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Plan

D REPEAT: model and fitting the data with a Linear Model

D Make sure we understand the testing procedures : t- and F-tests
D But what do we test exactly ?

D Examples — almost real




One voxel = One test (t, E, ...)

Temporal series
fMRI
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Regression example...
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Regression example...
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...revisited : matrix form

By

*

= Byxf(t) + p,x1 +




Box car regression: design matrix...
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Fact: model parameters depend on
regressors scaling

Q: When do 1 care ?

A: ONLY when comparing manually
entered regressors (say you would like to
compare two scores)

What if two conditions A and B are not of
the same duration before convolution HRF'?



What if we believe that there are drifts?
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Add more reference functions / covariates ...

Discrete cosine transform basis functions




...design matrix

By B2 Bs Bs ...

N/




...design matrix
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Fitting the model = finding some

betas
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How do we find the betas estimates? By
minimizing the residual variance




Fitting the model = finding some

of the betas
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- estimated: let’s call them b (or 3
when € is estimated : let’s call it e
estimated SD of € : let’s call it S




Take home ...

D We put in our model regressors (or covariates) that represent
how we think the signal is varying (of interest and of no interest

alike)

D Coecfficients (= parameters) are estimated by minimizing the
fluctuations, - variability — variance — of estimated noise — the
residuals.

D Because the parameters depend on the scaling of the regressors
included in the model, one should be careful in comparing
manually entered regressors, or conditions of different durations




Plan

D Make sure we all know about the estimation (fitting) part ...

D Make sure we understand t and F tests

D But what do we test exactly ?

D An example — almost real




T test - one dimensional contrasts - SPM{#}

A contrast = a weighted sum of parameters: ¢" x b
¢c’=10000000

‘ b,>0?

Compute 1xb, + 0xb, + 0xb; + Oxb, + O0xb, +...=c’b

bléb2 b, b, b ....
¢c’=[10000....]

divide by estimated standard deviation of b,

contrast of
estimated ’
c’b

parameters
T —_— —_—

\I variance \I $2c’ (X’)()' C\

estimate




From one time series to an image

scans

10000000

c’=




F-test : a reduced model

: True model is X, :B,=0

X, ¢c’=10000000

F~ (S, - S)/8?

T values become
F values. F = T2

Both ““activation”
and
“deactivations”
are tested. Voxel

wise p-values are
This (full) model ?  Or this one? halved.

IE



F-test : a reduced model or ...

lests multiple linear hypotheses : Does X1 model anything ?

: True (reduced) model is X

Xo

additional
variance
accounted for
by tested effects

2 —> S, 2 F=

error
variance
estimate

" 2 Q2 2
This (full) model ? Or this one? F ~ (S, -S*)/S



F-test : a reduced model or ... multi-dimensional
contrasts ?

tests multiple linear hypotheses. Ex : does drift functions model anything?

: True model is X :B:0=(0000..)

Y Y X 00100000
0 1 0 00010000

c,=00001000
00000100
00000010

00000001

This (full) model ? Or this one?




Convolution
model

Design and
contrast

SPM(t) or
SPM(F)

Fitted and

adjusted data

10 20 30 40
time {secs)

SPM{T

247}

response at [42, -15, 51]

fitted response and adjusted data

10 15 20
peri-stimulus time {secs}

SPM{F[:.nun.ﬂ

}

response at [42, =15, 51]

fitted response and adjusted data

peri-stimulus time {secs}




T and F test: take home ...

D T tests are simple combinations of the betas, they are either
positive or negative (bl — b2 is different from b2 — bl)

D F tests can be viewed as testing for the additional variance
explained by a larger model wrt a simpler model, or

D I tests the sum of the squares of one or several combinations of
the betas

D in testing “single contrast” with an F test, for ex. bl — b2, the
result will be the same as testing b2 — bl. It will be exactly the

square of the t-test, testing for both positive and negative effects.




Plan

D Make sure we all know about the estimation (fitting) part ...

D Make sure we understand t and F tests

D But what do we test exactly ? Correlation between regressors

D An example — almost real




« Additional variance » : Again

No correlation between green
red and yellow




Testing for the green

correlated regressors, for example
green: subject age
yellow: subject score




Testing for the red

N

correlated contrasts




Testing for the green

Very correlated regressors ?

Dangerous !



Testing for the green and yellow

If significant ? Could be G or Y !




Testing for the green

design orthogonality

Completely correlated
regressors ?
Impossible to test ! (not
estimable)




An example: real

Testing for first regressor: T max = 9.8



Including the movement parameters in the
model

Testing for first regressor: activation 1s gone !
Right or Wrong?




