Bayesian Inference

“The true logic for this world is the calculus of Probabilities, which takes account of the

magnitude of the probability which is, or ought to be, in a reasonable man's mind.”
James Clerk Maxwell (1850)

Jérémie Mattout
Lyon Neuroscience Research Center, France

With many thanks to
Jean Daunizeau
Guillaume Flandin
Karl Friston

Will Penny

SPM EEG-MEG Course, Lyon, April 2012



Outline

- General principles
- The Bayesian way

- SPM examples



- General principles
- The Bayesian way

- SPM examples



A starting point

Statistics: concerned with the collection, analysis and interpretation of data to
make decisions

Applied statistics

Theoretical statistics

(Y

Descriptive statistics
summary statistics, graphics...

Inferential statistics
Data interpretations, decision making
(Modeling, accounting for randomness and unvertainty, hypothesis testing, infering

hidden parameters)

Probability




P. de Fermat (1601-1665)

B. Pascal (1623-1662)

To express belief that an event has or will occur

Q : All possible events

Ai : one particular event

Kolomogorov axioms

1) 0<P(A)<1 A few consequences...

2) P(Q)=1 P(AUB)=P(A)+P(B)- I(?(Arz ?,-) |
" ‘joint probability
(3) P(Ai U A2 U Ak ) — Z P(A| ) P(Am B) = O (if mutually exclusive events)
(for mutually exclusive events) 1=1 P ( Am B) _ P ( A)P (B)

(if independent events)



The notion(s) of probability

Frequentist interpretation

- Probability = frequency of the
occurrence of an event, given an infinite
number of trials

- Is only defined for random processes
that can be observed many times

- Is meant to be Objective

Bayesian interpretation

- Probability = degree of belief,
measure of uncertainty

- Can be arbitrarily defined for any
type of event

- Is considered as Subjective in essence
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Joint and conditional probabilities

* Joint probability of A and B P(A M B) = P(A, B)
* Conditional probability of A given B P(A‘ B)

P(A,B)=P(AB)P(B)

* Note that if A and B are independent
P(AB)=P(A)

and

P(A B)=P(A)P(B)



Joint and conditional probabilities

* Joint probability of A and B P(A M B) = P(A, B)
* Conditional probability of A given B P(A‘ B)

P(A,B)=P(AB)P(B)

P(A,B)=P(B, A) = P(B|A)P(A)

P(AIB)P(B)=P(B|A)P(A)

P(Al B) _ P(B|A)P(A)

P(B)




Extension to multiple variables

P(AB,C)=P(A B\C) )= P(AB,c P(BIC)P(C)
- p(8|A C)P(AlC)P(C
(1B )= "B




inalisati P(BJAJP(A)
Marginalisation p(AB)— o

e Discrete case

P(B) = z P(A, B) = z P(B|A)P(A)
A A

e (Continuous case

P(B) = fP(A,B)dA =jP(B|A)P(A)dA



Probability distributions (quick reminder)

Discrete variable Continuous variable
(e.g. Binomial distribution) (e.g. Gaussian distribution)
@L l
(e |
@5& @ LJ p(X) ~ N(,0)
p(X) p(X X) = eui

o217

Temperature X

11111111111

Number of Heads in 10 trials .
p(X =x)=Cp*(1— p)"™* p(LO< X <20)= [ f(x)dx

x=10

pX <) =3 (X



Likelihood function
Assumption Y =f(0)

e.g. linear model Y = X0

Distribution of data, given fixed parameters:

p(ylé’)ocexp(— 2:;2 (y-1 (6’))2j
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A word on generative models

What | cannot create, | do not understand.

Richard Feynman (1918 — 1988) § »
A\ t

Model: mathematical formulation of a system or process (set of hypothesis and approximations)
Data generative process ?

\
\
]

Observations (Y)

A Probabilistic Model enables to:
- Account for prior knowledge and uncertainty
(due to randomness, noise, incomplete observations)
- Simulate data
- Make predictions
- Estimate hidden parameters
- Test Hypothesis




Another look at Bayes rule

Model/Hypothesis
Likelihood Prior

p(v|o, M P(gIM )
P(Y|M)

Posterior Marginal likelihood
or conditional or evidence
To be infered

P(6lY,M )=




Another look at Bayes rule

forward problem

— - .y,
- —_—
-
-

o likelihood

posterior distribution

e o o o ==

inverse problem



A simple example

AN V4

P(Y[o,M Jp(gm)
P(YM)

PO, M )=

Likelihood Y =X0+ ¢ e~N(0,7)

Prior O~N(u,o)




Qualifying priors

P(vjo)P(0)
P(Y)

