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Bayes rule for models
A prior distribution over model space p(m) (or ‘hypothesis
space’) can be updated to a posterior distribution after
observing data y .

This is implemented using Bayes rule

p(m|y) = p(y |m)p(m)

p(y)

where p(y |m) is referred to as the evidence for model m and
the denominator is given by

p(y) =
∑
m′

p(y |m′)p(m′)
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Bayes Factors

The Bayes factor for model j versus i is the ratio of model
evidences

Bji =
p(y |m = j)
p(y |m = i)

We have
Bij =

1
Bji
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Posterior Model Probability

Given equal priors, p(m = i) = p(m = j) the posterior
model probability is

p(m = i |y) =
p(y |m = i)

p(y |m = i) + p(y |m = j)

=
1

1 + p(y |m=j)
p(y |m=i)

=
1

1 + Bji

=
1

1 + exp(log Bji)

=
1

1 + exp(− log Bij)
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Posterior Model Probability

Hence
p(m = i |y) = σ(log Bij)

where is the Bayes factor for model i versus model j and

σ(x) =
1

1 + exp(−x)

is the sigmoid function.
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Bayes factors
The posterior model probability is a sigmoidal function of
the log Bayes factor

p(m = i |y) = σ(log Bij)
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Bayes factors
The posterior model probability is a sigmoidal function of
the log Bayes factor

p(m = i |y) = σ(log Bij)

From Raftery (1995).
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Odds Ratios

If we don’t have uniform priors one can work with odds
ratios.

The prior and posterior odds ratios are defined as

π0
ij =

p(m = i)
p(m = j)

πij =
p(m = i |y)
p(m = j |y)

resepectively, and are related by the Bayes Factor

πij = Bij × π0
ij

eg. priors odds of 2 and Bayes factor of 10 leads
posterior odds of 20.

An odds ratio of 20 is 20-1 ON in bookmakers parlance.
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Model Evidence

The model evidence is not, in general, straightforward to
compute since computing it involves integrating out the
dependence on model parameters

p(y |m) =

∫
p(y , θ|m)dθ

=

∫
p(y |θ,m)p(θ|m)dθ

Because we have marginalised over θ the evidence is
also known as the marginal likelihood.

But for linear, Gaussian models there is an analytic
solution.
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Linear Models
For Linear Models

y = Xw + e

where X is a design matrix and w are now regression
coefficients. For prior mean µw , prior covariance Cw ,
observation noise covariance Cy the posterior distribution
is given by

S−1
w = X T C−1

y X + C−1
w

mw = Sw

(
X T C−1

y y + C−1
w µw

)
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Covariance matrices
The determinant of a covariance matrix, |C|, measures
the volume.
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Model Evidence

The log model evidence comprises sum squared
precision weighted prediction errors and Occam factors

L = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
Ny

2
log 2π

− 1
2

eT
wC−1

w ew −
1
2

log
|Cw |
|Sw |

where prediction errors are the difference between what
is expected and what is observed

ey = y − Xmw

ew = mw − µw

See Bishop (2006) for derivation.
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Accuracy and Complexity

The log evidence for model m can be split into an
accuracy and a complexity term

L(m) = Accuracy(m)− Complexity(m)

where

Accuracy(m) = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
Ny

2
log 2π

and

Complexity(m) =
1
2

eT
wC−1

w ew +
1
2

log
|Cw |
|Sw |

≈ KL(prior ||posterior)
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Small KL
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Medium KL
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Big KL
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Nonlinear Models
For nonlinear models, we replace the true posterior with
the approximate posterior (mw , Sw ), and the previous
expression becomes an approximation to the log model
evidence called the (negative) Free Energy

F = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
Ny

2
log 2π

− 1
2

eT
wC−1

w ew −
1
2

log
|Cw |
|Sw |

where

ey = y − g(mw )

ew = mw − µw

and g(mw ) is the DCM prediction. This is used to
approximate the model evidence for DCMs (see Penny,
Neuroimage, 2011 for more).
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Bayes rule for models

A prior distribution over model space p(m) (or ‘hypothesis
space’) can be updated to a posterior distribution after
observing data y .

This is implemented using Bayes rule

p(m|y) = p(y |m)p(m)

p(y)
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Posterior Model Probabilities
Say we’ve fitted 8 DCMs and get the following distribution
over models

Similar models share probability mass (dilution). The
probability for any single model can become very small
esp. for large model spaces.
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Model Families
Assign model m to family f eg. first four to family one,
second four to family two. The posterior family probability
is then

p(f |y) =
∑

m∈Sf

p(m|y)
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Different Sized Families

If we have K families, then to avoid bias in family
inference we wish to have a uniform prior at the family
level

p(f ) =
1
K

The prior family probability is related to the prior model
probability

p(f ) =
∑

m∈Sf

p(m)

where the sum is over all Nf models in family f . So we set

p(m) =
1

KNf

for all models in family f before computing p(m|y). This
allows us to have families with unequal numbers of
models.
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Different Sized Families
So say we have two families. We want a prior for each
family of p(f ) = 0.5.

If family one has N1 = 2 models and family two has
N2 = 8 models, then we set

p(m) =
1
2
× 1

2
= 0.25

for all models in family one and

p(m) =
1
2
× 1

8
= 0.0625

for all models in family two.

These are then used in Bayes rule for models

p(m|y) = p(y |m)p(m)

p(y)
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Model Averaging
Each DCM.mat file stores the posterior mean (DCM.Ep)
and covariance (DCM.Cp) for each fitted model. This
defines the posterior mean over parameters for that
model, p(θ|m, y).

