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BOLD Impulse Response

Function of blood oxygenation, flow,
volume (Buxton et al, 1998)

Peak (max. oxygenation) 4-6s
poststimulus; baseline after 20-30s

Initial undershoot can be observed .
(Malonek & Grinvald, 1996) Undershoot

Similar across V1, Al, S1...

... but differences across:
other regions (Schacter et al 1997)

individuals (Aguirre et al, 1998)

<« Initial
Undershoot




BOLD Impulse Response

Early event-related fMRI studies
used a long Stimulus Onset
Asynchrony (SOA) to allow BOLD
response to return to baseline

However, if the BOLD response 1s
explicitly modelled, overlap between
successive responses at short SOAs
can be accommodated...

Undershoot

... particularly 1if responses are

assumed to superpose linearly < Initial
Undershoot

Short SOAs are more sensitive. ..
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General Linear (Convolution) Model

GLM for a single voxel:

u(t) h=2 B Ji (D)

T 2T 3T ..

u(t) = X5 (t - n) \ /

N

sampled each scan

Y =u) & h(g + &1

u(t) = neural causes (stimulus train)

h(7) = hemodynamic (BOLD) response

h(9) =2 f3 fi(D

J.(7) = temporal basis functions \/

yt) =23 B fi(t-nT) + &t) Design
Matrix

y Xp -+ &




General Linear Model (in SPM)

Auditory words
every 20s ‘ ‘ ‘ X g
-

Gamma functions f,(t) of L
peristimulus time 1 : SPM{F}
(Orthogonalised) L

Sampled every TR = 1.7s

Design matrix, X

[x(O®f (1) [ X(OSFf5(T) |...]

time {secs} 30




A word about down-sampling

—64 8] 54 128 192
Time (s)

T=16,TR=2st | 11 ]

Time (s)

Scan
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Temporal Basis Functions

e Fourier Set

Windowed sines & cosines
Any shape (up to frequency limit)
Inference via F-test




Temporal Basis Functions

* Finite Impulse Response

Mini “timebins” (selective averaging)
Any shape (up to bin-width)
Inference via F-test




Temporal Basis Functions

 Fourier Set
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Temporal Basis Functions

 Fourier Set

Windowed sines & cosines
Any shape (up to frequency limit)
Inference via F-test

e Gamma Functions

Bounded, asymmetrical (like BOLD)
Set of different lags
Inference via F-test

¢ “Informed” Basis Set

Best guess of canonical BOLD response
Variability captured by Taylor expansion
“Magnitude” inferences via t-test...?




Temporal Basis Functions




Temporal Basis Functions

“Informed” Basis Set

Canonical (Friston et al. 1998)
Temporal

Dispersion  Canonical HRF (2 gamma functions)

plus Multivariate Taylor expansion in:
time (Temporal Derivative)

width (Dispersion Derivative)

» “Magnitude” inferences via t-test on
canonical parameters (providing
canonical 1s a good fit...more later)

» “Latency” inferences via tests on ratio
of derivative : canonical parameters
(more later...)




(Other Approaches)

* Long Stimulus Onset Asychrony (SOA)
Can ignore overlap between responses (Cohen et al 1997)
... but long SOAs are less sensitive
 Fully counterbalanced designs
Assume response overlap cancels (Saykin et al 1999)

Include fixation trials to “selectively average” response
even at short SOA (Dale & Buckner, 1997)

... but unbalanced when events defined by subject
* Define HRF from pilot scan on each subject
May capture intersubject variability (Zarahn et al, 1997)

... but not interregional variability
* Numerical fitting of highly parametrised response functions
Separate estimate of magnitude, latency, duration (Kruggel et al 1999)
... but computationally expensive for every voxel




Temporal Basis Sets: Which One?

In this example (rapid motor response to faces, Henson et al, 2001)...

S

E.D ?HDTWWJ.?TT &@i é.?lﬁiﬁ?ﬁ?w.r.

Canonical + Temporal + Dispersion + FIR

...canonical + temporal + dispersion derivatives appear sufficient
...may not be for more complex trials (eg stimulus-delay-response)

...but then such trials better modelled with separate neural components
(ie activity no longer delta function) + constrained HRF (Zarahn, 1999)
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Timing Issues : Practical

TR=4s
Scans -

e L Lo Do o Lo

« Typical TR for 48 slice EPI at

3mm spacing is ~ 4s
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TR=4s
Scans ) ,

« Typical TR for 48 slice EPI at
et Lo Lo Lo b Lo

3mm spacing is ~ 4s

—

e Sampling at [0,4,8,12...] post-
stimulus may miss peak signal

Stimulus (random jitter)

« Higher effective sampling by:
1. Asynchrony
eg SOA=1.5TR
2. Random Jitter
eg SOA=(2+0.5)TR




