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Assessing Statistic 
Images… 



Assessing Statistic Images 

Where’s the signal? 

t > 0.5 t > 3.5 t > 5.5 

High Threshold Med. Threshold Low Threshold 

Good Specificity 

Poor Power 
(risk of false negatives) 

Poor Specificity 
(risk of false positives) 

Good Power 

...but why threshold?! 
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•  Don’t threshold,  model the signal! 
– Signal location? 

•  Estimates and CI’s on 
(x,y,z) location 

– Signal magnitude? 
•  CI’s on % change 

– Spatial extent? 
•  Estimates and CI’s on activation volume 
•  Robust to choice of cluster definition 

•  ...but this requires an explicit spatial model 

Blue-sky inference: 
What we’d like 

space 
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Blue-sky inference: 
What we need 

•  Need an explicit spatial model 
•  No routine spatial modeling methods exist 

– High-dimensional mixture modeling problem 
– Activations don’t look like Gaussian blobs 
– Need realistic shapes, sparse representation 

•  Some work by Hartvig et al., Penny et al. 
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Real-life inference: 
What we get 

•  Signal location 
– Local maximum  –  no inference 
– Center-of-mass  –  no inference 

•  Sensitive to blob-defining-threshold 

•  Signal magnitude 
– Local maximum intensity  –  P-values (& CI’s) 

•  Spatial extent 
– Cluster volume  –  P-value, no CI’s 

•  Sensitive to blob-defining-threshold 



8 

Voxel-level Inference 

•  Retain voxels above α-level threshold uα 

•  Gives best spatial specificity 
– The null hyp. at a single voxel can be rejected 

Significant 
Voxels 

space 

uα 

No significant 
Voxels 



9 

Cluster-level Inference 

•  Two step-process 
– Define clusters by arbitrary threshold uclus 

– Retain clusters larger than α-level threshold kα 

Cluster not 
significant  

uclus 

space 

Cluster 
significant kα kα 
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Cluster-level Inference 

•  Typically better sensitivity 
•  Worse spatial specificity 

– The null hyp. of entire cluster is rejected 
– Only means         that one or more of voxels in 

cluster active 

Cluster not 
significant  

uclus 

space 

Cluster 
significant kα kα 
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Set-level Inference 

•  Count number of blobs c 
– Minimum blob size k 

•  Worst spatial specificity 
– Only can reject global null hypothesis 

uclus 

space 

Here c = 1; only 1 cluster larger than k 

k k 
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Multiple comparisons… 
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•  Null Hypothesis H0 

•  Test statistic T 
–  t observed realization of T 

•  α level 
–  Acceptable false positive rate 
–  Level α = P( T>uα |  H0 ) 
–  Threshold uα controls false positive rate at level α 

•  P-value 
–  Assessment of t assuming H0 

–  P( T > t | H0 ) 
•  Prob. of obtaining stat. as large 

or larger in a new experiment 

–  P(Data|Null) not  P(Null|Data) 

Hypothesis Testing 

uα 

α 

Null Distribution of T 

t 

P-val   

Null Distribution of T 
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Multiple Comparisons Problem 

•  Which of 100,000 voxels are sig.? 
– α=0.05 ⇒ 5,000 false positive voxels 

•  Which of  (random number, say) 100 clusters significant? 
– α=0.05 ⇒ 5 false positives clusters 

t > 0.5 t > 1.5 t > 2.5 t > 3.5 t > 4.5 t > 5.5 t > 6.5 



15 

MCP Solutions: 
Measuring False Positives 

•  Familywise Error Rate (FWER) 
– Familywise Error 

•  Existence of one or more false positives 
– FWER is probability of familywise error 

•  False Discovery Rate (FDR) 
– FDR = E(V/R) 
– R voxels declared active, V falsely so 

•  Realized false discovery rate: V/R 
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•  Family of hypotheses 
–  Hk  k ∈ Ω = {1,…,K} 
–  HΩ = ∩ Hk  

•  Familywise Type I error 
–  weak control – omnibus test 

•  Pr(“reject” HΩ ⎪ HΩ) ≤ α 
•  “anything, anywhere” ? 

