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What is the multiple comparisons problem

How can it be avoided

Ways to correct for the multiple comparisons 
problem



a

b



Diff ? 

a - b > 0
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t-distribution 

NULL hypothesis, H: activation is zero 

! = p(t>u|H) 
u=(effect size)/std(effect size) 



Problems
MEG and EEG does not have zero dimensionality

If one electrode data is at least one-dimensional

If multiple electrodes data is at least three dimensions

If time-frequency analysis then data can be four 
dimensional 

Massive multiple comparison problem
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2-D

Signal 

Signal+Noise 

Noise 

MCP example
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Use of ‘uncorrected’ p-value, !=0.1 
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Using an ‘uncorrected’ p-value of 0.1 will lead us to conclude on average that 10% of  
voxels are active when they are not. 



One solution is to reduce the multi-dimensional data  to zero-
dimensional data by averaging over a window of interest

This must be specified a priori or derived from an 
independent contrast.

One can not base this window on where the effect is largest!

u=(effect size)/std(effect size) 

‘BUT the basic question remains - why would one 
do all this, and search for some odd effects this way, 

when it is all visible in the sensor level’

Common Solutions



Other Solutions
FAMILY-WISE NULL HYPOTHESIS: 
Activation is zero everywhere 

If we reject a voxel null hypothesis 
at any voxel, we reject the family-wise 
Null hypothesis  

A FP anywhere in the image 
gives a Family Wise Error (FWE) 

Family-Wise Error (FWE) rate = ‘corrected’ p-value 



2-D

Use of ‘uncorrected’ p-value, !=0.1 
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Use of ‘corrected’ p-value, !=0.1 



Bonferroni correction

However, the data points in M/EEG data are not independent 
They are correlated either temporally, spatially or in frequency space



Statistical parametric maps (e.g., t-maps) are fields with values that are, under 
the null hypothesis, distributed according to a known probability distribution. 

RFT is used to resolve the multiple comparisons problem that occurs when 
making inferences over the search-space: 

Adjusted p-values are obtained by using results for the expected Euler 
characteristic.

At very high thresholds the Euler characteristic reduces to the number of 
suprathreshold peaks and the expected EC becomes the probability of getting a 
peak above threshold by chance.

The expected EC therefore approximates the probability that the SPM exceeds 
some height by chance. 

The ensuing p-values can be used to find a corrected height threshold or assign 
a corrected p-value to any observed peak in the SPM. 

Random Field Theory



Good lattice approximation?

Will be true for high density recordings



No holes

Zero or 
one blob



Expected Euler Characteristic

!Ω      : search region
!λ(Ω)   : volume
!|Λ|1/2   : roughness (1 / smoothness)

2D Gaussian Random Field



Smoothness
Smoothness parameterised in terms of FWHM:
Size of Gaussian kernel required to smooth i.i.d. noise to have 
same smoothness as observed null (standardized) data. FWHM

1 2 3 4

2 4 6 8 101 3 5 7 9

Eg: 10 voxels, 2.5 FWHM, 4 RESELS

The number of resels is similar, but not identical 
to the number independent observations.

Smoothness estimated from spatial 
derivatives of standardised residuals:
Yields an RPV image containing local roughness 
estimation.



Topological inference

Topological feature:
Peak height

space

significant local maxima non significant local maxima

uα



Topological inference

Topological feature:
Cluster extent

space

significant cluster

non significant clusters

uclus



Topological inference

Topological feature:
Number of clusters

space

uclus

Here, c=1, only one cluster larger than k.



Peak, cluster and set level inference

Peak level test:
height of local maxima

Cluster level test:
spatial extent above u

Set level test:
number of clusters 
above u

Sensitivity

!

Regional 
specificity

!



Random Field Theory
!The statistic image is assumed to be a good lattice 

representation of an underlying continuous stationary 
random field.
Typically, FWHM > 3 voxels
(combination of intrinsic and extrinsic smoothing)

!Smoothness of the data is unknown and estimated:
very precise estimate by pooling over voxels ⇒ stationarity 
assumptions (esp. relevant for cluster size results).

!RFT conservative for low degrees of freedom
(always compare with Bonferroni correction).
Afford littles power for group studies with small sample size. 

!A priori hypothesis about where an activation should be, 
reduce search volume ⇒ Small Volume Correction:

• mask defined  by (probabilistic) anatomical atlases
• mask defined by separate "functional localisers"
• mask defined by orthogonal contrasts
• (spherical) search volume around previously reported coordinates



Examples



Examples
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2-D

False discovery rate
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Control of Familywise Error Rate at 10% 
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Control of False Discovery Rate at 10% 
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Conclusion
!There is a multiple testing problem and corrections have 

to be applied on p-values (for the volume of interest only (see 
SVC)).

!Inference is made about topological features (peak height, 
spatial extent, number of clusters).
Use results from the Random Field Theory.

!Control of FWER (probability of a false positive anywhere in 
the image): very specific, not so sensitive.

!Control of FDR (expected proportion of false positives 
amongst those features declared positive (the discoveries)): 
less specific, more sensitive.


