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Pre- 
processings 

General 
Linear 
Model 

Statistical 
Inference 

𝑦 = 𝑋        𝛽 + 𝜀 

𝜎 2 =
𝜀 𝑇𝜀 

𝑟𝑎𝑛𝑘(𝑋)
 

Contrast c 

Random 

Field Theory 

𝑆𝑃𝑀{𝑇, 𝐹} 

𝛽 = 𝑋𝑇𝑋 −1𝑋𝑇𝑦 



Statistical Parametric Maps 
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3D M/EEG source 

reconstruction, 

fMRI, VBM 

2D time-frequency 

2D+t  

scalp-time 

1D time 

time 



Single test 

Null distribution of test statistic T 

𝛼 = 𝑝(𝑡 > 𝑢|𝐻0) 

u 

Decision rule (threshold) u: 

   determines false positive  

   rate α 

Null Hypothesis H0:  

   zero activation 

 Choose u to give acceptable 

 α under H0 



Multiple tests 
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Signal 

If we have 100,000 voxels, 

α=0.05   5,000 false positive voxels. 

 

This is clearly undesirable. 

Noise 
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11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% 

Use of ‘uncorrected’ p-value, α =0.1 

Percentage of Null Pixels that are False Positives 

If we have 100,000 voxels, 

α=0.05   5,000 false positive voxels. 

 

This is clearly undesirable. 
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Condition 1 

Condition 2 

time (ms) 

amplitude (μV) 

M/EEG analysis at sensor level 

Conventional approach: Reduce 

evoked response to a few 

variables. 



Family-Wise Null Hypothesis 

FWE 

Use of ‘corrected’ p-value, α =0.1 

Use of ‘uncorrected’ p-value, α =0.1 

Family-Wise Null Hypothesis: 

Activation is zero everywhere 

If we reject a voxel null hypothesis at any voxel, 

we reject the family-wise Null hypothesis  

A FP anywhere in the image gives a Family Wise Error (FWE) 

Family-Wise Error rate (FWER) = ‘corrected’ p-value 



Bonferroni correction 

The Family-Wise Error rate (FWER), αFWE,  for  a family of N 

tests follows the inequality: 

 

 

 

where α is the test-wise error rate. 

𝛼𝐹𝑊𝐸 ≤ 𝑁𝛼 

𝛼 =
𝛼𝐹𝑊𝐸

𝑁
 

Therefore, to ensure a particular FWER choose: 

This correction does not require the tests to be independent but 

becomes very stringent if dependence. 



Spatial correlations 

100 x 100 independent tests Spatially correlated tests (FWHM=10) 

Bonferroni is too conservative for spatial correlated data. 

Discrete data Spatially extended data 

10,000 voxels  α𝐵𝑂𝑁𝐹 =
0.05

10,000
𝑢𝑐 = 4.42  (uncorrected 𝑢 = 1.64) 



Random Field Theory 

 Consider a statistic image as a discretisation of a 

continuous underlying random field. 

 

 Use results from continuous random field theory. 

lattice 

representation 



Topological inference 

Topological feature: 
Peak height 

space 

significant local maxima non significant local maxima 

u 



Topological inference 

Topological feature: 
Cluster extent 

space 

significant cluster 

non significant clusters 

uclus 

uclus : cluster-forming threshold (arbitrary) 

𝑘α  : α-level extent threshold 

> 𝑘α < 𝑘α 
< 𝑘α 



Topological inference 

Topological feature: 
Number of clusters 

space 

uclus 

uclus : cluster-forming threshold (arbitrary) 

𝑘     : minimum cluster extent 

> 𝑘 < 𝑘 
< 𝑘 

Here, c=1, only one cluster larger than k. 



Euler Characteristic 𝜒 

Euler Characteristic 𝜒𝑢: 

 Topological measure 

    𝜒𝑢  =  # blobs - # holes  

 

 at high threshold u: 

    𝜒𝑢  =  # blobs 

𝐹𝑊𝐸𝑅 = 𝑝 𝐹𝑊𝐸  
              = 𝑝 𝑜𝑛𝑒 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑏𝑙𝑜𝑏𝑠 𝐻0) 
   

              ≈ 𝑝 𝜒𝑢 ≥ 1|𝐻0  
  

              ≈ 𝐸 𝜒𝑢|𝐻0  

No holes 

Zero or 

one blob ≈ 𝜶𝑭𝑾𝑬 



Expected Euler Characteristic 

       : search region 

 (   : volume 

 ||1/2   : roughness (1 / smoothness) 

𝐸 𝜒𝑢 = 𝜆 Ω Λ 1 2  𝑢 exp (−𝑢2/2)/(2𝜋)3/2 

2D Gaussian Random Field 

100 x 100 Gaussian Random Field 

with FWHM=10 smoothing 

α𝐹𝑊𝐸 = 0.05  𝑢𝑅𝐹𝑇 = 3.8 

(𝑢𝐵𝑂𝑁𝐹 = 4.42, 𝑢𝑢𝑛𝑐𝑜𝑟𝑟 = 1.64) 



Smoothness 

Smoothness parameterised in terms of FWHM: 
Size of Gaussian kernel required to smooth i.i.d. noise to have 

same smoothness as observed null (standardized) data.  

