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Stephan et al. Neuroimage, 2010
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optimal model structure assumed
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The model evidence is given by integrating out the Mode Evidenco
dependence on model parameters

p(yIm) / p(y. 0l m)de

— / p(y16, m)p(6|m)dd

Because we have marginalised over 6 the evidence is
also known as the marginal likelihood.

For linear Gaussian models there is an analytic
expression for the model evidence.
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y=Xw+e
where X is a design matrix and w are now regression Model Evdonce
coefficients. For prior mean ., prior covariance Cy,
observation noise covariance Cy the posterior distribution
is given by

S, = X'¢'x+¢,
my = SW<XTC;1}/+CV_V1,UW)

w,
b v Lo 2 v ow s oo
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The log model evidence comprises sum squared
precision weighted prediction errors and Occam factors D

N
logp(y|m) = —1eTC 1Iog|Cy|—?ongz7r

27y
1Cw|

17
— —eC e ——Io
v 295,

2

where prediction errors are the difference between what
is expected and what is observed

ew = My — Uw

Bishop, Pattern Recognition and Machine Learning, 2006



Accuracy and Complexity Pt  Modsl

Selection

The log evidence for model m can be split into an W) (e

accuracy and a complexity term

Model Evidence

log p(y|m) = Accuracy(m) — Complexity(m)

where
1 N,
Accuracy(m) = —58 C ey — Iog |Cy| — > log 27

and

|Cwl

Complexity(m) = 1e,,T,C.,‘ﬂeW flog S
w

2
~ KL(prior||posterior)

The Kullback-Leibler divergence measures the distance
between probability distributions.
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Nonlinear Models

For nonlinear models, we replace the true posterior with
the approximate posterior (my,, Sy), and the previous
expression becomes an approximation to the log model
evidence called the (negative) Free Energy

1 7 1 N,
F = —EeyC flog|Cy]—?Iog27r
1 |Cwl
— fe C e —flo
w w g|SW|
where

ey = y—9(mw)
ew = My — pw
and g(my) is the DCM prediction. This is used to

approximate the model evidence for DCMs. Penny,
Neuroimage, 2011.
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Bayes rule for models

A prior distribution over model space p(m) (or ‘hypothesis

space’) can be updated to a posterior distribution after
observing data y.

0.4

0.3
Eo02
o

0.1

0

12 3 4 5 86 7 8 910
m
This is implemented using Bayes rule

12 3 45 6 7 8 910

p(mly) =

0.4

0.3

0.2

p(mly)

0.1

0

m

p(y|m)p(m)
p(y)

where p(y|m) is referred to as the evidence for model m and
the denominator is given by

p(y) = plylm')p(m)
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Bayes Factors

The Bayes factor for model j versus i is the ratio of model
evidences

g _ PyIm=))
" p(ylm =)
We have ’
Bi = —
Ul Bji
Hence
logBji = logp(y|m = j) —logp(y|m = i)

= Fj_F,
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Posterior Model Probability

Given equal priors, p(m = i) = p(m = j) the posterior

model probability is

p(m = ily)

p(ylm=1i)
p(ylm=1i)+ p(y|m =)
1

By =)
1+ pyim=n

14+ Bj,'
1
1+ exp(log B;;)
1
1 4 exp(—log Bj)
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Hence Pyt

p(m = ily) = o(log By)
where is the Bayes factor for model i versus model j and

1

7= T ()

is the sigmoid function.



Bayes factors

The posterior model probability is a sigmoidal function of
the log Bayes factor

p(m = ily) = o(log By)
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Bayes factors

The posterior model probability is a sigmoidal function of
the log Bayes factor

p(m = ily) = o(log Bj)

Table 1

Interpretation of Bayes factors

By pim =1i|y) (%) Evidence in
favor of model i

1-3 50-75 Weak

3-20 T75-95 Positive

20-150 95-99 Strong

=150 =99 Very strong

Bayes factors can be interpreted as follows. Given candidate hypotheses i
and j, a Bayes factor of 20 corresponds to a belief of 953% in the statement
‘hypothesis i is true’. This corresponds to strong evidence in favor of i

Kass and Raftery, JASA, 1995.
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Example

Modelling visual attention responses with DCM for fMRI.

