EPI at Typical TR for 48 slice EPI at 
3mm spacing is ~ 4s3mm spacing is ~ 4s

•• Sampling at [0,4,8,1Sampling at [0,4,8,122…] post…] post--
stimulus may miss peak signalstimulus may miss peak signal

•• Higher effective sampling by: Higher effective sampling by: 
1. Asynchrony1. Asynchrony

egeg SOA=1.5TRSOA=1.5TR

Stimulus (asynchronous)

Scans TR=4s

SOA=6s

Sampling rate=2s
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Timing Issues : PracticalTiming Issues : PracticalTiming Issues : Practical

• Typical TR for 48 slice EPI at 
3mm spacing is ~ 4s

• Sampling at [0,4,8,12…] post-
stimulus may miss peak signal

• Higher effective sampling by: 
1. Asynchrony

eg SOA=1.5TR
2. Random Jitter      

eg SOA=(2±0.5)TR

•• Typical TR for 48 slice EPI at Typical TR for 48 slice EPI at 
3mm spacing is ~ 4s3mm spacing is ~ 4s

•• Sampling at [0,4,8,1Sampling at [0,4,8,122…] post…] post--
stimulus may miss peak signalstimulus may miss peak signal

•• Higher effective sampling by: Higher effective sampling by: 
1. Asynchrony1. Asynchrony

egeg SOA=1.5TRSOA=1.5TR
2. Random Jitter      2. Random Jitter      

egeg SOA=(2±0.5)TRSOA=(2±0.5)TR

Stimulus (random jitter)

Scans TR=4s

Sampling rate=2s
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Timing Issues : PracticalTiming Issues : PracticalTiming Issues : Practical

• Typical TR for 48 slice EPI at 
3mm spacing is ~ 4s

• Sampling at [0,4,8,12…] post-
stimulus may miss peak signal

• Higher effective sampling by: 
1. Asynchrony

eg SOA=1.5TR
2. Random Jitter      

eg SOA=(2±0.5)TR

• Better response characterisation
(Miezin et al, 2000)

•• Typical TR for 48 slice EPI at Typical TR for 48 slice EPI at 
3mm spacing is ~ 4s3mm spacing is ~ 4s

•• Sampling at [0,4,8,1Sampling at [0,4,8,122…] post…] post--
stimulus may miss peak signalstimulus may miss peak signal

•• Higher effective sampling by: Higher effective sampling by: 
1. Asynchrony1. Asynchrony

egeg SOA=1.5TRSOA=1.5TR
2. Random Jitter      2. Random Jitter      

egeg SOA=(2±0.5)TRSOA=(2±0.5)TR

•• Better response Better response characterisationcharacterisation
((MiezinMiezin et al, 2000)et al, 2000)

Stimulus (random jitter)

Scans TR=4s

Sampling rate=2s



FILFILFIL

Timing Issues : PracticalTiming Issues : PracticalTiming Issues : Practical

• …but “Slice-timing Problem”
(Henson et al, 1999)

Slices acquired at different times,      
yet model is the same for all slices

•• ……but “Slicebut “Slice--timing Problem”timing Problem”
(Henson et al, 1999)(Henson et al, 1999)

Slices acquired at different times,      Slices acquired at different times,      
yet model is the same for all slicesyet model is the same for all slices
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Timing Issues : PracticalTiming Issues : PracticalTiming Issues : Practical

• …but “Slice-timing Problem”
(Henson et al, 1999)

Slices acquired at different times,      
yet model is the same for all slices
=> different results (using canonical 
HRF) for different reference slices

•• ……but “Slicebut “Slice--timing Problem”timing Problem”
(Henson et al, 1999)(Henson et al, 1999)

Slices acquired at different times,      Slices acquired at different times,      
yet model is the same for all slicesyet model is the same for all slices
=> different results (using canonical => different results (using canonical 
HRF) for different reference slicesHRF) for different reference slices

Bottom SliceTop Slice

SPM{t} SPM{t}

TR=3s
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Timing Issues : PracticalTiming Issues : PracticalTiming Issues : Practical

• …but “Slice-timing Problem”
(Henson et al, 1999)

Slices acquired at different times,      
yet model is the same for all slices
=> different results (using canonical 
HRF) for different reference slices

• Solutions:

