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Statistical Parametric Maps
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Single test

Null distribution of test statistic T

Null Hypothesis H,:
Zzero activation

Decision rule (threshold) u:
determines false positive
rate a

— Choose u to give acceptable
a under H,

a = p(t > ulH)



Multiple tests
"

: If we have 100,000 voxels,

0.=0.05 = 5,000 false positive voxels.

This is clearly undesirable.

Noise

Signal




Multiple tests
u

If we have 100,000 voxels,
0.=0.05 = 5,000 false positive voxels.

This is clearly undesirable.
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M/EEG analysis at sensor level
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Conventional approach: Reduce
evoked response to a few
variables.




Family-Wise Null Hypothesis

Family-Wise Null Hypothesis:
Activation is zero everywhere

If we reject a voxel null hypothesis at any voxel,
we reject the family-wise Null hypothesis

A FP anywhere in the image gives a Family Wise Error (FWE)

Family-Wise Error rate (FWER) = ‘corrected’ p-value

Use of uncorrected p-value, « O 1

Use of corrected p value a=0.1
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Bonferroni correction

The Family-Wise Error rate (FWER), age, for a family of N
tests follows the inequality:

‘ ArwE < Na

where a IS the test-wise error rate.

Therefore, to ensure a particular FWER choose:

p AFWE
N

This correction does not require the tests to be independent but
becomes very stringent if dependence.



Spatial correlations

100 x 100 independent tests Spatially correlated tests (FWHM=10)

Discrete data Spatially extended data

Bonferroni is too conservative for spatial correlated data.

0.05
10,000

10,000 voxels = agonr = =u, = 4.42 (uncorrected u = 1.64)



Random Field Theory

— Consider a statistic image as a discretisation of a
continuous underlying random field.

= Use results from continuous random field theory.
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Topological inference

Topological feature:
Peak height

intensity
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Topological inference

Topological feature:
Cluster extent

>
% A
£ Ugs : Cluster-forming threshold (arbitrary)
k. : a-level extent threshold
< k(x > k
Ucius - = -
—J

N\ ‘
significant cluster

non significant clusters



Topological inference

Topological feature:
Number of clusters

2
% A
= Ugs  Cluster-forming threshold (arbitrary)
k : minimum cluster extent
<k
Ucius | ___/\__
— \ >

Here, c=1, only one cluster larger than k.



Euler Characteristic Y

Euler Characteristic yy,:
= Topological measure

Xu = #Dblobs -# holes

= at high threshold u:
Xu = #Dblobs

FWER = p(FWE)
= p(one or more blobs |H,)
No holes (

Zero o C ~ p(xy = 1|Hp)
one bigk ~ Elxy|Hol = apwg




Expected Euler Characteristic

Elxu] = AQIAIY2 u exp(—u?/2)/(2m)3/? |

= Q . search region
= AM(Q) :volume
= |A|Y2 :roughness (1 / smoothness)

2D Gaussian Random Field
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100 x 100 Gaussian Random Field
with FWHM=10 smoothing
oarwr = 0.05 = uppr = 3.8

(uBONF = 4.42, Uyncorr = 1-64)
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Smoothness

Smoothness parameterised in terms of FWHM:
Size of Gaussian kernel required to smooth i.i.d. noise to have
same smoothness as observed null (standardized) data.

RESELS (Resolution Elements):
1 RESEL = FWHM,FWHM,FWHM,

RESEL Count R = volume of search region in units of smoothness

7] 8|9

Eg: 10 voxels, 2.5 FWHM, 4 RESELS
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The number of resels is similar, but not identical
to the number independent observations.

scans

OGH 3
data nﬁ?ixi o

i

|

2
variance o-

Smoothness estimated from spatial e pa@,ﬂm
estimate ‘et

derivatives of standardised residuals: i
Yields an RPV image containing local roughness P e
estimation. '

residuals ;




Random Field intuition

Corrected p-value for statistic value t

p. = p(maxT > t)

~ Elx]
o< A(Q)|A|Y? t exp(—t?/2)

4 Statistic value t increases ?
— P decreases (better signal)

[ Search volume increases (A(Q) 1) ?
— P, increases (more severe correction)

. Smoothness increases (|A[M2]) ?

— P, decreases (less severe correction)



Random Field: Unified Theory

General form for expected Euler characteristic
t, F & %2 fields - restricted search regions - D dimensions

D
-l = D Ra(@paw)
d=0

R4 (Q2): d-dimensional Lipschitz-Killing  p,(u) : d-dimensional EC density of the field

curvatures of O (= intrinsic volumes): — function of dimension and threshold,
— function of dimension, specific for RF type:
space Q and smoothness: E.g. Gaussian RF:
Po(u) = 1- O(u)
Ro(Q) = x(€) Euler characteristic of Q 0,(U) = (4 In2)Y2 exp(-u?/2) | (2n)

R,(€2) = resel diameter
R,(€2) = resel surface area
R3(€2) = resel volume

Pu)=(@41n2) u exp(-u¥2)/ (2m)3?
O5(U) = (4 In2)32 (u?-1) exp(-u?/2) I (2r)?
0,u) =(41n2)2 (ud-3u) exp(-u?/2)/
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Peak, cluster and set level inference

Regional

Sensitivity specificity

SPM intensity
A Peak level test: +

height of local maxima
7 |
A Cluster level test:
== L LL LD spatial extent above u
L =L2.'--
. Set level test:
o SPM position number of clusters
mmmmm . Significant at the set level above u

L, > spatial extent threshold

mmm = : significant at the cluster level :
L, < spatial extent threshold +

B B B ignificant at the peak level



Random Field Theory

U The statistic image is assumed to be a good lattice
representation of an underlying continuous stationary
random field.

Typically, FWHM > 3 voxels
(combination of intrinsic and extrinsic smoothing)

0 RFT conservative for low degrees of freedom

(always compare with Bonferroni correction).
Afford littles power for group studies with small sample size.

O A priori hypothesis about where an activation should be, Ty
reduce search volume = Small Volume Correction: »d

« mask defined by (probabilistic) anatomical atlases VAT O Y B
* mask defined by separate "functional localisers" W i
* mask defined by orthogonal contrasts

» (spherical) search volume around previously reported coordinates
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Conclusion

 There is a multiple testing problem and corrections have
to be applied on p-values (for the volume of interest only
(see SVQ)).

d Inference is made about topological features (peak height,
spatial extent, number of clusters).
Use results from the Random Field Theory.

 Control of FWER (probability of a false positive anywhere
In the Image): very specific, not so sensitive.

1 Control of FDR (expected proportion of false positives
amongst those features declared positive (the discoveries)):
less specific, more sensitive.
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