Modulatory connections shown in red.

attention

stim m

kN attention
—

N

How does attention affect visual processing network ?

\" N attention

stim »

o
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Example

Relative Model evidences and equivalent posterior

probabilities.

r Model Probability

i
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Example
How does attention affect visual processing network ?

attention
M2
: ) M2 ‘@;
attention-\
stim v@ (

|\ attention
—

Model 2 is better than model 1 by (Bayes) factor 2966
Model 3 is better than model 2 by (Bayes) factor 12
Model 4 is better than model 3 by (Bayes) factor 23

PP
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definition of model space

on model

an model

‘ inference on
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space partition? ‘ parameters of an

inference on
optimal model or parameters of all models?

RFX BMS

comparison of model

FFX or AFX BMS

families using to be identical

optimal model structure assumead

across subjects?

yes no
| FFxBws | | REXBMS |
FFX analysis of RFX analysis of
it i p ter estimates
({e.g. BPA) (e.g. t-test, ANOVA)
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Posterior Model Probabilities o
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Say we’ve fitted 8 DCMs and get the following distribution Will Penny
over models

0.35

0.3
Families

0.25¢

0.2

p(mly)

0.15¢

0.1+

0.05

Similar models share probability mass (dilution). The
probability for any single model can become very small
esp. for large model spaces.
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second four to family two. The posterior family probability
is then
p(fly) = > p(mly)
me Sy
Families
1
0.8+
0.6
50.47
0.2
0 |




Different Sized Families

If we have K families, then to avoid bias in family
inference we wish to have a uniform prior at the family
level

P(f):R

The prior family probability is related to the prior model
probability
p(f) =Y p(m)

me S¢

where the sum is over all Ny models in family f. So we set

1
p(m) = KN,

for all models in family f before computing p(m|y). This
allows us to have families with unequal numbers of
models. Penny et al. PLOS-CB, 2010.
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Different Sized Families
So say we have two families. We want a prior for each
family of p(f) = 0.5.

If family one has Ny = 2 models and family two has
N> = 8 models, then we set

"y

1

for all models in family one and

1

p(m) = 5%Xg= 0.0625

| =

for all models in family two.
These are then used in Bayes rule for models

p(y|m)p(m)

p(mly) = o0y

DCM Advanced,
Part I: Model
Selection

Will Penny

Families



Fixed Effects BMS

definition of model space

or il an model

on model

‘ inference on

individual models or model space partition?

inference on

‘ parameters of an

optimal model or parameters of all models?

optimal model structure assumed
to be identical across subjects?

comparison of model
tamilies using
FFX or RFX BMS

optimal model structure assumead
to be idenfical across subjects?

yes no
| FFxBws | | REXBMS |
FFX analysis of RFX analysis of
it i p ter estimates

({e.g. BPA) (e.g. t-test, ANOVA)
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Fixed Effects BMS ar - Mool
Two models, twenty subjects. ;:'e:“”
ill Penny

log p(Y|m) = Zlogp (Yalm)

odel Evidence
n=1
online dels
[ i ”
a
FFX Model
o T ) Inference
=
m, _ m; o
=
=
—_—
—_—
—
5 % 3 2 1 0 1 2 3 4 5

The Group Bayes Factor (GBF) is
N

B; = [ [ Bi(n)
n—1



Random Effects BMS

definition of model space

on model or il an model

‘ inference on

individual models or model space partition? ‘ parameters of an

inference on
optimal model or parameters of all models?

optimal model structure assumed comparison of model
to be identical across subjects? families using
FFX or AFX BMS

fo be identical

optimal model structure assumed BMA

across subjects?

yes no
| FFxBws | | REXBMS |
FFX analysis of RFX analysis of
it i p ter estimates
({e.g. BPA) (e.g. t-test, ANOVA)
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Random Effects BMS O i
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Stephan et al. J. Neurosci, 2007 Will Penny
LD LD|LVF
MoG
LDIR\/F«_-;_-.. LD\Q . V/
RVF LD|RVF LVF
RFX Model
- Inference
H m,

11/12=92% subjects favour model 2.