1. Temporal interpolation of data
… but less good for longer TRs

•• ……but “Slicebut “Slice--timing Problem”timing Problem”
(Henson et al, 1999)(Henson et al, 1999)

Slices acquired at different times,      Slices acquired at different times,      
yet model is the same for all slicesyet model is the same for all slices
=> different results (using canonical => different results (using canonical 
HRF) for different reference slicesHRF) for different reference slices

•• Solutions:Solutions:

1. Temporal interpolation of data1. Temporal interpolation of data
… but less good for longer … but less good for longer TRsTRs

Interpolated

SPM{t}

Bottom SliceTop Slice

SPM{t} SPM{t}

TR=3s
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Timing Issues : PracticalTiming Issues : PracticalTiming Issues : Practical

• …but “Slice-timing Problem”
(Henson et al, 1999)

Slices acquired at different times,      
yet model is the same for all slices
=> different results (using canonical 
HRF) for different reference slices

• Solutions:
1. Temporal interpolation of data

… but less good for longer TRs

2. More general basis set (e.g., with 
temporal derivatives)

… but inferences via F-test

•• ……but “Slicebut “Slice--timing Problem”timing Problem”
(Henson et al, 1999)(Henson et al, 1999)

Slices acquired at different times,      Slices acquired at different times,      
yet model is the same for all slicesyet model is the same for all slices
=> different results (using canonical => different results (using canonical 
HRF) for different reference slicesHRF) for different reference slices

•• Solutions:Solutions:
1. Temporal interpolation of data1. Temporal interpolation of data

… but less good for longer … but less good for longer TRsTRs

2. 2. More general basis set (e.g., with More general basis set (e.g., with 
temporal derivatives)temporal derivatives)

… but inferences via F… but inferences via F--testtest

Derivative

SPM{F}

Interpolated

SPM{t}

Bottom SliceTop Slice

SPM{t} SPM{t}

TR=3s
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⊗ =

Fixed SOA = 16s

Not particularly efficient…

Stimulus (“Neural”) HRF Predicted Data
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⊗ =

Fixed SOA = 4s

Very Inefficient…

Stimulus (“Neural”) HRF Predicted Data
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⊗ =

Randomised, SOAmin= 4s

More Efficient…

Stimulus (“Neural”) HRF Predicted Data
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⊗ =

Blocked, SOAmin= 4s

Even more Efficient…

Stimulus (“Neural”) HRF Predicted Data
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⊗ =

×

Blocked, epoch = 20s

=

Blocked-epoch (with small SOA) and Time-Freq equivalences

Stimulus (“Neural”) HRF Predicted Data
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⊗ =

Sinusoidal modulation, f = 1/33s

× =

The most efficient design of all!

Stimulus (“Neural”) HRF Predicted Data
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× =

⊗

“Effective HRF” (after highpass filtering)
(Josephs & Henson, 1999)

Blocked (80s), SOAmin=4s, highpass filter = 1/120s

Don’t have long (>60s) blocks!

=

Stimulus (“Neural”) HRF Predicted Data
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Randomised, SOAmin=4s, highpass filter = 1/120s

⊗ =

× =

(Randomised design spreads power over frequencies)

Stimulus (“Neural”) HRF Predicted Data
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Design EfficiencyDesign EfficiencyDesign Efficiency

T = cTβ / var(cTβ) 

Var(cTβ) = sqrt(σ2cT(XTX)-1c)     (i.i.d)

• For max. T, want min. contrast 
variability (Friston et al, 1999)

• If assume that noise variance (σ2) is 
unaffected by changes in X…

• …then want maximal efficiency, e:

e(c,X) = { cT (XTX)-1 c }-1

• = maximal bandpassed signal energy 
(Josephs & Henson, 1999)

T = T = cTβ / var(cTβ) 

Var(cTβ) = sqrt(σ2cT(XTX)-1c)     (i.i.d)

•• For max. T, want min. contrast For max. T, want min. contrast 
variability (variability (FristonFriston et al, 1999)et al, 1999)

•• If assume that noise variance (If assume that noise variance (σ2) is is 
unaffected by changes in X…unaffected by changes in X…

•• …then want maximal efficiency, e:…then want maximal efficiency, e:

e(c,Xe(c,X) = ) = { { ccTT ((XXTTXX))--1 1 cc }}--11

•• = maximal = maximal bandpassedbandpassed signal energy signal energy 
(Josephs & Henson, 1999)(Josephs & Henson, 1999)