–  strong control – localising test 
•  Pr(“reject” HW ⎪ HW) ≤ α 

∀  W: W ⊆ Ω & HW   
•  “anything, & where” ? 

•  Adjusted p–values 
–  test level at which reject Hk  

FWE Multiple comparisons 
terminology… 
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FWE MCP Solutions:  
Bonferroni 

•  For a statistic image T... 
–  Ti    ith voxel of statistic image T 

•  ...use α = α0/V 
–  α0   FWER level (e.g. 0.05) 
–  V    number of voxels 
–  uα   α-level statistic threshold,  P(Ti ≥ uα) = α 

•  By Bonferroni inequality... 
  FWER = P(FWE) 

  = P( ∪i {Ti ≥ uα} | H0) 
  ≤ ∑i P( Ti ≥ uα| H0 ) 

   = ∑i α 
               = ∑i α0 /V  = α0 

Conservative under correlation 

Independent:  V tests 
Some dep.:  ?  tests 
Total dep.:  1 test 
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Random field theory… 
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SPM approach: 
Random fields… 

•  Consider statistic image as lattice representation of 
a continuous  random field 

•  Use results from continuous random field theory 

≈ 
lattice represtntation 
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FWER MCP Solutions:  
Controlling FWER w/ Max 

•  FWER & distribution of maximum 
  FWER  = P(FWE) 

  = P( ∪i {Ti ≥ u} | Ho) 
  = P( maxi Ti ≥ u | Ho) 

•  100(1-α)%ile of max distn controls FWER 
FWER = P( maxi Ti ≥ uα | Ho) = α 

–  where 
   uα = F-1

max (1-α) 

. 
uα 

α 
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FWER MCP Solutions: 
Random Field Theory 

•  Euler Characteristic χu 
– Topological Measure 

•  #blobs - #holes 
– At high thresholds, 

just counts blobs   
– FWER = P(Max voxel ≥ u | Ho) 

  = P(One or more blobs | Ho) 
  ≈ P(χu ≥ 1 | Ho) 
  ≈ E(χu | Ho) 

Random Field 

Suprathreshold Sets 

Threshold 

No holes 

Never more 
than 1 blob 
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RFT Details: 
Expected Euler Characteristic  
E(χu) ≈ λ(Ω)  |Λ|1/2 (u 2 -1) exp(-u 2/2) / (2π)2 

–  Ω  → Search region  Ω ⊂ R3  
–  λ(Ω)  → volume 
–  |Λ|1/2  → roughness 

•  Assumptions 
–  Multivariate Normal 
–  Stationary* 
–  ACF twice differentiable at 0 

*  Stationary 
–  Results valid w/out stationary 
–  More accurate when stat. holds 

Only very 
upper tail 
approximates 
1-Fmax(u) 
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Random Field Theory 
Smoothness Parameterization 

•  E(χu) depends on |Λ|1/2 

–  Λ  roughness matrix: 

•  Smoothness  
parameterized as  
Full Width at Half Maximum 
–  FWHM of Gaussian kernel  

needed to smooth a white 
noise random field to  
roughness Λ 

Autocorrelation Function 

FWHM 
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•  RESELS 
–   Resolution Elements 
–  1 RESEL = FWHMx × FWHMy × FWHMz 
–  RESEL Count R 

•  R = λ(Ω) √ |Λ| = (4log2)3/2 λ(Ω)  /  ( FWHMx × FWHMy × FWHMz )  
•  Volume of search region in units of smoothness 
•  Eg: 10 voxels, 2.5 FWHM 4 RESELS 

•  Beware RESEL misinterpretation 
–  RESEL are not “number of independent ‘things’ in the image” 

•  See Nichols & Hayasaka, 2003, Stat. Meth. in Med. Res. 
. 