GBF = 15 in favour of model 1. FFX inference does not
agree with the majority of subjects.



RFX Model Inference

Log Bayes Factor in favour of model 2

p(yilm; = 2)

lo
gp(y/'!m/ =1)

. mm_AlmenliEs |
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RFX Model Inference

Model frequencies r,, model assignments m;, subject

data y;.

Approximate posterior

q(r,m|Y) = q(r|Y)a(m|Y)

Stephan et al, Neuroimage, 2009.
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RFX Model Inference
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Inference
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RFX Model Inference
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RFX Model Inference
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RFX Model Inference
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RFX Model Inference
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11/12=92% subjects favoured model 2. ,
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LD LDILVF
LDIRVF-r;;) Q :l / LD|LVF \Q . W LD
RVF LD LVF RVF LD|RVF LVF
§:I RFX Model
.Ei m; = m, Inference
35 30 25 -20 15 10 5 0 5

E[r]Y] = 0.84
p(r2>nlY) = 0.99

where the latter is called the exceedance probability.



Protected Exceedance Probabilities
The use of Exceedance Probabilities (xp’s) assumes the
frequencies are different for each model.

But what if the model frequencies are all the same ? (Hp:
omnibus hypothesis)

Let po = p(Ho|Y). Then the (posterior) probability that
frequencies are differentis 1 — pg.

Rigoux et al. (Neuroimage, 2014) show how to compute
Ppo and then define Protected Exceedance Probabilities as

’
pxp = Xp(1 — Po) + 4Po

where K is the number of models.

Po also referred to as 'Bayes Omnibus Risk (BOR)'.
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Protected Exceedance Probabilities
The function spm_BMS .m reports pxp’s and pg.

Synthetic data (K = 2 models, N = 12 subjects, mean log

evidence difference=0) .

09

08

o7

06

05

04

03

02

01

We have py = 0.72.

XP

PXP

1 2

09

08

07

06

05

0.4

03

02

01
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spm_BMS.m

Protected Exceedance Probabilities

Synthetic data (K = 2 models, N = 12 subjects, mean log

evidence difference=1).

1

(1] "REOPRREC R

08

1 SOOI RS

06

05

03

01

0

We have pp = 0.11.

L TEIEEN

1

XP

2

1

09k

08

[ .

06

05

(1 U

03

(1] S

01

0

PXP

PXPs also very useful for large K.
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The ranking of models from RFX inference can depend
on the comparison set.

Say we have two models with 7 subjects prefering model
1 and 10 ten subjects preferring model 2. The model
frequenciesare ry =7/17 =0.41 and . = 10/17 = 0.59.

Now say we add a third model which is similar to the

second, and that 4 of the subjects that used to prefer Pxes
model 2 now prefer model 3. The model frequencies are

nowry =7/17=0.41,r,=6/17 = 0.35 and

r3 =4/17 = 0.24.

This is like voting in elections.
Penny et al. PLOS-CB, 2010.



Model Averaging

definition of model space

on model

or il an model

inference on
individual models or model space partition?

inference on
parameters of an optimal model or  parameters of all models?

optimal model structure assumed

A . comparison of model
to be identical across subjects?

tamilies using

FFX or AFX BMS

optimal model structure assumead
to be idenfical across subjects?

Con ]

yes no
| FFxBws | | REXBMS |
RFX BMS FFX analysis of RFX analysis of
it i p ter estimates

({e.g. BPA)

(e.g. t-test, ANOVA)
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Model Averaging ar - Moge
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Each DCM.mat file stores the posterior mean (DCM.Ep) Will Penny
and covariance (DCM.Cp) for each fitted model. This

defines the posterior mean over parameters for that

model, p(6|m, y).

This can then be combined with the posterior model
probabilities p(m|y) to compute a posterior over
parameters

p(oly) = Zp(f), mly)

Model Averaging

= Zp 6|m, y)p(mly)

which is independent of model assumptions (within the
chosen set). Here, we marginalise over m.