Events (A-B)
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Efficiency - Single Event-typeEfficiency Efficiency -- Single EventSingle Event--typetype

• Design parametrised by:

SOAmin Minimum SOA

•• Design Design parametrisedparametrised by:by:

SOASOAminmin Minimum SOAMinimum SOA
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Efficiency - Single Event-typeEfficiency Efficiency -- Single EventSingle Event--typetype

• Design parametrised by:

SOAmin Minimum SOA
p(t) Probability of event 

at each SOAmin

•• Design Design parametrisedparametrised by:by:

SOASOAminmin Minimum SOAMinimum SOA
p(t)p(t) Probability of event Probability of event 

at each at each SOASOAminmin
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Efficiency - Single Event-typeEfficiency Efficiency -- Single EventSingle Event--typetype

• Design parametrised by:

SOAmin Minimum SOA
p(t) Probability of event 

at each SOAmin

• Deterministic
p(t)=1 iff t=nT

•• Design Design parametrisedparametrised by:by:

SOASOAminmin Minimum SOAMinimum SOA
p(t)p(t) Probability of event Probability of event 

at each at each SOASOAminmin

•• DeterministicDeterministic
p(t)=1 p(t)=1 iffiff t=t=nTnT
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Efficiency - Single Event-typeEfficiency Efficiency -- Single EventSingle Event--typetype

• Design parametrised by:

SOAmin Minimum SOA
p(t) Probability of event 

at each SOAmin

• Deterministic
p(t)=1 iff t=nSOAmin

• Stationary stochastic 
p(t)=constant<1

•• Design Design parametrisedparametrised by:by:

SOASOAminmin Minimum SOAMinimum SOA
p(t)p(t) Probability of event Probability of event 

at each at each SOASOAminmin

•• DeterministicDeterministic
p(t)=1 p(t)=1 iffiff t=t=nSOAnSOAminmin

•• Stationary stochastic Stationary stochastic 
p(t)=constant<1p(t)=constant<1
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Efficiency - Single Event-typeEfficiency Efficiency -- Single EventSingle Event--typetype

• Design parametrised by:

SOAmin Minimum SOA
p(t) Probability of event 

at each SOAmin

• Deterministic
p(t)=1 iff t=nT

• Stationary stochastic 
p(t)=constant

• Dynamic stochastic
p(t) varies (eg blocked)

•• Design Design parametrisedparametrised by:by:

SOASOAminmin Minimum SOAMinimum SOA
p(t)p(t) Probability of event Probability of event 

at each at each SOASOAminmin

•• DeterministicDeterministic
p(t)=1 p(t)=1 iffiff t=t=nTnT

•• Stationary stochastic Stationary stochastic 
p(t)=constantp(t)=constant

•• Dynamic stochasticDynamic stochastic
p(t) varies (p(t) varies (egeg blocked)blocked)

Blocked designs most efficient! (with small SOAmin)



FILFILFIL

4s smoothing; 1/60s highpass filtering4s smoothing; 1/60s highpass filtering4s smoothing; 1/60s highpass filtering

Efficiency - Multiple Event-typesEfficiency Efficiency -- Multiple EventMultiple Event--typestypes

• Design parametrised by:
SOAmin Minimum SOA
pi(h) Probability of event-type
i given history h of last m events

• With n event-types pi(h) is a 
nm × n Transition Matrix

• Example: Randomised AB
A B

A 0.5 0.5 
B 0.5 0.5

=> ABBBABAABABAAA...

•• Design Design parametrisedparametrised by:by:
SOASOAminmin Minimum SOAMinimum SOA
ppii((hh)) Probability of eventProbability of event--typetype
ii given history given history hh of last of last mm eventsevents

•• With With nn eventevent--types types ppii((hh)) is a is a 
nnmm × × nn Transition MatrixTransition Matrix

•• Example: Example: RandomisedRandomised ABAB

AA BB
AA 0.50.5 0.5 0.5 
BB 0.50.5 0.50.5

=> => ABBBABAABABAAA...ABBBABAABABAAA...