POl )=

Shrinkage prior 6~N(0, o)
Uninformative (objective) prior 6~N(0,0) with large o
Conjugate prior when the prior and posterior distributions belong to the same family
Likelihood dist. Conjugate prior dist.
Binomiale Beta
Multinomiale Dirichlet
Gaussian Gaussian

Gamma Gamma



Hierarchical models
and empirical priors

Likelihood Y =X0,+ ¢ &~N(0,y)

Prior 0 =1{64,0,,..,0,_41}

6:~N(6,,0;)
92"‘N(93, 03)

0k—1~N(9k1 O-k)

Graphical representation

e 4_‘9

ORORORS

\
causality

inference

A




Model comparison

P(Y|6, M )P(6M )

P(H\Y,M):Wﬂ—

(Y[M )p(m)
P(Y)

Bayes rule again... P(I\/I ‘Y ) — P

And with no prior in favor of one particular model... P(I\/I ‘Y ) oC P(Y ‘ M )



Model comparison

if P(Y‘M1)> P(Y‘Mz) , select model M;

In practice, compute the Bayes Factor...

P(Y|M, )
12 — P(Y ‘ V] 2) ... and apply the decision rule
B, Evidence
1to3 Weak

3to 20 Positive

20 to 150 Strong

> 150 Very strong




Principle of parsimony

(¥je.m p(om)

P(aly,M )= i SN )

Occam’s razor
Complex models should not be considered without necessity

£(x)

I ”
” : Nieos
2 "+ observations 2 too simple
—— 0Oth order 1
—— 1st order <
— 2nd order S
! [ o
=
2 -1 0 1
X
4 ‘ ‘ : ‘ : ‘ \"just right"
i :
T [ : too complex

£(x)

] / — J—
- e N p(Y|M):_[p(Y|<9,M)p(¢9|I\/I)d«9

—— 1st order
— 2nd order

y:

T3 2 a4 o0 1 2 3 ‘ Usually no exact analytic solution !!



Approximations to the (log-)evidence

supP(Y|6,M,)
supP(Y|6, M, )

ABIC =-2 Iog{ :|—(n2—n1)log N

Free energy F 4mmm Obtained from the Variational Bayes inference




Variational Bayes Inference

Variational Bayes (VB) = Expectation Maximization (EM) = Restricted Maximum Likelihood (ReML)

Main features
* Yields a twofold inference on parameters 6 and models M
* Iterative optimization procedure
* Uses a fixed-form approximate posterior q(8)
* Make use of approximations (e.g. mean field, Laplace)
to approach P(8|Y,M) and P(Y|M)

The criterion to be maximized is the free-energy F

F is a lower bound to the log-evidence
F=InP(Y|M) — DKLfQ(H);P(HIY,M)Z

= (InP(Y|0,M))q — Dk.(Q(6); P(6|M))
F = accuracy - complexity



Hypothesis testing (classical way)

- given a null hypothesis, e.g.: H,:60=0

 apply decision rule, i.e.:

it P(t>t*H,)<a then reject HO

Statistical Parametric Map (SPM)



Hypothesis testing (bayesian way)

- define the null and the alternative hypothesis in terms of priors, e.g.:

- p(Y‘Ho)
11f =0
: = --- p(Y|H
Ho:p(6]H,) {O otherwise P(YIH,)
H,:p(6|H,)=N(0,%)
> Y

space of all datasets

P(Y|H,)

< u then reject HO
P(Y|H,)

 apply decision rule, i.e.: if



Model comparison for group studies

)
= m, &0 @
_
=0
= o
% m1l ; m?2 O
—
D
= m
= 2 w1 @
» XN 2 20 5 H § 0 5 9
differences in log- model evidences @
In p(y|m,)~In p(y|m,)
fixed effect assume all subjects correspond to the same model

-> posterior model probability (sum of evidences over subjects) might favour model 1

random effect assume different subjects might correspond to different models
-> estimates how likely is a given model at the origin of the data of any randomly selected
subject
-> exceedance probability: how more likely is one model compare to any other, as the
generator of the group’s data
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Segmentation of anatomical MRI

class variances

V histogram
9

it voxel
value frequencies

K
e

grey matter white matter CSF



EEG/MEG source reconstruction

e @ prior variance
hyperparameters

sources
(on the cortex)

variance coeff

of data noise
observatio

(on the scalp)

A

(a) Source locations (b) Invalid prior location

(¢) WMN solution under the smoothness  (d) ReML solution under the smoothness
prior prior

Q,&l

(e) ReML solution under the smoothness  (f) ReML solution under the smoothness,
and valid priors valid and invalid priors




Dynamic causal modelling of EEG data

Evidence for feedback loops (MMN paradigm)

Devient condition

Log Bayes factor (FB - F)

180 190 a0 210 et 230 240 230 260
Peristimulus time (ms)




Suggestions for further reading
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