This can then be combined with the posterior model
probabilities p(m|y) to compute a posterior over
parameters

p(θ|y) =
∑

m

p(θ,m|y)

=
∑

m

p(θ|m, y)p(m|y)

which is independent of model assumptions (within the
chosen set). Here, we marginalise over m.

The sum over m could be restricted to eg. models within
the winning family.
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Model Averaging
The distribution p(θ|y) can be gotten by sampling;
sample m from p(m|y), then sample θ from p(θ|m, y).

If a connection doesn’t exist for model m the relevant
samples are set to zero.
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Group Parameter Inference

If i th subject has posterior mean value mi we can use
these in Summary Statistic approach for group parameter
inference (eg two-sample t-tests for control versus patient
inferences).

eg P to A connection in controls: 0.20, 0.12, 0.32, 0.11,
0.01, ...

eg P to A connection in patients: 0.50, 0.42, 0.22, 0.71,
0.31, ...

Two sample t-test shows the P to A connection is
stronger in patients than controls (p < 0.05).
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Fixed Effects
Two models, twenty subjects.

log p(Y |m) =
N∑

n=1

log p(yn|m)

The Group Bayes Factor (GBF) is

Bij =
N∏

n=1

Bij(n)
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Random Effects

11/12=92% subjects favour model 1.

GBF = 15 in favour of model 2. FFX inference does not
agree with the majority of subjects.
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Random Effects

For RFX analysis it is possible that different subjects use
different models. If we knew exactly which subjects used
which models then this information could be represented
in a [N ×M] assignment matrix, A, with entries anm = 1 if
subject m used model n, and anm = 0 otherwise.

For example, the following assignment matrix

A =

 0 1
0 1
1 0


indicates that subjects 1 and 2 used model 2 and subject
3 used model 1.

We denote rm as the frequency with which model m is
used in the population. We also refer to rm as the model
probability.



Bayesian model
selection and

averaging

Will Penny

Bayes rule for
models
Bayes factors

Linear Models
Complexity

Nonlinear Models

Model Families

Model Averaging

Group Model
Inference
Fixed Effects

Random Effects

Gibbs Sampling

References

Generative Model
In our generative model we have a prior p(r |α). A vector of
probabilities is then drawn from this.

An assigment for each subject an is then drawn from p(an|r).
Finally an specifies which log evidence value to use for each
subject. This specifies p(yn|an).

The joint likelihood for the RFX model is

p(y ,a, r |α) =
N∏

n=1

[p(yn|an)p(an|r)]p(r |α)
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Prior Model Frequencies

We define a prior distribution over r which is a Dirichlet

p(r|α0) = Dir(α0) =
1

Z

M∏
m=1

r
α0(m)−1
m

where Z is a normalisation term and the parameters, α0, are strictly positively valued and the mth entry
can be interpreted as the number of times model m has been selected.

Example with α0 = [3, 2] and r = [r1, 1− r1].

In the RFX generative model we use a uniform prior α0 = [1, 1] or more generally α0 = ones(1,M).
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Model Assignment

The probability of the ‘assignation vector’, an, is then
given by the multinomial density

p(an|r) = Mult(r) =
M∏

m=1

ranm
m

The assignments then indiciate which entry in the model
evidence table to use for each subject, p(yn|an).



Bayesian model
selection and

averaging

Will Penny

Bayes rule for
models
Bayes factors

Linear Models
Complexity

Nonlinear Models

Model Families

Model Averaging

Group Model
Inference
Fixed Effects

Random Effects

Gibbs Sampling

References

Gibbs Sampling

Samples from the posterior densities p(r |y) and p(a|y)
can be drawn using Gibbs sampling (Gelman et al 1995).

This can be implemented by alternately sampling from

r ∼ p(r |a, y)
a ∼ p(a|r , y)

and discarding samples before convergence.

This is like a sample-based EM algorithm.
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Gibbs Sampling

STEP 1: model probabilites are drawn from the prior
distribution

r ∼ Dir(αprior )

where by default we set αprior (m) = α0 for all m (but see
later).

STEP 2: For each subject n = 1..N and model m = 1..M
we use the model evidences from model inversion to
compute

unm = exp (log p(yn|m) + log rm)

gnm =
unm∑M

m=1 unm

Here, gnm is our posterior belief that model m generated
the data from subject n.
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Gibbs Sampling

STEP 3: For each subject, model assignation vectors are
then drawn from the multinomial distribution

an ∼ Mult(gn)

We then compute new model counts

βm =
N∑

n=1

anm

αm = αprior (m) + βm

and draw new model probabilities

r ∼ Dir(α)

Go back to STEP 2 !
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Gibbs Sampling

These steps are repeated Nd times. For the following
results we used a total of Nd = 20,000 samples and
discarded the first 10,000.
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Gibbs Sampling
These remaining samples then constitute our
approximation to the posterior distribution p(r |Y ). From
this density we can compute usual quantities such as the
posterior expectation, E [r |Y ].
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Random Effects
11/12=92% subjects favoured model 1.

E [r1|Y ] = 0.84
p(r1 > r2|Y ) = 0.99

where the latter is called the exceedance probability.
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Dependence on Comparison Set

The ranking of models from RFX inference can depend
on the comparison set.

Say we have two models with 7 subjects prefering model
1 and 10 ten subjects preferring model 2. The model
frequencies are r1 = 7/17 = 0.41 and r2 = 10/17 = 0.59.

Now say we add a third model which is similar to the
second, and that 4 of the subjects that used to prefer
model 2 now prefer model 3. The model frequencies are
now r1 = 7/17 = 0.41, r2 = 6/17 = 0.35 and
r3 = 4/17 = 0.24.

This is like voting in elections.
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