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Overview of SPM 



Simple regression and the GLM 



Passive word 
listening 
versus rest 

7 cycles of  
rest and listening 

Blocks of 6 scans 
with 7 sec TR 

Question: Is there a change in the BOLD response 
between listening and rest? 

Stimulus function 

One session 

A very simple fMRI experiment 



stimulus 
function 

1.  Decompose data into effects and 
error 

2.  Form statistic using estimates of 
effects and error 

Make inferences about effects of interest Why? 

How? 

data linear 
model 

effects 
estimate 

error 
estimate 

statistic 

Modelling the measured data 



BOLD signal 
Tim

e 
single voxel 
time series 

Voxel-wise time series analysis 

model 
specification 
parameter 
estimation 
hypothesis 
statistic 

SPM 



BOLD signal 

Tim
e 

=  β1 β2 + + er
ro
r  

x1 x2 e 

Single voxel regression model 



Mass-univariate analysis: voxel-wise GLM 

= + y X Model is specified by 
1.  Design matrix X 
2.  Assumptions about e 

N: number of scans 
p: number of regressors 

The design matrix embodies all available knowledge about 
experimentally controlled factors and potential confounds. 



Example GLM “factorial design” models 

•  one sample  t-test 
•  two sample t-test 
•  paired t-test 
•  Analysis of Variance (ANOVA) 
•  Factorial designs 
•  correlation 
•  linear regression 
•  multiple regression 
•  F-tests 
•  fMRI time series models 
•  etc… 



Example GLM “factorial design” models 



Example GLM “factorial design” models 



GLM assumes Gaussian “spherical” (i.i.d.) errors 

sphericity = i.i.d. 
error covariance is 
scalar multiple of 

identity matrix: 
Cov(e) = σ2I 

Examples for non-sphericity: 

non-identity 

non-independence 



Parameter estimation 

= + 

Ordinary least squares 
estimation (OLS) 

(assuming i.i.d. error): 

Objective: 
estimate parameters 
to minimize 

y X 



A geometric perspective on the GLM 

y 
e 

Design space 
defined by X 

x1 

x2 

Smallest errors (shortest error vector) 
when e is orthogonal to X 

Ordinary Least Squares (OLS) 



What are the problems of this model? 

1.  BOLD responses have a delayed 
and dispersed form. HRF 

2.  The  BOLD signal includes substantial amounts of low-
frequency noise (eg due to scanner drift). 

3.  Due to breathing, heartbeat & unmodeled neuronal activity, 
the errors are serially correlated. This violates the 
assumptions of the noise model in the GLM 



The response of a linear time-invariant (LTI) system is the convolution of the input 
with the system's response to an impulse (delta function). 

Problem 1: Shape of BOLD response  
Solution: Convolution model 

expected BOLD response  
= input function ⊗ impulse response function (HRF) 

⊗ = 

Impulses HRF Expected BOLD 



Convolution 
Superposition principle 



HRF 

HRF convolution animations 

Sliding the reversed HRF past a unit-
integral pulse and integrating the 
product recovers the HRF (hence 
the name impulse response) 

The step response shows a delay and 
a slight overshoot, before reaching a 
steady-state. This gives some intuition 
for a square wave… 



HRF convolution animations 

Slow square wave. Main (fundamental) 
frequency of output matches input, but 
with delay (phase-shift) and change in 
amplitude (and shape; sinusoids keep 
their shape) 

Fast square wave. Amplitude is 
reduced, phase shift is more dramatic 
(output almost in anti-phase). 
Fourier transform of HRF yields 
magnitude and phase responses. 



Convolution model of the BOLD response 

Convolve stimulus function with 
a canonical hemodynamic 
response function (HRF): 

 ⊗ HRF 



blue =  data 
black =  mean + low-frequency drift 
green =  predicted response, taking into account 

 low-frequency drift 
red =  predicted response, NOT taking into 

 account low-frequency drift 

Problem 2: Low-frequency noise  
Solution: High pass filtering 

discrete cosine 
transform (DCT) set 



discrete cosine 
transform (DCT) set 

High pass filtering 



with 

1st order autoregressive process: AR(1) 

autocovariance 
function 

Problem 3: Serial correlations 



Multiple covariance components 

=  λ1 + λ2 

Q1 Q2 

Estimation of hyperparameters λ with ReML (Restricted Maximum Likelihood). 

V 

enhanced noise model at voxel i error covariance components Q 
and hyperparameters λ 



Parameters can then be estimated using Weighted Least Squares (WLS) 

Let  

Then 

where 

WLS equivalent to 
OLS on whitened 
data and design 



Contrasts & 
statistical parametric maps 

Q: activation during 
listening ? 

c = 1 0 0 0 0 0 0 0 0 0 0 

Null hypothesis: 



Summary 
•  Mass univariate approach.  

•  Fit GLMs with design matrix, X, to data at different points in 
space to estimate local effect sizes,  

•  GLM is a very general approach  

•  Hemodynamic Response Function 

•  High pass filtering 

•  Temporal autocorrelation 



x1 
x2 x2* 

y 

Correlated and orthogonal regressors 

When x2 is orthogonalized with 
regard to x1, only the parameter 
estimate for x1 changes, not that 
for x2! 

Correlated regressors =  
explained variance is shared 
between regressors 



c = 1 0 0 0 0 0 0 0 0 0 0 

ReML-
estimates 

t-statistic based on ML estimates 

For brevity: 


