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Principles of Organisation

‘ Functional specialization I ‘ Functional integration I




Structural, functional & effective connectivity

structural connectivity functional connectivity effective connectivity
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Sporns 2007, Scholarpedia

anatomical/structural connectivity
= presence of axonal connections

functional connectivity
=  statistical dependencies between regional time series

effective connectivity
=  causal (directed) influences between neurons or neuronal populations



Anatomical connectivity

Neurotransmitter

D e ﬁh/ l‘ / 0/7 .. Molecules
presence of axonal connections

* neuronal communication via _
synaptic contacts . g

 Measured with

— tracing techniques

— diffusion tensor imaging (DTI)




Knowing anatomical connectivity is not enough...

» Context-dependent recruiting of
connections :

— Local functions depend on network activity

« Connections show synaptic plasticity

— change in the structure and transmission
properties of a synapse

— even at short timescales

- Look at functional and effective
connectivity




Functional connectivity

Definition. statistical dependencies between regional time series

« Seed voxel correlation analysis

« Coherence analysis

« Eigen-decomposition (PCA, SVD)

* Independent component analysis (ICA)

« any technique describing statistical dependencies amongst
regional time series



Seed-voxel correlation analyses

* hypothesis-driven choice of a

seed voxel seed voxel

 extract reference
time series

 voxel-wise correlation with
time series from all other
voxels in the brain




Pros & Cons of functional connectivity analysis

* Pros:

— useful when we have no experimental control over
the system of interest and no model of what caused
the data (e.g. sleep, hallucinations, etc.)

 Cons:
— interpretation of resulting patterns is difficult / arbitrary
— no mechanistic insight

— usually suboptimal for situations where we have a
priori knowledge / experimental control

- Effective connectivity



Effective connectivity

Definition:  causal (directed) influences between neurons or
neuronal populations

* /n vivoand /n vitro stimulation and recording

« Models of causal interactions among neuronal populations

— explain regional effects in terms of /nferregional connectivity



Some models for computing effective connectivity
from fMRI data

Structural Equation Modelling (SEM)
Mcintosh et al. 1991, 1994; Buchel & Friston 1997; Bullmore et al. 2000

regression models

(e.g. psycho-physiological interactions, PPIs) -
Friston et al. 1997

Volterra kernels
Friston & Buchel 2000

Time series models (e.g. MAR, Granger causality)
Harrison et al. 2003, Goebel et al. 2003

Dynamic Causal Modelling (DCM) -

bilinear: Friston et al. 2003; nonlinear: Stephan et al. 2008



siolog@interaction @

 bilinear model of how the psychological context A changes
the influence of area B on area C :

BxA—->C

« APPI corresponds to differences in regression slopes for
different contexts.
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Friston et al. 1997, Neurolmage V1 activity
Blichel & Friston 1997, Cereb. Cortex



Pros & Cons of PPls

* Pros:

— given a single source region, we can test for its context-dependent
connectivity across the entire brain

— easy to implement

 Cons:
— only allows to model contributions from a single area

— operates at the level of BOLD time series (SPM 99/2).

SPM 5/8 deconvolves the BOLD signal to form the proper interaction term,
and then reconvolves it.

— ignores time-series properties of the data

‘ Dynamic Causal Models
needed for more robust statements of effective connectivity.
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Basics of Dynamic Causal Modelling

DCM allows us to look at how areas within a network interact:

Investigate functional integration & modulation of specific cortical pathways

— Temporal dependency of activity within and between areas (causality)




Temporal dependence and causal relations

Seed voxel approach, PPI etc. Dynamic Causal Models

XXXXX

timeseries (neuronal activity)



Basics of Dynamic Causal Modelling

DCM allows us to look at how areas within a network interact:

Investigate functional integration & modulation of specific cortical pathways
— Temporal dependency of activity within and between areas (causality)

— Separate neuronal activity from observed BOLD responses




Basics of DCM:
Neuronal and BOLD level

________________________________________________

« Cognitive system is modelled at its underlying
neuronal level (not directly accessible for fMRI).

