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Statistics: concerned with the collection, analysis and interpretation of data to 
make decisions 

Applied statistics 

Theoretical statistics 
Descriptive statistics 
summary statistics, graphics… 

Inferential statistics 
Data interpretations, decision making 
(Modeling, accounting for  randomness and unvertainty, hypothesis testing, infering 
hidden parameters) 

A starting point 

Probability 



The notion(s) of probability 

B. Pascal (1623-1662) 

P. de Fermat (1601-1665) 

A.N. Kolmogorov (1903-1987) 

Kolomogorov axioms 

To express belief that an event has or will occur 

(1) 

(2) 

(3) 
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A few consequences… 

       BAPBPAPBAP 
(joint probability) 

  0BAP

     BPAPBAP .
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(if independent events) 



The notion(s) of probability 

Frequentist interpretation Bayesian interpretation 

- Probability = frequency of the 
occurrence of an event, given an infinite 
number of trials 
 
- Is only defined for random processes 
that can be observed many times 
 
- Is meant to be Objective 

- Probability = degree of belief, 
measure of uncertainty 
 
 
- Can be arbitrarily defined for any 
type of event 
 
- Is considered as Subjective in essence 
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Joint and conditional probabilities 

     BPBAPBAP ,

   BAPBAP ,• Joint probability of A and B 

• Conditional probability of A given B  BAP

• Note that if A and B are independent 
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and 
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Joint and conditional probabilities 
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Extension to multiple variables 
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Marginalisation 

• Discrete case 

• Continuous case 
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𝑃 𝐵 =  𝑃 𝐴, 𝐵 𝑑𝐴 = 𝑃 𝐵 𝐴 𝑃 𝐴 𝑑𝐴 
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Probability distributions (quick reminder) 

Discrete variable 
(e.g. Binomial distribution) 

Continuous variable 
(e.g. Gaussian distribution) 
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Number of Heads in 10 trials 



Likelihood function 

Assumption 

𝑌 = 𝑋𝜃 

𝑌 = 𝑓(𝜃) 

e.g. linear model 

But data are noisy 𝑌 = 𝑋𝜃 +  𝜀 
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A word on generative models 

Data generative process ? 

Observations (Y) 
Hidden variables (ϴ) 

Model: mathematical formulation of a system or process (set of hypothesis and approximations) 

A Probabilistic Model enables to: 
 - Account for prior knowledge and uncertainty 
 (due to randomness, noise, incomplete observations) 
 - Simulate data 
 - Make predictions 
 - Estimate hidden parameters 
 - Test Hypothesis 

What I cannot create, I do not understand. 
Richard Feynman (1918 – 1988) 



To be infered 

Model/Hypothesis 

Another look at Bayes rule 

 
   

 MYP

MPMYP
MYP




,
, 

Likelihood Prior 

Marginal likelihood 
or evidence 

Posterior 
or conditional 



Another look at Bayes rule 

forward problem 

likelihood 

inverse problem 

posterior distribution 

 MYP ,

 MYP ,



A simple example 
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Likelihood 

Prior 

𝑌 = 𝑋𝜃 +  𝜀 ε~𝑁 0, 𝛾  

𝜃~𝑁 𝜇, 𝜎  

generative model M 

𝑌 



Qualifying priors 
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Shrinkage prior 

𝜃~𝑁 0, 𝜎   with large 𝜎 

Conjugate prior 

Uninformative (objective) prior 

𝜃~𝑁 0, 𝜎  

when the prior and posterior distributions belong to the same family 

Likelihood dist. Conjugate prior dist. 

Beta 

Dirichlet 

Binomiale 

Gaussian 

Multinomiale 

Gamma 

Gaussian 

Gamma 



Hierarchical models 
 and empirical priors 

••• 

Likelihood 

Prior 

𝑌 = 𝑋𝜃1 +  𝜀 ε~𝑁 0, 𝛾  

𝜃1~𝑁 𝜃2, 𝜎2  

𝜃 = 𝜃1, 𝜃2, . . , 𝜃𝑘−1  

𝜃2~𝑁 𝜃3, 𝜎3  

••• 

𝜃𝑘−1~𝑁 𝜃𝑘 , 𝜎𝑘  

𝜃𝑘 

Graphical representation 

inference 

causality 



Model comparison 
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Bayes rule again…  
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And with no prior in favor of one particular model…    MYPYMP 



Model comparison 

   21 MYPMYP if , select model 𝑀1 

In practice, compute the Bayes Factor… 
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B12 Evidence 

1 to 3 Weak 

3 to 20 Positive 

20 to 150 Strong 

 150 Very strong 

… and apply the decision rule 



Principle of parsimony 

Occam’s razor 

 Complex models should not be considered without necessity  
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Data space 
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Usually no exact analytic solution !! 



Approximations to the (log-)evidence 
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Free energy F Obtained from the Variational Bayes inference 



Variational Bayes Inference 

Variational Bayes (VB) ≡ Expectation Maximization (EM) ≡ Restricted Maximum Likelihood (ReML) 

Main features 
• Yields a twofold inference on parameters 𝜃 and models 𝑀 
• Iterative optimization procedure 
• Uses a fixed-form approximate posterior 𝑞 𝜃  
• Make use of approximations (e.g. mean field, Laplace) 
to approach 𝑃 𝜃 𝑌,𝑀  and 𝑃 𝑌 𝑀  

The criterion to be maximized is the free-energy F 

𝑭 = ln𝑃 𝑌 𝑀 − 𝐷𝐾𝐿 𝑄 𝜃 ; 𝑃 𝜃 𝑌,𝑀  

 = ln𝑃 𝑌 𝜃,𝑀 𝑄 − 𝐷𝐾𝐿 𝑄 𝜃 ; 𝑃 𝜃 𝑀  

F is a lower bound to the log-evidence 

F = accuracy - complexity 



Hypothesis testing (classical way) 

 t t Y
  t *

 0*P t t H

 0*P t t H  if then reject H0 

  
H

0
:  0• given a null hypothesis, e.g.:  

• apply decision rule, i.e.: 

Statistical Parametric Map (SPM) 



 Y

• define the null and the alternative hypothesis in terms of priors, e.g.:  
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if then reject H0 • apply decision rule, i.e.: 

 y

 1p Y H

 0p Y H

space of all datasets 

Hypothesis testing (bayesian way) 

𝑃 𝑌 𝐻0
𝑃 𝑌 𝐻1

< 𝑢 



Model comparison for group studies 

m1 

m2 

differences in log- model evidences 
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fixed effect 

random effect 

assume all subjects correspond to the same model 

-> posterior model probability (sum of evidences over subjects)  might favour model 1 

assume different subjects might correspond to different models 

-> estimates how likely is a given model at the origin of the data of any randomly selected 

subject 

-> exceedance probability: how more likely is one model compare to any other, as the 

generator of the group’s data 

m1 m2 
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grey matter CSF white matter 

… 

…
 

yi ci 

k
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1
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class variances 

class 

means 

ith voxel 

value 

ith voxel 

label 

class 

frequencies 

Segmentation of anatomical MRI 



EEG/MEG source reconstruction 



Evidence for feedback loops (MMN paradigm) 

Devient condition 

Dynamic causal modelling of EEG data 



Suggestions for further reading 

http://www.fil.ion.ucl.ac.uk/~wpenny/ 

http://www.fil.ion.ucl.ac.uk/~wpenny/

