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Introduction

structural, functional and effective connectivity

structural connectivity functional connectivity effective connectivity

O. Sporns 2007, Scholarpedia

structural connectivity
= presence of axonal connections

functional connectivity
= statistical dependencies between regional time series

effective connectivity
= causal (directed) influences between neuronal populations

| connections are recruited in a confext-dependent fashion



Introduction

from functional segregation to functional integration

localizing brain activity: effective connectivity analysis:
functional segregation functional integration
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« Where, in the brain, did
my experimental manipulation
have an effect? »

« How did my experimental manipulation
propagate through the network? »



Introduction

DCM: evolution and observation mappings

Hemodynamic Electromagnetic
observation model: observation model:
temporal convolution spatial convolution

neural states dynamics
X=f(x,u,0)
P

« simple neuronal model
» complicated observation model

» complicated neuronal model
* simple observation model




Introduction

DCM: a parametric statistical approach

* DCM: model structure

y=g (X, (0) e likelihood
lees =PUlen
 DCM: Bayesian inference
parameter estimate: O=E [6’| Y, m]

priors on parameters

model evidence: p(y|m) :J p(y|6,2.m)p(6]m)p(o|m)deds



Introduction
DCM for EEG-MEG: auditory mismatch negativity

sequence of auditory stimuli

H & H & H & A H & H & H & H & A H ™
G — 66— 66— 61— 66— 66— 66— 61— 61— 61—
PY) PY) Py . @ Py PY) PY) Py . @ PY)

S S S D S S S S D S

standard condition (S) S-D: reorganisation
of the connectivity structure
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Daunizeau, Kiebel et al., Neuroimage, 2009



Introduction

DCM for fMRI: audio-visual associative learning

auditory cue visual outcome P(outcome|cue)

FFA PPA | Put PMd |

cue-dependent cue-independent
surprise surprise

Den Ouden, Daunizeau et al., J. Neurosci., 2010
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Dynamical systems theory

motivation




Dynamical systems theory

exponentials

We use the following shorthand for a time derivative

adx

T

The exponential function x = exp(t) is invariant to
differentiation. Hence

X = exp(t)

and
X =X

Hence exp(t) is the solution of the above differential
equation.



Dynamical systems theory

Initial values and fixed points

An exponential increase (a > 0) or decrease (a < 0) from
initial condition xg

X = Xg exp(at)
has derivative
X = axpexp(at)

The top equation is therefore the solution of the
differential equation
X = ax

with initial condition Xg.
The values of x for which x = 0 are referred to as Fixed

Points (FPs). For the above the only fixed point is at
x = 0.



Dynamical systems theory

time constants

The figure shows
X = ax

with a = —1.2 and intial value xy = 2.
2

95 0 05 1 15 2
t

The time constantis r = —1/a.

The time at which x decays to half its initial value is

=~ log(1/2)

which equals 7, = 0.58.



Dynamical systems theory

matrix exponential

If x is a vector whose evolution is governed by a system
of linear differential equations we can write

X = Ax
where A describes the linear dependencies.

The only fixed point is at x = 0.

For initial conditions x the above system has solution
Xt = exp(At)Xo

where exp(At) is the matrix exponential (written expm in
matlab) (Moler and Van Loan, 2003).



Dynamical systems theory

eigendecomposition of the Jacobian

The equation
X = Ax

can be understood by representing A with an
eigendecomposition, with eigenvalues )\, and
eigenvectors q that satisfy (Strang, p. 255)

A=QNQ!
We can then use the identity
exp(A) = Qexp(AN) Q!

Because A is diagonal, the matrix exponential simplifies
to a simple exponential function over each diagonal
element.



Dynamical systems theory

dynamical modes

This tells us that the original dynamics
x = Ax

has a solution
X; = exp(At)

that can be represented as a linear sum of k independent
dynamical modes

Xt =Y Gk exp(\kt)
k

where g, and A\, are the kth eigenvector and eigenvalue
of A. For A\ > 0 we have an unstable mode.

For A\, < 0 we have a stable mode, and the magnitude of
Ak determines the time constant of decay to the fixed
point.

The eigenvalues can also be complex. This gives rise to
oscillations.



Dynamical systems theory

spirals

A spiral occurs in a two-dimensional system when both
eigenvalues are a complex conjugate pair. For example
(Wilson, 1999)

al =17 2k

Ny = —24+8i
o = —2-8i

has

giving solutions (for initial conditions x = [1, 1]T)

x1(t) = exp(—2t)][cos(8t) — 2sin(8t)]
Xo(t) = exp(—2t)[cos(8t) + 0.5sin(8t)]



Dynamical systems theory

spirals
We plot time series solutions

x1(t) = exp(—2t)(cos(8t) — 2sin(8t))
Xo(t) = exp(—2t)(cos(8t)+ 0.5sin(8t))

for x4 (black) and x> (red).
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Dynamical systems theory

spiral state-space

Plotting x, against xy gives the state-space
representation.

1.2

T T | | :
The o o & a s aT aT -q.-'—".i-'—‘— A T T
Pl [T SR i e
Pl s P P i il e i - e W
0.3_5" _ﬁ/ P .-r"-..h‘;rx" i o e A E— e e S S e -
.l/ P ..-r‘":“,.:':' T A P - e e e e — e W T B T
ﬂﬁ-— I .f/ /.“r.l;. & & P e i -—— T P
N v v e e e e e e e e e e
s .|.": &8 # A [ T e T e S
0.4- i .":r". r & & # -~ - - I - m
i'::L i/ i i & & - # - - — - — — = om - . = -
0.2 'E‘ ! i ) i £ I . n, .
- i | i ] i i i E . .
::", § \ 3 I i [ ' W
OF 3% v % 4 a Lo
. -"1;\. W W N \ .
0.2 "y :‘-" 3 “u ™ " " - ' | 1
. . . ".‘_h“ “w - - - . ; ' ;
M T r"{ta, B, , . p
-0.4F T R T A “:L rp, T Tw - ’ i
e e T T i - s #

-ﬂ'_§I5 | |




Dynamical systems theory
embedding

Univariate higher order differential equations can be
represented as multivariate first order DEs.