« The modelled neuronal dynamics () are

transformed into area-specific BOLD signals (Y) by
a hemodynamic model (A).

The aim of DCM is to estimate parameters
at the neuronal level such that the modelled
and measured BOLD signals are optimally

similar. y




Neuronal systems are represented by

differential equations

A System is a set of elements
z (t) which interact in a spatially
and temporally specific fashion

State changes of the system
states are dependent on:

— the current state z
— external inputs u
— its connectivity 6 '

— time constants & delays

Input u(t)

system
Z(t) state

connectivity parameters ¢

dz

—=F(z,u, )

dt




DCM parameters = rate constants

Generic solution to the ODESs In DCM:

@ ‘;Zt sz, mp 7,(t) =7, (0)exp(=st), z(0)=1
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DCM parameters = rate constants

Generic solution to the ODESs In DCM:

°F

L=—sz mmp 7 (t)=2z(0)exp(-st), z(0)=1

Decay function

If A>B is 0.10 s this H
means that, per unit time, | °°|
the increase in activity in ey 057, (0)

0.4

B corresponds to 10% of | |
the activity in A L T~
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Linear dynamics: 2 nodes
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Neurodynamics: 2 nodes with input
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activity in z, is coupled to z, via coefficient a,,



Neurodynamics: positive modulation

RN

Index, not squared
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modulatory input u, activity through the coupling a,,



Neurodynamics: reciprocal connections
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reciprocal connection
disclosed by u,



Haemodynamics: reciprocal connections

U, Al
BOLD N o‘ N -\
l (without noise) 25 " ‘\ " “ ,’ ‘\ " “ |
0] 20 40 60
4 N -
BOLD " I\ ,l“ ’
: : 2 1\ 1\ 1\ Iy -
(without noise) [AY I\ 1 [
W
O - >
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seconds

blue:  neuronal activity
red: bold response

h(u,0) represents the BOLD response (balloon model) to input



Haemodynamics: reciprocal connections

U,
l BOLD
U, with
Noise added
4 -
BOLD
_ 2
with
Noise added 0

0 20 40 60
seconds N
blue:  neuronal activity

red: bold response

y represents simulated observation of BOLD response, i.e. includes noise

y=h(u,0)+e



Bilinear state equation in DCM for fMRI

state tivit modulation of state direct external
changes cohhectivity connectivity vector inputs inputs
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Conceptual
overview

The bilinear model

Neuronal state equation Z = F(z,u,8")

1=(A+) u,B)z+Cu

neuronal
activity - States

/ 2l activity

activity” — ﬁ

BOLD

effective connectivity A= ﬁ — @
oz 01
modulation of Bi_ 0°F 0 oz
connectivity B ozou, N ou, oz
direct inputs C :6_F:@
ou ou
integration

v
Z

haemodynamic
model

Friston et al. 2003,

Neurolmage




The hemodynamic “Balloon™ model

BOLD signal
y(t) = A(v,q)
changes in volume changes in dHb J
o= f -y = f E(fp)/ p-v™agh
flow indudtion Region-specific
f _g HRFs!

A

vasodilatory signal

S=z—xs—p(f -1)"
T

6 haemodynamic
parameters

A\ 4
A

Friston et al. 2000,
Neurolmage
Stephan et al. 2007,
Neurolmage




DCM roadmap

Neuronal
dynamics

N

State space
Model

riors \ F
v

Hemodynamics

\\\\\\\\\‘ Model
selection




Estimation: Bayesian framework

Models of Constraints on
*Haemodynamics in a single region *Haemodynamic parameters
Neuronal interactions «Connections

p(y|0) p(©o)

likelihood term \

. > p(@]y) < p(y| 49)p(6’)/
posterior |

Bayesian estimation
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Overview:

parameter estimation

» Specify model (neuronal and
haemodynamic level)

« Make it an observation model by
adding measurement error e and
confounds X (e.qg. drift).

- Bayesian parameter estimation
using expectation-maximization.