Random Field Theory 
Smoothness Parameterization 

1 2 3 4 

2 4 6 8 10 1 3 5 7 9 
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Random Field Theory 
Smoothness Estimation 

•  Smoothness est’d 
from standardized 
residuals 
– Variance of 

gradients 
– Yields resels per 

voxel (RPV) 
•  RPV image 

– Local roughness est. 
– Can transform in to local smoothness est. 

•  FWHM Img = (RPV Img)-1/D 

•  Dimension D, e.g. D=2 or 3 
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Random Field Intuition 

•  Corrected P-value for voxel value t  
  Pc  = P(max T > t) 

  ≈ E(χt) 
  ≈ λ(Ω) |Λ|1/2 t2 exp(-t2/2) 

•  Statistic value t increases 
–  Pc decreases (but only for large t) 

•  Search volume increases 
–  Pc increases (more severe MCP) 

•  Roughness increases (Smoothness decreases) 
–  Pc increases (more severe MCP) 
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•  General form for expected Euler characteristic 
•   χ2, F, & t fields • restricted search regions • D dimensions • 

E[χu(Ω)] = Σd Rd (Ω) ρd (u) 

RFT Details: 
Unified Formula 

Rd (Ω): d-dimensional Minkowski 
  functional of Ω	


 – function of dimension, 
   space Ω and smoothness: 

 R0(Ω)  =  χ(Ω) Euler characteristic of Ω	


	

R1(Ω)  =  resel diameter 
	

R2(Ω)  =  resel surface area 
	

R3(Ω)  =  resel volume 

ρd (Ω): d-dimensional EC density of Z(x)	


 – function of dimension and threshold, 
   specific for RF type: 

E.g. Gaussian RF:  

 ρ0(u)  =  1- Φ(u) 	



	

ρ1(u)  =  (4 ln2)1/2 exp(-u2/2) / (2π) 

	

ρ2(u)  =  (4 ln2)    exp(-u2/2) / (2π)3/2 

	

ρ3(u)  =  (4 ln2)3/2 (u2 -1)   exp(-u2/2) / (2π)2 

	

ρ4(u)  =  (4 ln2)2    (u3 -3u) exp(-u2/2) / (2π)5/2 

Ω	
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5mm FWHM 

10mm FWHM 

15mm FWHM 

•  Expected Cluster Size 
– E(S) = E(N)/E(L) 
– S cluster size 
– N suprathreshold volume 
λ({T > uclus}) 

– L number of clusters 
•  E(N) = λ(Ω) P( T > uclus ) 
•  E(L) ≈ E(χu) 

– Assuming no holes 

Random Field Theory 
Cluster Size Tests 
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Random Field Theory 
Cluster Size Distribution 

•  Gaussian Random Fields (Nosko, 1969)  

– D: Dimension of RF 
•  t Random Fields (Cao, 1999) 

– B: Beta distn 

– U’s: χ2’s 
–  c chosen s.t. 

E(S) = E(N) / E(L) 
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Random Field Theory 
Cluster Size Corrected P-Values 
•  Previous results give uncorrected P-value 
•  Corrected P-value 

– Bonferroni 
•  Correct for expected number of clusters 
•  Corrected Pc = E(L) Puncorr 

– Poisson Clumping Heuristic (Adler, 1980) 
•  Corrected Pc = 1 - exp( -E(L) Puncorr ) 



32 

Regional 
specificity 

Sensitivity 

The intensity of a 
voxel

Test based on 

The spatial extent above u 
or the spatial extent and the 

maximum peak height

The number of clusters 
above u with size greater 

than n

The sum of square of the 
SPM  or a MANOVA

Parameters 
set by the user 

• Low pass filter

• Low pass filter
• intensity threshold u

• Low pass filter
• intensity thres. u
• spatial threshold n

• Low pass filter

Review: 
Levels of inference & power 

Set level… 

Cluster level… 

Voxel level… 
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Random Field Theory 
Limitations 