Timing Issues : Practical

TR=4s
Scans ) ,

Typical TR for 48 slice EPI at
et Lo Lo Lo b Lo

3mm spacing is ~ 4s

—

Sampling at [0,4,8,12...] post-

. . . Stimulus (random jitter)
stimulus may miss peak signal

Higher effective sampling by:
1. Asynchrony

eg SOA=1.5TR
2. Random Jitter

eg SOA=(2+0.5)TR

Better response characterisation
(Miezin et al, 2000)
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Timing Issues : Practical

e ...but “Slice-timing Problem™
(Henson et al, 1999)

Slices acquired at different times,
yet model is the same for all slices

=> different results (using canonical
HRF) for different reference slices

e Solutions:

1. Temporal interpolation of data
... but less good for longer TRs

2. More general basis set (e.g., with
temporal derivatives)
... but inferences via F-test
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Fixed SOA = 16s

Stimulus (“Neural”) HRF Predicted Data

Not particularly efficient...



Fixed SOA = 4s

Stimulus (“Neural”) HRF Predicted Data

Very Inefficient...



Randomised, SOA . = 4s

Stimulus (“Neural”) HRF Predicted Data

More Efficient...



Blocked, SOA . = 4s

Stimulus (“Neural”) HRF Predicted Data

Even more Efficient...



Blocked, epoch = 20s

Stimulus (“Neural”) HRF Predicted Data

Magnitude
Magnitude

Freq (Hz)

Blocked-epoch (with small SOA) and Time-Freq equivalences



Sinusoidal modulation, £ = 1/33s

Stimulus (“Neural”) HRF Predicted Data

Magnitude
Magnitude

Freq (Hz)

Fr

The most efficient design of all!



Blocked (80s), SOA . =4s, highpass filter = 1/120s

Stimulus (“Neural”) HRF Predicted Data

_ _ Time (s)
64 96 128 160

“Effective HRF” (after highpass filtering)
(Josephs & Henson, 1999)

Magnitude
Magnitude

Freq (Hz)

Freg (Hz)
0.05 0.1 0.15 0.2 K 0.1 0.15 0.2

Don’t have long (>60s) blocks!




Randomised, SOA . =4s, highpass filter = 1/120s

Stimulus (“Neural”) HRF Predicted Data

o Tme o —Time (5 Y Tme
64 96 128 160 20 25 30 64 96 128 160

©
g
=
'c
]
=

Magnitude

Freq (Hz) Freq (Hz)

0.1 0.15 0.2

(Randomised design spreads power over frequencies)



Design Efficiency

T=cb el Al I T
~ III B A IIIIIIIIIIII

Var(CTB):SqI‘t(GzCT(XTX)'lc) (11d) - 00 400 BOOD BOD .n_-:, W0 MO0 1ED 'R0 2000

* For max. T, want min. contrast - fi
variability (Friston et al, 1999) R A e s N

o If assume that noise variance (c?) is
unaffected by changes in X...

- ...then want maximal efficiency, e:
efcX) = {c' (X'X)" e}

» = maximal bandpassed signal energy
(Josephs & Henson, 1999)




Efficiency - Single Event-type

e Design parametrised by:

SOA . Minimum SOA

min
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Efficiency - Single Event-type

e Design parametrised by:

SOA . Minimum SOA

min

p(t) Probability of event
at each SOA, .

e Deterministic
p(l?:] lfft:nSOAmzn

 Stationary stochastic
p(t)=constant<l




Efficiency - Single Event-type

Design parametrised by:  occurence probabile

SOA . Minimum SOA

min

p(t) Probability of event
at each SOA, .

Deterministic
p()=1iff t=nT

Stationary stochastic
p(t)=constant

Dynamic stochastic
p(t) varies (eg blocked)

Blocked designs most efficient! (with small SOAmin)



Efficiency - Multiple Event-types

* Design parametrised by:
SOA,.. Minimum SOA

pi(h) Probability of event-type
i given history h of last m events

With n event-types p.(h) 1s a
n" x n Transition Matrix
Example: Randomised AB

A B
A 0.5 0.5

B 0.5 0.5

=> ABBBABAABABAAA... 4s smoothing, 1/60s highpass filtering




Efficiency - Multiple Event-types

e Example: Alternating AB

.\ B
A 0 1

B 1 0

=> ABABABABABAB...

* Example: Permuted AB

A B
AA 0 1
AB
BA
BB 1 0

=> ABBAABABABBA...

Permuted (A-B)

+|
" / Alternating (A-B)

4s smoothing, 1/60s highpass filtering



Efficiency - Multiple Event-types

Example: Null events

A B
A 0.33 0.33
B 0.33 0.33

Null Events (A-B)

"'+I
+.
e Null Events (A+B)

=> AB-BAA--B---ABB...