Differential Effect (A-B)

Common Effect (A+B)
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4s smoothing; 1/60s highpass filtering4s smoothing; 1/60s highpass filtering4s smoothing; 1/60s highpass filtering

Efficiency - Multiple Event-typesEfficiency Efficiency -- Multiple EventMultiple Event--typestypes

• Example: Alternating AB
A B

A 0 1 
B 1 0

=> ABABABABABAB...

•• Example: Alternating ABExample: Alternating AB
AA BB

AA 00 1 1 
BB 11 00

=> => ABABABABABAB...ABABABABABAB... Alternating (A-B)

Permuted (A-B)

•• Example: Permuted ABExample: Permuted AB

AA BB
AAAA 0           0           11
ABAB 0.50.5 0.5 0.5 
BABA 0.50.5 0.50.5
BBBB 1           1           00

=> => ABBAABABABBA...ABBAABABABBA...
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4s smoothing; 1/60s highpass filtering4s smoothing; 1/60s highpass filtering4s smoothing; 1/60s highpass filtering

Efficiency - Multiple Event-typesEfficiency Efficiency -- Multiple EventMultiple Event--typestypes

• Example: Null events
A B

A 0.33 0.33
B 0.33 0.33

=> AB-BAA--B---ABB...

• Efficient for differential and
main effects at short SOA

• Equivalent to stochastic 
SOA (Null Event like third 
unmodelled event-type) 

• Selective averaging of data 
(Dale & Buckner 1997)

•• Example: Null eventsExample: Null events
AA BB

AA 0.330.33 0.330.33
BB 0.330.33 0.330.33

=> => ABAB--BAABAA----BB------ABB...ABB...

•• Efficient for differential Efficient for differential andand
main effects at short SOAmain effects at short SOA

•• Equivalent to stochastic Equivalent to stochastic 
SOA (Null Event like third SOA (Null Event like third 
unmodelledunmodelled eventevent--type) type) 

•• Selective averaging of data Selective averaging of data 
(Dale & Buckner 1997)(Dale & Buckner 1997)

Null Events (A+B)

Null Events (A-B)
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Efficiency - ConclusionsEfficiency Efficiency -- ConclusionsConclusions

• Optimal design for one contrast may not be optimal for another 

• Blocked designs generally most efficient with short SOAs
(but earlier restrictions and problems of interpretation…)

• With randomised designs, optimal SOA for differential effect 
(A-B) is minimal SOA (assuming no saturation), whereas 
optimal SOA for main effect (A+B) is 16-20s

• Inclusion of null events improves efficiency for main effect at 
short SOAs (at cost of efficiency for differential effects)

• If order constrained, intermediate SOAs (5-20s) can be optimal;           
If SOA constrained, pseudorandomised designs can be optimal 
(but may introduce context-sensitivity)

•• Optimal design for one contrast may not be optimal for another Optimal design for one contrast may not be optimal for another 

•• Blocked designs generally most efficient with short Blocked designs generally most efficient with short SOAsSOAs
(but earlier restrictions and problems of interpretation…)(but earlier restrictions and problems of interpretation…)

•• With With randomisedrandomised designs, optimal SOA for differential effect designs, optimal SOA for differential effect 
(A(A--B) is minimal SOA (assuming no saturation), whereas B) is minimal SOA (assuming no saturation), whereas 
optimal SOA for main effect (A+B) is 16optimal SOA for main effect (A+B) is 16--20s20s

•• Inclusion of null events improves efficiency for main effect at Inclusion of null events improves efficiency for main effect at 
short short SOAsSOAs (at cost of efficiency for differential effects)(at cost of efficiency for differential effects)

•• If order constrained, intermediate If order constrained, intermediate SOAsSOAs (5(5--20s) can be optimal;           20s) can be optimal;           
If SOA constrained, If SOA constrained, pseudorandomisedpseudorandomised designs can be optimal designs can be optimal 
(but may introduce context(but may introduce context--sensitivity)sensitivity)
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Volterra series - a general nonlinear input-output model

y(t)            = Φ1[u(t)]   + Φ2[u(t)]   +  .... + Φn[u(t)]   + ....

Φn[u(t)]     =    ∑.... ∑ hn(t1,..., tn)u(t - t1) .... u(t  - tn)dt1 .... dtn

VolterraVolterra series series -- a general nonlinear inputa general nonlinear input--output modeloutput model

y(t)            = y(t)            = Φ11[u(t)]   + [u(t)]   + Φ22[u(t)]   +  .... + [u(t)]   +  .... + Φnn[u(t)]   + ....[u(t)]   + ....