Implicit or explicit decorrelation (or
orthogonalisation)

Y

Space of X

X

This generalises when testing Lep i testof C2inthe
implicit L mode

several regressors (F tests)
cf Andrade et al., Neurolmage, 1999

test of C1 in the
explicit  model




Correlation between regressors: take
home ...

D Do we care about correlation in the design ?
Yes, always

D Start with the experimental design : conditions
should be as uncorrelated as possible

D use F ftests to test for the overall variance
explained by several (correlated) regressors



Plan

D Make sure we all know about the estimation (fitting) part ...
D Make sure we understand t and F tests

D But what do we test exactly ? Correlation between regressors

D An example — almost real




A real example (imost 1)

Experimental Design * > Design Matrix

Factorial design with 2 factors : modality and category
2 levels for modality (eg Visual/Auditory)
3 levels for category (eg 3 categories of words)

VAC, C,C,
Cl
V
C2
C3 y
C 1 design orthogonality
C2
A

C3




Asking ourselves some questions ...

VAC, C,C,
10 Test C1 > C2 :c=[001-100]
20 Test V> A :c=[1-10000]
30
40 1001000 ]
50 Test C1,C2,C3 ? (F) c=1000100 ]
50 [000010]

70
g0

an Test the interaction MxC ?

design orthogonality

 Design Matrix not orthogonal
* Many contrasts are non estimable

* Interactions MxC are not modelled




Modelling the interactions




Test C1>C2 . ¢=[11-1-10 0 0]

Test V>A . c=[1-11-11-10]
Test the category effect :
[1 1-1-1 0 O O]
c= [001 1-1-10]
[1 10 0-1-10]
Test the interaction MxC :
[1 -1-110 0 0]
c= [0 O 1-1-11 0]
[1 -1 0 O0-11 0]
. DCSigIl Matrix Orthogonal design orthogonality

» All contrasts are estimable
 Interactions MxC modelled
* [f no interaction ... ? Model 1s too “big” ! -




With a more flexible model

Cl Cl CZ C2 C3 C3
VAVAVA

Test C1 >C2 ?
Test C1 different from C2 ?

from
c= [1 1 -1 -1 0 0 0]

to
c= [1010-10-1 0000 00]
[01 01 0-1 0-1 00O O0O0]

becomes an F test!

What if we use only:
c=[1010-10-1 000O0 00]

OK only if the regressors coding for the delay are all
equal

246 31012




Toy example: take home ...

D use F tests when

- Test for >0 and <0 effects
- Test for more than 2 levels in factorial

designs
- Conditions are modelled with more than one

regressor

D Check post hoc



Thank you for your attention!

jbpoline@cea.tr



Design Matrix Parameters Contrasts




Projector onto X







A2 Bl B2 B3 Al1B1 AIB2 A1B3 A2B1 A2B2 A2B3




Main Effects and Interaction:
|

2
"
=

Main effect: 2 (A)
Main effect: 3 (B)
Interaction: 2 3 (A x B)

Contrast Weights

I

Main effect of A: 1 -1 ones(1,3)/3 -ones(1,3)/3
Main effect of B: 0 0 [=1' O 1]1*[1/2] I-1 O 11*[1/2]
Interaction A < B: 0 O -3 0 1L T B =1
Test for a single regressor in main effect of A (e.g. Al)

1 0 » 3 ones(1,3)/3 zeros (1, 3)
Test for a single regressor in main effect of B (e.g. B2)

0:5 @5 O 6:5 0@ 9.5 0
Test for a single regressor in interaction Ax B (e.g. A1B3)

' O 0O 01 000






How is this computed ? (t-test)

_Estimation [¥ X] [b, ]
Y=Xp+e £ ~ 02 N(0,I) (v: ar one position)
b= (XX)" XY (b: estimate of ) ->
e=Y-Xb (e: estimate of €)
S2 = ( e’e/| ( n - p) ) (s: estimate of O, n: time points, p: parameters)

-

e [ G
Var(c ’b) — 8 ZC ’( X ’)()_I_ C (compute for each contrast ¢, proportional to S 2)

t=c’b/sqri(s’c’(X’X)"c) c» >

compute thet images ->

under the null hypothesis H, : t ~ Student-t(df) df= n-p



additional
variance accounted for

How is this computed ? (F-test) iy il

Error
variance
estimate

Estimation [Y, X] [b, s]

Y=Xp+e e ~N(0, 02 1)
Y= By g eg~N(0,0,21) X, : X Reduced

Test [b, s, c] [ess, F]

FN(SO-S) /S2 -> image
-> image of F :

under the null hypothesis : F' ~ F(p - p0, n-p)