* Result:
(Normal) posterior parameter
distributions, given by mean 7,
and Covariance C,.

2=(A+> u;B")z+Cu

stimulus function u

l

neuronal state

equation
activity - dependentvasodilatory signal
S=z—x5—y(f -1
S
flow - deJctlon (rCBF) param eters

hidden states
x={z,s, f,v,q}

state equation
x=F(x,u,0)

f=s

o" ={x,y,7,a, p}
0" ={A B'..B",C}

0={0",0"}

changes in volume

N: f _Vlla

changes in dHb
g = f E(f,p)/p-Vv"ah

modeled

y=h(x,u,d)+ X +e

observation model

BOLD response



Parameter estimation: an example

Input coupling, c,

Cl
U,
3
3 |
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: Forward coupling, a,,
a |
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0) 20 40 60 N

seconds

Prior density == POSterior density = true ValueS



Inference about DCM parameters

Bayesian single subject analysis

 The model parameters are
distributions that have a mean 7,
and covariance Cg,.

— Use of the cumulative normal
distribution to test the probability
that a certain parameter is above a
chosen threshold v:

y—|f

Nojy

Classical frequentist test across groups

« Test summary statistic: mean Moy

— One-sample t-test: Parameter > 07

— Paired t-test:
parameter 1 > parameter 27

— rmANOVA: e.g. in case of multiple
sessions per subject

Bayesian parameter averaging



Model comparison and selection

Given competing hypotheses,
which model is the best?

log p(y|m)=accuracy(m) —
complexity(m)

5 - PUyIm=i)
" op(y|m=j)

Model fit

Good

Poor

Goodness of fit

A
|
| Overfitting
¥

Generalizability

/ / \ Model complexity

o

Pitt & Miyung (2002), 7/CS




Inference on model space

Model evidence: The optimal balance of fit and complexity

Comparing models

 Which is the best model?

Ime

1 2 3 45 6 7 8 910
model



Inference on model space

Model evidence: The optimal balance of fit and complexity

Comparing models
* Which is the best model?

Comparing families of models

 What type of model is best?

 Feedforward vs feedback O
« Parallel vs sequential processing
*  With or without modulation /

Ime

e

123456 78 910
model

O
A
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Inference on model space

Model evidence: The optimal balance of fit and complexity

Comparing models
* Which is the best model?

Comparing families of models

«  What type of model is best?
* Feedforward vs feedback
« Parallel vs sequential processing

*  With or without modulation

Only compare models with the same data

(f

B

Ime

e

123456 78 910
model

A

OO0
N

D C
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Attention to motion in the visual system

We used this model to assess the site of attention
modulation during visual motion processing in an
fMRI paradigm reported by Buchel & Friston.

Attention

08
0E
04
0z
H po) d 0 s 1050

Time [si

?

l

Photic
- fixation only ‘ ‘ | ( ‘
- observe static dots + photic 2> V1
- observe moving dots  + motion 2> V5
- task on moving dots  + attention = V5 + parietal cortex

Motion

Friston et al. 2003, |H } |H } }
Neurolmage



Comparison of two simple models

Model 1:
attentional modulation
of V1-V5

Photic
0.85

0.84

Motion ~0.23
Attention

Bayesian model selection:

— Decision for model 1:

Model 2:
attentional modulation
of SPC-V5

Attention

....._'...'O. . 5 5

., 0.7
142

Photic

0.86
0.89

056 .
Motion

Model 1 better than model 2
log p(y|m,) >>log p(y|m,)

In this experiment, attention
primarily modulates V1-V5



Extension I: Slice timing model

potential timing problem in DCM:

>

c
- - e) -
temporal shift between regional =
time series because of multi-slice S 2
- s, @®©
acquisition 9 -
@ 1
visual
input

Solution:
—  Modelling of (known) slice timing of each area.

Slice timing extension now allows for any slice timing differences!