 

 =  + Y X 
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parameters errors + ? =  ? 
voxels 

scans 

 estimate 

 
^ 

 residuals 

estimated 

component 

fields 

parameter 

estimates 

variance s2 

estimated variance 

 

 
= 

FWHM 

1 2 3 4 

2 4 6 8 10 1 3 5 7 9 

RESELS (Resolution Elements): 
1 RESEL = 𝐹𝑊𝐻𝑀𝑥𝐹𝑊𝐻𝑀𝑦𝐹𝑊𝐻𝑀𝑧  

RESEL Count R = volume of search region in units of smoothness 

Eg: 10 voxels, 2.5 FWHM, 4 RESELS 

The number of resels is similar, but not identical 

to the number independent observations. 

Smoothness estimated from spatial 

derivatives of standardised residuals: 
Yields an RPV image containing local roughness 

estimation. 



Random Field intuition 

 Corrected p-value for statistic value t  

  Statistic value t increases ? 

– 𝑝𝑐  decreases (better signal) 

 Search volume increases ( () ↑ ) ? 

– 𝑝𝑐  increases (more severe correction) 

 Smoothness increases ( ||1/2 ↓ ) ? 

– 𝑝𝑐  decreases (less severe correction) 

𝑝𝑐 = 𝑝 max 𝑇 > 𝑡  

      ≈  𝐸 𝜒𝑡  
      ∝  𝜆 Ω Λ 1 2  𝑡 exp (−𝑡2/2) 



Random Field: Unified Theory 

General form for expected Euler characteristic 
 •  t, F & 2 fields • restricted search regions • D dimensions • 

       Rd (): d-dimensional Lipschitz-Killing 

curvatures of  (≈ intrinsic volumes): 
 – function of dimension, 

     space  and smoothness: 

 

       R0() = () Euler characteristic of  

       R1() = resel diameter 

       R2() = resel surface area 

       R3() = resel volume 

 

rd (u) : d-dimensional EC density of the field 
 – function of dimension and threshold, 

    specific for RF type: 

E.g. Gaussian RF:  

 r0(u) = 1- (u)  

 r1(u) = (4 ln2)1/2  exp(-u2/2) / (2p) 

 r2(u) = (4 ln2)     u     exp(-u2/2) / (2p)3/2 

 r3(u) = (4 ln2)3/2  (u2 -1)    exp(-u2/2) / (2p)2 

 r4(u) = (4 ln2)2     (u3 -3u)  exp(-u2/2) / 

(2p)5/2 

 

  

𝐸 𝜒𝑢(Ω) =  𝑅𝑑(Ω)ρ𝑑(𝑢)

𝐷

𝑑=0

 



Peak, cluster and set level inference 

Peak level test: 

height of local maxima 

Cluster level test: 

spatial extent above u 

Set level test: 

number of clusters 

above u 

 

Sensitivity 

 

Regional 

specificity 

 

: significant at the set level 

: significant at the cluster level 

: significant at the peak level 

  L1 > spatial extent threshold 

  L2 < spatial extent threshold 



Random Field Theory 

 The statistic image is assumed to be a good lattice  

representation of an underlying continuous stationary  

random field. 

Typically, FWHM > 3 voxels 

(combination of intrinsic and extrinsic smoothing) 

 

 

 RFT conservative for low degrees of freedom 

(always compare with Bonferroni correction). 
Afford littles power for group studies with small sample size.  

 

 

 A priori hypothesis about where an activation should be,  

reduce search volume  Small Volume Correction: 

• mask defined  by (probabilistic) anatomical atlases 

• mask defined by separate "functional localisers" 

• mask defined by orthogonal contrasts 

• (spherical) search volume around previously reported coordinates 



Conclusion 

 There is a multiple testing problem and corrections have 

to be applied on p-values (for the volume of interest only 

(see SVC)). 

 

 Inference is made about topological features (peak height, 

spatial extent, number of clusters). 

Use results from the Random Field Theory. 

 

 Control of FWER (probability of a false positive anywhere 

in the image): very specific, not so sensitive. 

 

 Control of FDR (expected proportion of false positives 

amongst those features declared positive (the discoveries)): 

less specific, more sensitive. 



References 

 Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Comparing functional 

(PET) images: the assessment of significant change. J Cereb Blood Flow 

Metab. 11(4):690-9, 1991. 

 

 Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC. A 

unified statistical approach for determining significant signals in images of 

cerebral activation. Human Brain Mapping, 4:58-73, 1996. 

 

 Chumbley J, Worsley KJ , Flandin G, and Friston KJ. Topological FDR for 

neuroimaging. NeuroImage, 49(4):3057-3064, 2010. 

 

 Kilner J, Kiebel SJ, Friston KJ. Applications of random field theory to 

electrophysiology. Neuroscience Letters, 374:174-178, 2005. 

 

 Kilner J and Friston KJ. Topological inference for EEG and MEG. Annals of 

Applied Statistics, 4(3):1272-1290, 2010. 

 

 Nichols T. Multiple testing corrections, nonparametric methods, and 

random field theory. NeuroImage, in press. 

http://www.fil.ion.ucl.ac.uk/spm/doc/biblio/Keyword/RFT.html 


