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To model or not to model
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fMRI uses models at different stages

- Hemodynamic response (hrf)

- Activation levels

- Time courses

- Connectivity
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Model-based MR

- Applying quantitative computational models to generate
regressors of interest beyond stimulus inputs and behavioral
responses
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What is a good model?

The computer engineer, who, when asked to describe how
he would write a computer program to recognize a cow,
replied, “first, assume a spherical cow.”...
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A good model (1)

- A clearly specified object of modeling
COW
BOLD response
expected value of a certain action

- A clearly specified purpose
recognize cows
analyze fMRI data, inferences about neural processes
model ventromedial frontal projections from the midbrain

- Tractable
computationally efficient
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A good model (2)

- Realistic
hrf better than spherical cow
e.g., iIncorporate knowledge about brain anatomy and
neuronal responses

- Simple
spherical cow better than hrf

- BUT Occam’s razor: as simple as possible, as flexible as
needed
hrf better than spherical cow
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As simple as possible, as flexible as needed
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Model-based MR

- Applying quantitative computational models to generate
regressors of interest beyond stimulus inputs and behavioral

reSPONSES
A ] []
0- Participant response
“w 4 Right [¢ saem « & o wnanunen o
t,‘ej‘ : Left pame o o shremsmn o0 ¢ ¢ 44 -
— AT &

- Goal: uncover hidden variables or processes
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Model-based fMRI: questions answered

- How (i.e., by activation of which areas) does the brain
implement a particular cognitive process”?
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Classic designs vs. model-based designs

- Classic event and block related designs

- Conditions are predefined by the experimental design or
given by the participant's response and are limited to
discrete values.

- Parametric designs

- Continuous spectrum of levels and responses; leaves
more degrees of freedom.

- Model-based

- Access hidden variables and cognitive processes.
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Outline

1. Basic recipe for model-based fMRI
2. Using model-based regressors in the GLM

3. Examples
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Model-based MR

1. Decide on a model

- This should happen before you @
run the experiment.

T o

- Start with a research question and ==+
choose a model that adequately

i

addresses this question. s

- Design your experiment with
this model in mind. Participant response

- E.g., reinforcement learning
: : . R
model, hierarchical bayesian
model.
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Model-based MR

1. Decide on a model

- Reinforcement learning model O
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Model-based MR

2. Pass individual subject trial history to model
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Model-based MR

3. Find best-fitting parameters of the model (e.g., learning rate)
to behavioral data

4. Generate

a. parametric modulators (first level)

b. model-based time series (first level)

0 50 100 150

C. subject-specific parameters (e.g., second level, DCM)
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Model-based MR

5. Convolve time series with hemodynamic response function

150

0 20 40 60 80 100 120 140 160
Trial number

Adapted from
O’Doherty et al.,
(2007)
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Model-based fMRI

0. Regress against fMRI data

A Prior correct

Hampton et al., (2006)
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Model-based MR

1. Decide on a model

2. Pass individual subject trial history to model

3. Find best-fitting parameters of model to behavioral data
4. Generate parametric modulators & model-based time series

5. Convolve time series with hemodynamic response function

0. Regress against fMRI data
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From classic design to model based fMRI

1. Classic event/block design
2. Adding parametric regressors

3. Model-based design
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Model-based fMRI: comparisons

e Classical event/block design
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Model-based fMRI: comparisons

- Classical event/block design

Time domain
regressors for Condition -

14
08+ ]
- 0.6 0s 1 ! 1 ! 1 ! 1
5 0 S0 100 150 200 250 300 350 400
g
% 0.4
0.2+¢ .
o HH Al
Wil T