Long TRs (> 2 sec) no longer a limitation.
(Kiebel et al., 2007)



Extension IlI: Two-state model

Single-state DCM

Two-state DCM

input
u(t) ..........
I:ILE)
At uB; exp(A; +UB;)
. —th =(AB")x +Cu
g (A+uB)x+Cu
ot
_eME oA oA 0o | XE
A, ' A%N X Mt _ M 0 0 X,
A: : X(t): A = E .'. S X(t) =
Axs A Xy e/ 0 _eAEE _eAﬁk XE]
_I 0 0 IeA'NEN —ghw | | Xy ]
I I
7 = A7 + Zu_ B z+Cu Extrinsic (between-region) Intrinsic (within-region)

coupling coupling



ISON

Two-state Model Compari

Example

Model 1 -8cw DCM for Biuchel & Friston

Motion Attention

Attention

- EEVl _E|v1 Ev1Ev5 0
IE, -, 0 0

ac| BB 0 —EEi —Elvg iEyfe
0 0 IE,; —llys 0
0 0 EsecEvs 0 —EEgpc  —Elgpc
0 0 0 0 IEgre  —Mepe |

Model 2 - intr

Photic

Attention
Motion Attention
Photic [-EE,, —El,, E,E, 0 0 0 |
B M0 050 O 0
a_| BB 0 BB, Elgi EBee 0
0 0 IE, -1l 0 0
0 0 EsrcEvs 0 —EEspe  —Elgee
| O 0 0 0 IEgpc —Hgpe |
Model 3 -FwD
. . Attention
Motion Attention \
Photic ~EE,, —El, EwEl 0 0 0
IE,, _;-H(,‘i‘ 0 0 0 0
lllIllllll-.“
A_[BvsBua: O —ERs —Els BisBee 0
0 0 IE, -1l 0 0
0 0 EsecEvs 0 —EEgee  —Elgpe
| 0 0 0 0 IEqpc —Hgpe |




Extension lll: Nonlinear DCM for fMRI

bilinear DCM nonlinear DCM

Bilinear state equation Nonlinear state equation
m . dx < h N -
t i1 i=1 j=1

Here DCM can model activity-dependent changes in connectivity; how
connections are enabled or gated by activity in one or more areas.



Extension lll: Nonlinear DCM for fMRI

Can V5 activity during attention to motion be explained by
allowing activity in SPC to modulate the V1-to-V5 connection?

attention

0.19
(100%)

The posterior density of D{3\

Indicates that this gating existed
with 97% confidence.

_ 1.65
visual (100%)

stimulation

(The D matrix encodes which of the n neural units gate which
connections in the system)

motion



So, DCM....

enables one to infer hidden neuronal processes from fMRI data

allows one to test mechanistic hypotheses about observed effects

— uses a deterministic differential equation to model neuro-dynamics (represented
by matrices A,B and C).

IS iInformed by anatomical and physiological principles.
uses a Bayesian framework to estimate model parameters

IS a generic approach to modelling experimentally perturbed dynamic
systems.

— provides an observation model for neuroimaging data, e.g. fMRI, M/EEG

— DCM is not model or modality specific (Models will change and the method
extended to other modalities e.g. ERPs, LFPSs)



Some useful references

* The first DCM paper: Dynamic Causal Modelling (2003). Friston et al.
Neurolmage 19:1273-1302.

* Physiological validation of DCM for fMRI: Identifying neural drivers with
functional MRI: an electrophysiological validation (2008). David et al. PLoS
Biol. 6 2683-2697

« Hemodynamic model: Comparing hemodynamic models with DCM (2007).
Stephan et al. Neurolmage 38:387-401

* Nonlinear DCMs:Nonlinear Dynamic Causal Models for FMRI (2008). Stephan
et al. Neurolmage 42:649-662

« Two-state model: Dynamic causal modelling for fMRI: A two-state model
(2008). Marreiros et al. Neurolmage 39:269-278

« Group Bayesian model comparison: Bayesian model selection for group
studies (2009). Stephan et al. Neurolmage 46:1004-10174

« 10 Simple Rules for DCM (2010). Stephan et al. Neurolmage 52.



Thank you for your attention!!!