For example

. H 2. 1
V:TUI—:V—?V

i i i

can be written as
vV = C

. 2
C = —U——C——5V



Dynamical systems theory

kernels and convolution

The previous differential equation has a solution given by
the integral

v(t) = fu(r)h(r —t)dt’

where "
h(t) = —texp(—t/7)

!

Is a kernel. In this case it is an alpha function synapse
with magnitude H and time constant 7

.f l
03 —I|— —'-__;—————— B —
[
02 f—Pt The previous integral can be written as
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Dynamical systems theory

summary

« Motivation: modelling reciprocal influences
« Link between the integral (convolution) and differential (ODE) forms

» System stability and dynamical modes can be derived from the system’s Jacobian:
o D>O0: fixed points
o D>1: spirals
o D>1: limit cycles (e.g., action potentials)
o D>2: metastability (e.g., winnerless competition)

limit cycle (Vand Der Pol) strange attractor (Lorenz)
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Neural ensembles dynamics
DCM for M/EEG: systems of neural populations

macro-scale meso-scale micro-scale
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Neural ensembles dynamics

DCM for M/EEG: from micro- to meso-scale

X; (t) . post-synaptic potential of j™ neuron within its ensemble

1 ZH 00 (0-0) = [ 1 (x(0)-0) p(x()

~ S (u) mean-field firing rate
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ensemble density P(X)
mean firing rate (Hz)

membrane depolarization (mV) mean membrane depolarization (mV)



Neural ensembles dynamics
DCM for M/EEG: synaptic dynamics

Presynaptic /—v—\\ Postsynaptlc cell
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Neural ensembles dynamics

DCM for M/EEG: intrinsic connections within the cortical column

H; = Hg
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Neural ensembles dynamics

DCM for M/EEG: from meso- to macro-scale

—_—

lateral (homogeneous)
density of connexions
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local wave propagation equation (neural field):
—2+2K'2+K‘2 —ECZV2 1 (r t) ~cx ¢V (r t)
61:2 8t 2 ' '

g(i) = Z%i' S (,U(ii))

Oth-order approximation: standing wave




Neural ensembles dynamics

DCM for M/EEG: extrinsic connections between brain regions
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Bayesian inference

forward and inverse problems

forward problem

— R S e

p(y|9.m)

likelihood

posterior distribution

p(Sly.m)

e o ==

inverse problem



Bayesian inference

the electromagnetic forward problem

W(t)+e(t)

y(t)
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Bayesian paradigm

deriving the likelihood function




Bayesian paradigm

likelihood, priors and the model evidence

Likelinood: — p(¥]@,m)

Prior: p(@‘m]
Bayes rule: p(ﬁ‘y,m)= p(y‘@, m)p(@‘m)
p(y‘m)
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Bayesian inference

model comparison

Principle of parsimony :
« plurality should not be assumed without necessity »

+ observations
- (Oth order
— 1st order
— 2nd order
0 1
X
f +
+

N\

+ observations
——— QOth order i
— st order
— 2nd order |

Model evidence:

o(yim)= [ p(v}5.m)p(9fm)ds

model evidence p(y|m)

“Occam’s razor” ;

i

too simple

y just right”
\ too complex

Y space of all data sets



Bayesian inference

the variational Bayesian approach

In p(y[m)=(In p(8.y|m)), +5(a)+De (a(9): p(8ly:m))

.

free energy : functional of g

mean-field: approximate marginal posterior distributions: {q (191) , (192 )}




Bayesian inference

DCM: key model parameters

03\ 0, et bl

e : bARA
b=

B s

(6,1,6,,,6,5) state-state coupling

THARRRRERRERR

0, input-state coupling

O, iInput-dependent modulatory effect



differences in log- model evidences

Bayesian inference

model comparison for group studies

Inp(y|m,)—Inp(y|m,) N

subjects

fixed effect assume all subjects correspond to the same model

random effect assume different subjects might correspond to different models



Overview

DCM: introduction
Dynamical systems theory
Neural states dynamics
Bayesian inference

Conclusion



Conclusion

back to the auditory mismatch negativity

sequence of auditory stimuli

H & H & H & A H & H & H & H & A H ™
G — 66— 66— 61— 66— 66— 66— 61— 61— 61—
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standard condition (S) S-D: reorganisation
of the connectivity structure
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Conclusion
DCM for EEG/MEG: variants

e second-order mean-field DCM

e DCM for steady-state responses

e DCM for induced responses

e DCM for phase coupling

input
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Conclusion
planning a compatible DCM study

« Suitable experimental design:
— any design that is suitable for a GLM
— preferably multi-factorial (e.g. 2 x 2)
* e.g. one factor that varies the driving (sensory) input
« and one factor that varies the modulatory input

* Hypothesis and model:
— define specific a priori hypothesis
— which models are relevant to test this hypothesis?
— check existence of effect on data features of interest
— there exists formal methods for optimizing the experimental design
for the ensuing bayesian model comparison
[Daunizeau et al., PLoS Comp. Biol., 2011]
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