The sum over m could be restricted to eg. models within
the winning family.



Model Averaging

The distribution p(6|y) can be gotten by sampling;
sample m from p(m|y), then sample 6 from p(6|m, y).

PtoA

1

PtoF

AtoP

Ato F

N

If a connection doesn’t exist for model m the relevant

FtoP

o1 0 o1

FtoA

I\

samples are set to zero.
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RFX Parameter Inference

definition of model space

on model

or i an model

infarenca on
individual medels or model space partition?

inference on
parameters of an optimal model or parameters of all models?

comparison of model
families using
FFX or RFX BMS

optimal model structure assumead
to be identical across subjects?

optimal modal structure assumad BMA
to be identical across subjects?

yes na

| FrxBms | | RFX BMS |

FrxBms | [ Arxewms ||

FFX analysis of

RFX analysis of
p estimates

(e.g. BPA)

(.. I-test, ANOVA

DCM Advanced,
Part |: Model
Selection

Will Penny

Model Evidence
Complexity
Nonlinear Models
Bayes factors
Example

PXPs

RFX Parameter
Inference



RFX Parameter Inference o
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If ith subject has posterior mean value m; we can use
these in Summary Statistic approach for group parameter
inference (eg two-sample t-tests for control versus patient
inferences).

eg P to A connection in controls: 0.20, 0.12, 0.32, 0.11,
0.01, ...

eg P to A connection in patients: 0.50, 0.42, 0.22, 0.71,
0.31, ...

RFX Parameter

Two sample t-test shows the P to A connection is Inference
stronger in patients than controls (p < 0.05). Or one
sample t-tests if we have a single group.

RFX is more conservative than BPA.
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T-tests on backward connection from IFG to STG

Fig. 4. Quantitative of-

fective connectivity anal-

wis revealed that the only @ 5

significant difference be- g 2

tween ¥§ patients and A

controls was an impair- ¥ 5

ment of backward con- @ o f:@ 1

nectivity from frontal to . N :

temporal cortex. MCS sub- “ ‘ &

jects showed significant- i d b =

ly preserved connectivity 2

compared with V5 subjects

and were not significartby £ RFX Parameter

differertt from controls, ' 2 Inference
Jll ‘ll:m Controls MCs \;S

Boly et al. Science, 2011
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Example
infarenca on inference on
individual medels or model space partition? parameters of an optimal model or parameters of all models?
optimal model structure assumed comparison of model optimal modal structure assumad BMA
to ba identical across subjects? familles using fo be identfical across subjects?
PXP:
FFX or RFX BMS )
yes na
yes ne
FFXBMS | | RFX BMS |
FFX Parameter
Inference
FrxBms | [ Arxewms || RFX analysis of
p P estimates
[y, (e-0- BPA) (e.g. -test, ANOVA)
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RFX parameter inference (eg. t-tests, F-tests) - allow for
variability over eg. subjects.

FFX parameter inference - assumes no variability over
eg. subjects/sessions.

FFX parameter inference - implemented using ‘Bayesian
Parameter Averaging’ (BPA)

FFX Parameter
Inference



Bayesian Parameter Averaging

If for the ith subject the posterior mean and precision are
i and A;

By
N
N\

Three subjects shown.
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If for the ith subject the posterior mean and precision are
wi and A; then the posterior mean and precision for the
group are
N
N= YN
i=1
N
po= A Z Nipsj
i=1
Kasses et al, Neuroimage, 2010. FFX Parameter

Inference
This is a FFX analysis where each subject adds to the
posterior precision.
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N
A = Z/\,
i=1

N
po= AT N
i=1

P,

FFX Parameter
Inference
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If for the ith subject the posterior mean and precision are
w; and A; then the posterior mean and precision for the
group are

N

A= SN (N= 1)

i=1
N
po= N (Z Nipi — (N — 1)/\0M0>
i=1
FFX Parameter

Formulae augmented to accomodate non-zero priors Ag Inference
and .
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