Φnn[u(t)]     =    [u(t)]     =    ∑∑.... .... ∑∑ hhnn(t(t11,..., ,..., ttnn)u(t)u(t -- tt11) .... u(t  ) .... u(t  -- ttnn)dt)dt1 1 .... .... dtdtnn

Nonlinear ModelNonlinear ModelNonlinear Model

ΦΦ[u(t)][u(t)] response y(t)response y(t)input u(t)input u(t)

Stimulus functionStimulus function

kernels (h)kernels (h) estimateestimate
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Nonlinear ModelNonlinear ModelNonlinear Model

Friston et al (1997)FristonFriston et al (1997)et al (1997)

SPM{F} testing HSPM{F} testing H00: kernel coefficients, h = 0: kernel coefficients, h = 0

kernel coefficients kernel coefficients -- hh

SPM{F}SPM{F}
p < 0.001p < 0.001
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Nonlinear ModelNonlinear ModelNonlinear Model

Friston et al (1997)FristonFriston et al (1997)et al (1997)

SPM{F} testing HSPM{F} testing H00: kernel coefficients, h = 0: kernel coefficients, h = 0

Significant nonlinearities at Significant nonlinearities at SOAsSOAs 00--10s:10s:
(e.g., (e.g., underadditivityunderadditivity from 0from 0--5s)5s)

kernel coefficients kernel coefficients -- hh

SPM{F}SPM{F}
p < 0.001p < 0.001
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Nonlinear EffectsNonlinear EffectsNonlinear Effects

UnderadditivityUnderadditivity at short at short SOAsSOAs
Linear
Prediction

Volterra
Prediction
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Nonlinear EffectsNonlinear EffectsNonlinear Effects

UnderadditivityUnderadditivity at short at short SOAsSOAs
Linear
Prediction

Volterra
Prediction
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Nonlinear EffectsNonlinear EffectsNonlinear Effects

UnderadditivityUnderadditivity at short at short SOAsSOAs
Linear
Prediction

Volterra
Prediction

Implications
for Efficiency
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1. BOLD impulse response1. BOLD impulse response

2. General Linear Model2. General Linear Model

3. Temporal Basis Functions3. Temporal Basis Functions

4. Timing Issues4. Timing Issues

5. Design 5. Design OptimisationOptimisation

6. Nonlinear Models6. Nonlinear Models

7. Example Applications7. Example Applications
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Example 1: Intermixed Trials (Henson et al 2000)Example 1: Intermixed Trials (Henson et al 2000)Example 1: Intermixed Trials (Henson et al 2000)

• Short SOA, fully randomised, 
with 1/3 null events

• Faces presented for 0.5s against 
chequerboard baseline,      
SOA=(2 ± 0.5)s, TR=1.4s

• Factorial event-types:
1. Famous/Nonfamous (F/N)
2. 1st/2nd Presentation (1/2)

•• Short SOA, fully Short SOA, fully randomisedrandomised, , 
with 1/3 null eventswith 1/3 null events

•• Faces presented for 0.5s against Faces presented for 0.5s against 
chequerboardchequerboard baseline,      baseline,      
SOA=(2 ± 0.5)s, TR=1.4sSOA=(2 ± 0.5)s, TR=1.4s

•• Factorial eventFactorial event--types:types:
1. Famous/1. Famous/NonfamousNonfamous (F/N)(F/N)
2. 1st/2nd Presentation (1/2)2. 1st/2nd Presentation (1/2)
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Lag=3Lag=3

Famous Nonfamous (Target)

. . .
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Example 1: Intermixed Trials (Henson et al 2000)Example 1: Intermixed Trials (Henson et al 2000)Example 1: Intermixed Trials (Henson et al 2000)

• Short SOA, fully randomised, 
with 1/3 null events

• Faces presented for 0.5s against 
chequerboard baseline,      
SOA=(2 ± 0.5)s, TR=1.4s

• Factorial event-types:
1. Famous/Nonfamous (F/N)
2. 1st/2nd Presentation (1/2)

• Interaction (F1-F2)-(N1-N2) 
masked by main effect (F+N)

• Right fusiform interaction of 
repetition priming and familiarity

•• Short SOA, fully Short SOA, fully randomisedrandomised, , 
with 1/3 null eventswith 1/3 null events