Efficient for differential and
main effects at short SOA

Equivalent to stochastic
SOA (Null Event like third
unmodelled event-type)

Selective averaging of data

(Dale & Buckner 1997) 4s smoothing; 1/60s highpass filtering




Efficiency - Conclusions

Optimal design for one contrast may not be optimal for another

Blocked designs generally most efficient with short SOAs
(but earlier restrictions and problems of interpretation...)

With randomised designs, optimal SOA for differential effect

(A-B) 1s minimal SOA (assuming no saturation), whereas
optimal SOA for main effect (A+B) 1s 16-20s

Inclusion of null events improves efficiency for main effect at
short SOAs (at cost of efficiency for differential effects)

If order constrained, intermediate SOAs (5-20s) can be optimal;
If SOA constrained, pseudorandomised designs can be optimal
(but may introduce context-sensitivity)
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Nonlinear Model
—‘ mput u(t) )—M—b respbnse y

timulus function

kernels (h) (Ge—cstimate

Volterra series - a general nonlinear input-output model

() = Dfu®)] + Dfu)] + ..+ Dfu@®)] .
D [u(t)] tJu(t -ty) ... u(t -t)de,.... dt,




Nonlinear Model

Friston et al (1997) kernel coefficients - h

1st order kernel {h1}

SPM{F} testing H,: kernel coefficients, h =0




Nonlinear Model

Friston et al (1997) kernel coefficients - h

1st order kernel {h1}

SPM{F} testing H,: kernel coefficients, h =0

Significant nonlinearities at SOAs 0-10s:
(e.g., underadditivity from 0-5s)




Nonlinear Effects

‘re:sponsetoapairofstimuli Underadditivity at Short SOAS

Linear

Prediction




Nonlinear Effects

response to a pair of stimuli

Linear
Prediction

Volterra
Prediction

Underadditivity at short SOAs




Nonlinear Effects

‘re:sponsetoapairofstimuli Underadditivity at Short SOAS

Linear
Prediction
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Example 1: Intermixed Trials (Henson et al 2000)

e Short SOA, fully randomised,
with 1/3 null events

» Faces presented for 0.5s against

chequerboard baseline,
SOA=(2 £ 0.5)s, TR=1.4s

e Factorial event-types:
1. Famous/Nonfamous (F/N)
2. 1st/2nd Presentation (1/2)




Famous Nonfamous (Target)



Example 1: Intermixed Trials (Henson et al 2000)

e Short SOA, fully randomised,
with 1/3 null events

Faces presented for 0.5s against

chequerboard baseline,
SOA=(2 £ 0.5)s, TR=1.4s

Factorial event-types:
1. Famous/Nonfamous (F/N)
2. 1st/2nd Presentation (1/2)

Interaction (F1-F2)-(N1-N2)
masked by main effect (F+N)

Right fusiform interaction of
repetition priming and familiarity




Example 2: Post hoc classification (Henson et al 1999)

* Subjects indicate whether
studied (Old) words:

1) evoke recollection of
prior occurrence (R)

11) feeling of familiarity
without recollection (K)

111) no memory (N)

Random Effects analysis
on canonical parameter
estimate for event-types

Fixed SOA of 8s => sensitive to
differential but not main effect
(de/activations arbitrary)




Example 3: Subject-defined events (Portas et al 1999)

* Subjects respond when
“pop-out” of 3D percept
from 2D stereogram







Example 3: Subject-defined events (Portas et al 1999)

Temporo-occipital differential activation

* Subjects respond when
“pop-out” of 3D percept
from 2D stereogram

* Popout response also

produces tone

* Control event 1s response to
tone during 3D percept




Example 4: Oddball Paradigm (Strange et al, 2000)

e 16 same-category words
every 3 secs, plus ...

e ... 1 perceptual, 1 semantic,
and 1 emotional oddball




Perceptual Oddball

BARLEY
‘/ Semantic Oddball

/

Emotional Oddball

/

~3s



Example 4: Oddball Paradigm (Strange et al, 2000)

e 16 same-category words

every 3 secs, plus ...

... 1 perceptual, 1 semantic,
and 1 emotional oddball

3 nonoddballs randomly
matched as controls

' ' Control
Conjunction of oddball vs. OIMIOS

control contrast images:

generic deviance detector

Param-ter Estimates

Oddballs




Epochs of attention to:
1) motion, or 2) colour

Events are target stimuli
differing in motion or colour

Randomised, long SOAs to
decorrelate epoch and event-
related covariates

Interaction between epoch
(attention) and event
(stimulus) in V4 and V5

Interaction between attention and
stimulus motion change in V5

attention to motion

attention to colour

peristimulus time (seconds)







Efficiency — Detection vs Estimation

RanCan

* “Detection power” vs

“Estimation efficiency”
(L1u et al, 2001)

e Detect response, or characterise R mR BFR
shape of response?