100 200 300 400

scan

Friday, February 17, 2012

23




Model-based fMRI: comparisons

SPVR (Kenvand Craphucs
File ESt View Insert Tools Deskicp Wndow SPMFigure Help

Parametric regressors _—

for Conduio 128 cecond Mgh-oua e

0
000 Batch Editor l” )
File Edit View SPM BasiclO ,l 1 3
» D@ b Piis
Module List Current Module: IMRI model specification (design only) " § L
H
R Help on IMRI model specifcation (design only) - ! :
Directory ..ol_specModel_parametric/
Timing parametors -
. Units for Seconds
. Intorscan interval 2 i
. Microtime reschton 16 :
. Microtime onset 1 "o a1 a8 a2
Dgalbum Frogeeray He
. Number of scans 400
. Cormm et~ e ——
....Name Condition 1 o ¥ b A B A S M
.. Onsots 30x1 double . ‘ . ]
Durations 30x 1 double
Timo Modulaton No Tene Mod.iaton | '
Parametric Modulations
..... Parametor
...... Name Moduation 1 on b M| E
...... Valses 30x 1 dobio | .
...... Polynomal Expansion 15t order I as
..... Parameter s ) |
...... Name Moduation 2 o4 v
...... Vahoos 301 double | " )
..mson .
rogrossons - ¢
[ — - «na :
Current hem: Polynomial Expansion W 0 % 2 » © ’ o) P X "o
’;-.'O:O‘.x:.;“ ‘‘‘‘‘ )
190 *me W

Friday, February 17, 2012




Model-based fMRI: comparisons

- Parametric regressors

Time domain
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Model-based fMRI: comparisons

- Parametric regressors

risk C1 long
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How do we construct regressors that correspond to
cognitive processes and use them in SPM?

4. Generate

a. parametric modulators (first level)

b. model-based time series (first level)

0 50 100 150

C. subject-specific parameters (e.g., second level, DCM)
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How do we construct regressors from a time series
and use them in SPM?

Sample time-series at points of interest (e.q., participant
response)

Enter as parametric modulation for condition ‘participant
response’

0 50 100 150

0 50 100 150
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How do we construct regressors from a time series
and use them in SPM?

Convolve time series with hemodynamic response function

Adapted from
O’Doherty et al.,
(2007)
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How do we construct regressors from a time series
and use them in SPM?

Convolve time series with hemodynamic response function

- sample time series at the same
rate as the basis functions

ol

- convolve with the basis functions e e

sample at TR (i.e., one sample per functional volume)

add to design matrix as (multiple) regressor(s)
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How do we construct regressors from a time series
and use them in SPM?

Convolve time series with hemodynamic response function

- add to design matrix as (multiple) regressor(s)
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How do we include individual model parameters?

e.g., enter as covariates at the second level
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Model-based fMRI recipe

1. Decide on a model (before finishing your experimental
design)

2. Pass individual subject trial history to model
3. Find best-fitting parameters of model to behavioral data
4. Generate parametric modulators & model-based time series

5. Convolve time series with hemodynamic response function

6. Regress against fMRI data
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Design efficiency

e Regressors and design matrix not fully specified before data
collection.

e [0 estimate design efficiency:
e Simulate behavioral data, conduct behavioral pilot study
e (Obtain simulated/pilot time course from the model

e Optimize design efficiency
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Model-based tMRI: design efficiency

- Model based fMRI
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Model-based fMRI: comparisons

- Model based fMRI
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Model-based fMRI recipe

1. Decide on a model
2. Pass individual subject trial history to model
3. Find best-fitting parameters of model to behavioral data
© 4.Generate model-based time seres

5. Convolve time series with hemodynamic response function

0. Regress against fMRI data
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Model-based fMRI — an example

* The task
* The decision model
* The learning model

« Combined inversion

* fMRI results



The task — single trial
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The task — probabilistic structure

Probability of Face,
given high tone

Probability of House,

given low tone




The decision model

» Softmax decision rule
» Curve shape is determined by the parameter

» Translates beliefs into decision probabilities
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Prediction (“certainty”) that next stimulus is “1”



The learning model

Mathys et al. (2011)

State of the

M I
world ode
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Learning and decision models combined

Learning model




Notation

- === >

!

N/

k=1,..



Model inversion
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Regressor: Uncertainty
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The update equations
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Regressor. Uncertainty-weighted prediction error
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Summary

- Model-based fMRI:

- Application of quantitative computational models to
generate regressors of interest beyond stimulus inputs
and behavioral responses.

- Serves to uncover hidden variables and cognitive
processes

- A model may be realistic but it is never correct.
/M >
- In most cases, hrf beats ‘
by