•• Faces presented for 0.5s against Faces presented for 0.5s against 
chequerboardchequerboard baseline,      baseline,      
SOA=(2 ± 0.5)s, TR=1.4sSOA=(2 ± 0.5)s, TR=1.4s

•• Factorial eventFactorial event--types:types:
1. Famous/1. Famous/NonfamousNonfamous (F/N)(F/N)
2. 1st/2nd Presentation (1/2)2. 1st/2nd Presentation (1/2)

•• Interaction (F1Interaction (F1--F2)F2)--(N1(N1--N2) N2) 
masked by main effect (F+N)masked by main effect (F+N)

•• Right fusiform interaction of Right fusiform interaction of 
repetition priming and familiarityrepetition priming and familiarity
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Example 2: Post hoc classification (Henson et al 1999)Example 2: Post hoc classification (Henson et al 1999)Example 2: Post hoc classification (Henson et al 1999)

• Subjects indicate whether 
studied (Old) words: 
i) evoke recollection of 
prior occurrence (R)  
ii) feeling of familiarity 
without recollection (K)
iii) no memory (N)

• Random Effects analysis 
on canonical parameter 
estimate for event-types

• Fixed SOA of 8s => sensitive to 
differential but not main effect 
(de/activations arbitrary)

•• Subjects indicate whether Subjects indicate whether 
studied (Old) words: studied (Old) words: 
i) evoke recollection of i) evoke recollection of 
prior occurrence (R)  prior occurrence (R)  
ii) feeling of familiarity ii) feeling of familiarity 
without recollection (K)without recollection (K)
iii) no memory (N)iii) no memory (N)

•• Random Effects analysis Random Effects analysis 
on canonical parameter on canonical parameter 
estimate for eventestimate for event--typestypes

•• Fixed SOA of 8s => sensitive to Fixed SOA of 8s => sensitive to 
differential but not main effect differential but not main effect 
(de/activations arbitrary)(de/activations arbitrary)

SPM{t} SPM{t} 
R-K

SPM{t} SPM{t} 
K-R
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Example 3: Subject-defined events (Portas et al 1999)Example 3: SubjectExample 3: Subject--defined events (defined events (PortasPortas et al 1999)et al 1999)

• Subjects respond when 
“pop-out” of 3D percept 
from 2D stereogram

•• Subjects respond when Subjects respond when 
“pop“pop--out” of 3D percept out” of 3D percept 
from 2D stereogramfrom 2D stereogram
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Example 3: Subject-defined events (Portas et al 1999)Example 3: SubjectExample 3: Subject--defined events (defined events (PortasPortas et al 1999)et al 1999)

• Subjects respond when 
“pop-out” of 3D percept 
from 2D stereogram

• Popout response also 
produces tone

• Control event is response to 
tone during 3D percept

•• Subjects respond when Subjects respond when 
“pop“pop--out” of 3D percept out” of 3D percept 
from 2D stereogramfrom 2D stereogram

•• PopoutPopout response also response also 
produces toneproduces tone

•• Control event is response to Control event is response to 
tone during 3D percepttone during 3D percept

Temporo-occipital differential activation

Pop-out

Control
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Example 4: Oddball Paradigm (Strange et al, 2000)Example 4: Oddball Paradigm (Strange et al, 2000)Example 4: Oddball Paradigm (Strange et al, 2000)

• 16 same-category words 
every 3 secs, plus … 

• … 1 perceptual, 1 semantic, 
and 1 emotional oddball

•• 16 same16 same--category words category words 
every 3 every 3 secssecs, plus … , plus … 

•• … 1 perceptual, 1 semantic, … 1 perceptual, 1 semantic, 
and 1 emotional oddballand 1 emotional oddball
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WHEAT

BARLEY

OATS

HOPS

RYE

… 

~3s

CORN

Perceptual Oddball

PLUG

Semantic Oddball

RAPE

Emotional Oddball
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Example 4: Oddball Paradigm (Strange et al, 2000)Example 4: Oddball Paradigm (Strange et al, 2000)Example 4: Oddball Paradigm (Strange et al, 2000)

• 16 same-category words 
every 3 secs, plus … 

• … 1 perceptual, 1 semantic, 
and 1 emotional oddball

•• 16 same16 same--category words category words 
every 3 every 3 secssecs, plus … , plus … 