•  Sufficient smoothness 
–  FWHM smoothness 3-4× voxel size (Z) 
–  More like ~10× for low-df T images 

•  Smoothness estimation 
–  Estimate is biased when images not sufficiently 

smooth  
•  Multivariate normality 

–  Virtually impossible to check 
•  Several layers of approximations 
•  Stationary required for cluster size results 

Lattice Image 
Data 

≈ 

Continuous Random 
Field 
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Real Data 

•  fMRI Study of Working Memory    
–  12 subjects, block design  Marshuetz et al (2000) 
–  Item Recognition 

•  Active:View five letters, 2s pause, 
 view probe letter, respond 

•  Baseline: View XXXXX, 2s pause, 
 view Y or N, respond 

•  Second Level RFX 
–  Difference image, A-B constructed 

for each subject 
–  One sample t test 

D 

yes UBKDA 

Active 

N 

no XXXXX 

Baseline 
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Real Data: 
RFT Result 

•  Threshold 
–  S = 110,776 
–  2 × 2 × 2 voxels 

5.1 × 5.8 × 6.9 mm 
FWHM 

–  u = 9.870 
•  Result 

–  5 voxels above 
 the threshold 

–  0.0063  minimum 
FWE-corrected 
p-value 

-lo
g 1

0 p
-v

al
ue
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t11 Statistic, RF & Bonf. Threshold 

uRF   = 9.87 
uBonf = 9.80 
5 sig. vox.  

t11 Statistic, Nonparametric Threshold 

uPerm = 7.67  

58 sig. vox. 
Smoothed Variance t Statistic, 

Nonparametric Threshold 

378 sig. vox. 

Real Data: 
SnPM Promotional 

•  Nonparametric method more 
powerful than RFT for low DF 

•  “Variance Smoothing” even 
more sensitive 

•  FWE controlled all the while! 
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False Discovery Rate… 
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MCP Solutions: 
Measuring False Positives 

•  Familywise Error Rate (FWER) 
– Familywise Error 

•  Existence of one or more false positives 
– FWER is probability of familywise error 

•  False Discovery Rate (FDR) 
– FDR = E(V/R) 
– R voxels declared active, V falsely so 

•  Realized false discovery rate: V/R 
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False Discovery Rate 

•  For any threshold, all voxels can be cross-classified: 

•  Realized FDR 
rFDR = V0R/(V1R+V0R) = V0R/NR 

–  If  NR = 0, rFDR = 0 

•  But only can observe NR, don’t know V1R & V0R  
–  We control the expected rFDR  

FDR = E(rFDR) 

Accept Null Reject Null 
Null True V0A V0R m0 
Null False V1A V1R m1 

NA NR V 
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False Discovery Rate 
Illustration: 

Signal 

Signal+Noise 

Noise 
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FWE 

6.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2% 8.7% 

Control of Familywise Error Rate at 10% 

11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% 

Control of Per Comparison Rate at 10% 

Percentage of Null Pixels that are False Positives 

Control of False Discovery Rate at 10% 

Occurrence of Familywise Error 

Percentage of Activated Pixels that are False Positives 
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Benjamini & Hochberg 
Procedure 

•  Select desired limit q on FDR 
•  Order p-values, p(1) ≤ p(2) ≤  ... ≤ p(V) 
•  Let r be largest i such that 

•  Reject all hypotheses  
corresponding to 
 p(1), ... , p(r). 

p(i) ≤  i/V × q 
p(i) 

i/V 
i/V × q 

p-
va

lu
e 

0 1 

0 
1 

JRSS-B (1995) 
57:289-300 
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P-value 
threshold 
when no 
signal:   
α/V 

P-value 
threshold 
when all 
signal: 

 α 

O
rd

er
ed

 p
-v

al
ue

s 
  p

(i)
 