* Maximal detection power in
blocked designs;

Maximal estimation efficiency
in randomised designs

BlkCan

=> simply corresponds to choice e, PO
of basis functions: RanFIR BIKFIR

detection = canonical HRF
estimation FIR

oz o . 01 02 03
Frequency (Hz) Frequency (Hz)




Design Efficiency

HRF can be viewed as a filter
(Josephs & Henson, 1999)

Want to maximise the signal
passed by this filter

Signal Change (%)

Dominant frequency of canonical
HRF is ~0.04 Hz

So most efficient design 1s a
sinusoidal modulation of neural
activity with period ~24s

(eg, boxcar with 12s on/ 12s off) 05 01 05 02 0%

Frequency (Hz)




Timing Issues : Latency

» Assume the real response, 7(), is a scaled (by «) version of the canonical, f(),
but delayed by a small amount dt:

r(t) = af(ttdt) ~ af(t) + af (t)dt  I5-order Taylor

« If the fitted response, R(?), is modelled by the canonical + temporal derivative:
R@) =p; J(1) t 5,1 (V) GLM fit

* Then canonical and derivative parameter estimates, /3, and /5, are such that :

e - (Henson et al, 2002)
— a=p / at=ps 2 /P / (Liao et al, 2002)

ie, Latency can be approximated by the ratio of derivative-to-canonical
parameter estimates (within limits of first-order approximation, +/-1s)




Timing Issues : Latency

—— (Canonical . ]
g Basis Functions
Delayed = _
] — Canonical
Responses E " Derivative

(green/ yellow)

[=]

25 PST(s)

g
Parameter :
E
Estimates L !
g = Initial
Actual 5
latency, dt, [E
O
vs. 3,/ 3, g

Face repetition reduces latency as well as
Derivative:Candhical3,/8, Ratio magnitude Of fusiform response




Timing Issues : Latency

Neural BOLD

A. Decreased A. Smaller Peak

B. Advanced B. Earlier Onset

C. Shortened
(same integrated)

C. Earlier Peak

D. Smaller Peak
and earlier Peak

D. Shortened
(same maximum)




BOLD Response Latency (Iterative)

» Numerical fitting of explicitly
parameterised canonical HRF
(Henson et al, 2001)

 Distinguishes between Onset
and Peak latency...

...unlike temporal derivative...

...and which may be important for
interpreting neural changes
(see previous slide)

 Distribution of parameters
tested nonparametrically
(Wilcoxon’s T over subjects)




BOLD Response Latency (Iterative)

240ms Peak Delay
wT(11)=14, p<.05

0.34% Height Change
wT(11)=5, p<.001

-
(=]

Signal Change (%)

Signal Change (%)

No difference in Onset

Delay, wT(11)=35
15 PST (s)

Neural BOLD

D. Smaller Peak
and earlier Peak

D. Shortened
(same maximum)

Most parsimonious account is that repetition reduces duration of neural activity...



BOLD Response Latency (Iterative)

Different fits .
. R |  Four-parameter HRF, nonparametric
Peak Delay ..

— e | Random Effects (SNPM99)

. | Height

T Biedesion » Advantages of iterative vs linear:
! S I I ee— 1. Height “independent” of shape

OnsetDelay " Canonical “height” confounded by
| | latency (e.g, different shapes across

FIR used to deconvolve data, . ;‘ NEE—— - . . S - i
before nonlinear fitting over PST Sub] eCtS) s no slice IR ST

SNPM 1-2 2. Distinction of onset/peak latency

Allowing better neural inferences?

» Disadvantages of iterative:

1. Unreasonable fits (onset/peak tension
_ p

Height i Priors on parameter distributions?
p<.05 (cor) (Bayesian estimation)

e 2. Local minima, failure of convergence?
3. CPU time (~3 days for above)




Temporal Basis Sets: Inferences

- How can inferences be made in hierarchical models (eg,
“Random Effects” analyses over, for example, subjects)?

1. Univariate T-tests on canonical parameter alone?
may miss significant experimental variability

canonical parameter estimate not appropriate index of “magnitude”
if real responses are non-canonical (see later)

2. Univariate F-tests on parameters from multiple basis functions?
need appropriate corrections for nonsphericity (Glaser et al, 2001)

3. Multivariate tests (eg Wilks Lambda, Henson et al, 2000)
not powerful unless ~10 times as many subjects as parameters




Time (s)

16
Time (s)

Time (s)

16
Time (s)

Time (s)

Time (s)

Time (s)
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