•• … 1 perceptual, 1 semantic, … 1 perceptual, 1 semantic, 
and 1 emotional oddballand 1 emotional oddball

Right Prefrontal Cortex

Pa
ra

m
et

er
 E

st
im

at
es

Controls

Oddballs

•• 3 3 nonoddballsnonoddballs randomly randomly 
matched as controlsmatched as controls

•• Conjunction of oddball vs. Conjunction of oddball vs. 
control contrast images: control contrast images: 
generic deviance detectorgeneric deviance detector
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• Epochs of attention to: 
1) motion, or 2) colour

• Events are target stimuli 
differing in motion or colour

• Randomised, long SOAs to 
decorrelate epoch and event-
related covariates

• Interaction between epoch 
(attention) and event 
(stimulus) in V4 and V5

•• Epochs of attention to: Epochs of attention to: 
1) motion, or 2) 1) motion, or 2) colourcolour

•• Events are target stimuli Events are target stimuli 
differing in motion or differing in motion or colourcolour

•• RandomisedRandomised, long , long SOAsSOAs to to 
decorrelatedecorrelate epoch and eventepoch and event--
related covariatesrelated covariates

•• Interaction between epoch Interaction between epoch 
(attention) and event (attention) and event 
(stimulus) in V4 and V5(stimulus) in V4 and V5

Example 5: Epoch/Event Interactions (Chawla et al 1999) 

attention to motion

attention to colour

Interaction between attention and 
stimulus motion change in V5
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Efficiency – Detection vs EstimationEfficiency Efficiency –– Detection Detection vsvs EstimationEstimation

• “Detection power” vs
“Estimation efficiency” 

(Liu et al, 2001)

• Detect response, or characterise 
shape of response?

• Maximal detection power in 
blocked designs;
Maximal estimation efficiency 
in randomised designs

=> simply corresponds to choice 
of basis functions: 

detection    =  canonical HRF
estimation  =  FIR

•• ““Detection power” Detection power” vsvs
“Estimation efficiency” “Estimation efficiency” 

(Liu et al, 2001)(Liu et al, 2001)

•• Detect response, or characterise Detect response, or characterise 
shape of response?shape of response?

•• Maximal detection power in Maximal detection power in 
blocked designs;blocked designs;
Maximal estimation efficiency Maximal estimation efficiency 
in randomised designsin randomised designs

=> simply corresponds to choice => simply corresponds to choice 
of basis functions: of basis functions: 

detection    =  canonical HRFdetection    =  canonical HRF
estimation  =  FIRestimation  =  FIR
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Design EfficiencyDesign EfficiencyDesign Efficiency

• HRF can be viewed as a filter 
(Josephs & Henson, 1999)

• Want to maximise the signal 
passed by this filter

• Dominant frequency of canonical 
HRF is ~0.04 Hz

• So most efficient design is a 
sinusoidal modulation of neural 
activity with period ~24s

• (eg, boxcar with 12s on/ 12s off)

•• HRF can be viewed as a filter HRF can be viewed as a filter 
(Josephs & Henson, 1999)(Josephs & Henson, 1999)

•• Want to maximise the signal Want to maximise the signal 
passed by this filterpassed by this filter

•• Dominant frequency of canonical Dominant frequency of canonical 
HRF is ~0.04 HzHRF is ~0.04 Hz

•• So most efficient design is a So most efficient design is a 
sinusoidal modulation of neural sinusoidal modulation of neural 
activity with period ~24sactivity with period ~24s

•• ((egeg, boxcar with 12s on/ 12s off), boxcar with 12s on/ 12s off)
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Timing Issues : LatencyTiming Issues : LatencyTiming Issues : Latency

• Assume the real response, r(t), is a scaled (by α) version of the canonical, f(t), 
but delayed by a small amount dt:

r(t) = α f(t+dt) ~ α f(t) + α f ´(t) dt 1st-order Taylor

R(t) = ß1  f(t) + ß2  f ´(t)                          GLM fit

⇒ α = ß1 dt = ß2 / ß1

ie, Latency can be approximated by the ratio of derivative-to-canonical 
parameter estimates (within limits of first-order approximation, +/-1s)

(Henson et al, 2002)
(Liao et al, 2002)