Fractional index   i/V 

Adaptiveness of  
Benjamini & Hochberg FDR  



44 FWER Perm. Thresh. = 9.87 
7 voxels 

Real Data: FDR Example 

FDR Threshold = 3.83 
3,073 voxels 

•  Threshold 
–  Indep/PosDep 

u = 3.83 
– Arb Cov 

u = 13.15 
•  Result 

–  3,073 voxels above 
Indep/PosDep u 

– <0.0001  minimum 
FDR-corrected 
p-value 
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FDR Changes 

•  Before SPM8 
–  Only voxel-wise FDR 

•  SPM8 
–  Cluster-wise FDR  
–  Peak-wise FDR 

Item Recognition data 

Cluster-forming threshold P=0.001 
 Cluster-wise FDR:  40 voxel cluster, PFDR 0.07 
 Peak-wise FDR: t=4.84, PFDR 0.836 

Cluster-forming threshold P=0.01 
 Cluster-wise FDR:  1250 - 4380 voxel clusters, PFDR <0.001 
 Cluster-wise FDR: 80 voxel cluster, PFDR 0.516 
 Peak-wise FDR: t=4.84, PFDR 0.027 
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Benjamini & Hochberg 
Procedure Details 

•  Standard Result 
–  Positive Regression Dependency on Subsets 

P(X1≥c1, X2≥c2, ..., Xk≥ck | Xi=xi) is non-decreasing in xi 

•  Only required of null xi’s 
–  Positive correlation between null voxels 
–  Positive correlation between null and signal voxels 

•  Special cases include 
–  Independence 
–  Multivariate Normal with all positive correlations 

•  Arbitrary covariance structure 
–  Replace q by q/c(V), 

     c(V) = Σi=1,...,V 1/i ≈ log(V)+0.5772 
–  Much more stringent 

Benjamini & 
Yekutieli (2001). 
Ann. Stat. 
29:1165-1188 
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Benjamini & Hochberg: 
Key Properties 

•  FDR is controlled 
                E(rFDR) ≤ q m0/V 
– Conservative, if large fraction of nulls false 

•  Adaptive 
– Threshold depends on amount of signal 

•  More signal, More small p-values, 
More p(i) less than  i/V × q/c(V)  



48 

Controlling FDR: 
Varying Signal Extent 

Signal Intensity  3.0 Signal Extent   1.0 Noise Smoothness  3.0 

p =  z =  

1 
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Controlling FDR: 
Varying Signal Extent 

Signal Intensity  3.0 Signal Extent   2.0 Noise Smoothness  3.0 

p =  z =  

2 
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Controlling FDR: 
Varying Signal Extent 

Signal Intensity  3.0 Signal Extent   3.0 Noise Smoothness  3.0 

p =  z =  

3 
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Controlling FDR: 
Varying Signal Extent 

Signal Intensity  3.0 Signal Extent   5.0 Noise Smoothness  3.0 

p = 0.000252  z = 3.48 

4 
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Controlling FDR: 
Varying Signal Extent 

Signal Intensity  3.0 Signal Extent   9.5 Noise Smoothness  3.0 

p = 0.001628  z = 2.94 

5 
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Controlling FDR: 
Varying Signal Extent 

Signal Intensity  3.0 Signal Extent 16.5 Noise Smoothness  3.0 

p = 0.007157  z = 2.45 

6 
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Controlling FDR: 
Varying Signal Extent 

Signal Intensity  3.0 Signal Extent 25.0 Noise Smoothness  3.0 

p = 0.019274  z = 2.07 

7 
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Controlling FDR: 
Benjamini & Hochberg  

•  Illustrating BH under dependence 
– Extreme example of positive dependence 

p(i) 

i/V 
i/V × q/c(V) 

p-
va

lu
e 

0 1 

0 
1 8 voxel image 

32 voxel image 
(interpolated from 8 voxel image) 
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Conclusions 

•  Must account for multiplicity 
– Otherwise have a fishing expedition 

•  FWER 
– Very specific, not very sensitive 

•  FDR 
– Less specific, more sensitive 
– Sociological calibration still underway 
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