• If the fitted response, R(t), is modelled by the canonical + temporal derivative:

• Then canonical and derivative parameter estimates, ß1 and ß2, are such that :
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Timing Issues : LatencyTiming Issues : Latency

Delayed
Responses

(green/ yellow)

Canonical

ß2 /ß1

Actual
latency, dt,
vs. ß2 / ß1

Canonical
Derivative

Basis Functions

Face repetition reduces latency as well as 
magnitude of fusiform response

ß1 ß1 ß1 ß2ß2ß2

Parameter
Estimates
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A. Decreased

B. Advanced

C. Shortened
(same integrated)

D. Shortened
(same maximum)

A. Smaller Peak

B. Earlier Onset

C. Earlier Peak

D. Smaller Peak
and earlier Peak

Timing Issues : LatencyTiming Issues : Latency
Neural BOLD
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BOLD Response Latency (Iterative)BOLDBOLD Response Latency (Iterative)Response Latency (Iterative)

• Numerical fitting of explicitly 
parameterised canonical HRF 
(Henson et al, 2001)

• Distinguishes between Onset
and Peak latency…

…unlike temporal derivative…
…and which may be important for   

interpreting neural changes 
(see previous slide)

• Distribution of parameters 
tested nonparametrically
(Wilcoxon’s T over subjects)

•• Numerical fitting of explicitly Numerical fitting of explicitly 
parameterised canonical HRF parameterised canonical HRF 
(Henson et al, 2001)(Henson et al, 2001)

•• Distinguishes between Distinguishes between OnsetOnset
and and PeakPeak latency…latency…

…unlike temporal derivative……unlike temporal derivative…
…and which may be important for   …and which may be important for   

interpreting neural changes interpreting neural changes 
(see previous slide)(see previous slide)

•• Distribution of parameters Distribution of parameters 
tested tested nonparametricallynonparametrically
((Wilcoxon’sWilcoxon’s T over subjects)T over subjects)

Height

Peak Delay

Onset Delay
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BOLD Response Latency (Iterative)BOLDBOLD Response Latency (Iterative)Response Latency (Iterative)

No difference in Onset
Delay, wT(11)=35

240ms Peak Delay
wT(11)=14, p<.05

0.34% Height Change
wT(11)=5, p<.001

Most parsimonious account is that repetition reduces duration of neural activity…

D. Shortened
(same maximum)

Neural
D. Smaller Peak
and earlier Peak

BOLD
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• Four-parameter HRF, nonparametric 
Random Effects (SNPM99)

• Advantages of iterative vs linear:
1. Height “independent” of shape 

Canonical “height” confounded by 
latency (e.g, different shapes across 
subjects); no slice-timing error

2.  Distinction of onset/peak latency
Allowing better neural inferences?

• Disadvantages of iterative:
1.  Unreasonable fits (onset/peak tension)

Priors on parameter distributions? 
(Bayesian estimation)

2. Local minima, failure of convergence?
3. CPU time (~3 days for above)

Height

Peak Delay

Onset Delay

Dispersion

BOLD Response Latency (Iterative)BOLDBOLD Response Latency (Iterative)Response Latency (Iterative)
Different fits

across subjects

Height
p<.05 (cor)

1-2SNPM

FIR used to deconvolve data,
before nonlinear fitting over PST
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Temporal Basis Sets: InferencesTemporal Basis Sets: InferencesTemporal Basis Sets: Inferences

• How can inferences be made in hierarchical models (eg, 
“Random Effects” analyses over, for example, subjects)?

1. Univariate T-tests on canonical parameter alone?
may miss significant experimental variability
canonical parameter estimate not appropriate index of “magnitude” 
if real responses are non-canonical (see later)

2. Univariate F-tests on parameters from multiple basis functions?
need appropriate corrections for nonsphericity (Glaser et al, 2001)

3. Multivariate tests (eg Wilks Lambda, Henson et al, 2000)
not powerful unless ~10 times as many subjects as parameters
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⊗ =

⊗ =

⊗ =

s(t)

r(τ)

u(t)

u(t) h(τ) x(t)

u(t) h(τ) x(t)

Time (s)

Time (s)

Time (s)

Time (s)

Time (s)

Time (s)

PST (s)

PST (s)

PST (s)
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C
A

B

Initial
Dip

Undershoot

Peak

Dispersion


