Forward Models VB-ECD Bayesian imaging approaches Multi-modal and multi-subject integration

M/EEG Source Reconstruction

Saskia Helbling

With many thanks to Rik Henson and all the others who contributed to the slides

M/EEG SPM course, May 12, 2015
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Outline

@ Forward Models for M/EEG
@ Variational Bayesian Dipole Estimation (ECD)
© Distributed Parametric Empirical Bayes Estimation

@ Multi-modal and multi-subject integration
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Primary intracellular currents give rise to volume currents

® Volume currents yield potential differences on the scalp that can be measured by
EEG

® MEG measures the changes in the magnetic field generated by an electric current
(Sarvas 1987, Himildinen 1993)

® These magnetic fields are mainly induced by primary currents based on excitatory
activity (Okada et al. 1997)

Baillet: MEG consortium
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Forward Models

Forward models predict the M/EEG surface signals to

magnetic
fleld current

MEG R (dendrite)

intracellular

Forward models

Equivalent current
dipole moment

EEG
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Forward models can be described by leadfield matrices

® Sources J are mapped to channels by subject-specific leadfield matrices L:
Y = LJ+¢, with data Y, with noise €

® |eadfield matrix L depends on:

the type/location/orientation of sensors

the geometry of the head

the conductivity of head tissues (in particular for EEG)

the source space we are looking at (e.g. cortical surface or volumetric
image)
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Headmodels show different degrees of complexity

FEM BEM3 NCS LS SS

® The simpler models are not sufficient to predict the electric potential differences
at the scalp

e Complex models are (1) computationally more expensive and (2) require more

prior knowledge about the anatomy and conductivity values and might be prone
to approximation errors
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MEG also may benefit from using more complex
headmodels
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Stenroos, Neuroimage 2014
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Canonical meshes

e Extracting the headmodel surfaces from MRI can be prone to approximation
errors

® The cortical surface in particular is difficult due to the convoluted nature of the
brain (but: Freesurfer)

® Rather than extract surfaces from individuals MRIs, we can warp template
surfaces from an MNI brain based on spatial (inverse) normalisation

Individual's MR| Template MRI
-~

uones|EuLON

{ Cortical surface extractio

Normalisation

{cananical)
Cortical Mesh
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Canonical meshes ||

® By using canonical meshes we have a one-to-one mapping across subjects which
can be used for group statistics and group-inversion schemes

® Allows for multi-model data integration as source solutions live in MNI space

Individual Inverse-normalized emplate

Mattout et al. 2007
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Forward Models

The forward and inverse problem from a Bayesian
perspective

Forward Problem

pY|0,m) p(@|m)
Likelihood Prior

m Model
Y Data

magnetic
field o

intracellular
current
(dendrite)

Posterior Evidence

p@|Y,m)  p(Y|m)

@ Parameters

Inverse Problem
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@ Variational Bayesian Dipole Estimation (ECD)
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Equivalent Current Dipole Solutions for a small number of

__cortical current sources

® For small number of Equivalent Current Dipoles (ECD)
the inverse problem is linear in the orientation of the
sources, but non-linear in location: Y = L(r)j+¢€

e Standard ECD approaches iterate location/orientation

(within a brain volume) until fit to sensor data is
maximised (i.e, error minimised)

® But there remains the issue of local minima and the
question of how many dipoles we should use?

® And how can we incorporate prior knowledge?

o F = = £ DA

Saskia Helbling | M/EEG origins 12/40



Forward Models VB-ECD Bayesian imaging approaches Multi-modal and multi-subject integration

Generative model for the Variational Bayesian ECD
approach

® Forward model for a few dipolar sources:

Y =L(r)j+e @ @
® The locations r and moments j are

drawn from normal distributions with

precisions ¥s and Y

® ¢ is white observation noise with 0 e
precision Y

® These precisions in turn are drawn from

a prior gamma distribution @ 0

® We assume that the probabilities
factorise: p (Y, r.j,Ar,Aj,Ae | m) =
p(Y | raj. A Ae)p (e | m)p(r | e} p(Ar [ m)p (7| A5.m) p (2 | m)

[m] = =
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Use a Variational Bayesian scheme with the Free Energy
as a cost function

® Use a multi-start procedure to avoid being stucked in local minima

predes vs neserad oot
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Use a Variational Bayesian scheme with the Free Energy
as a cost function

® Use a multi-start procedure to avoid being stucked in local minima

e Compare evidence for models with different number of dipoles or with different
priors (Kiebel et al., 2008)

predes vs neserad oot
s s
0080,

Model evidence: p(y|m) >= -6.233¢+02
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© Distributed Parametric Empirical Bayes Estimation
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A linear forward model for distributed M/EEG source
analysis

e Given p sources fixed in location (e.g, on a cortical mesh) and orientation, the
forward model turns linear: Y = LJ+E with E~ N (07C(e))

® But: there are many more possible sources than sensor data. We thus need some
form of regularisation to solve this under-determined problem
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Bayesian imaging approaches

The classical L2 or weighted minimum norm approach

e Y =LJ+e with £~N<0,C(e))
. J:argmin{HCel/Q(Y—LJ)\\2+7LHWJH2}

-1
e Tikhonov solution: J = (WTW) LT [L(WTW) LT +2C:| Y

Weighting matrices

W=1I Minimum Norm
W =DDT Loreta (D =Laplacian)
W = diag (LTL) Depth-weighted

W, = diag (L} Cyfle)f1 Beamformer

Philipps et al., 2002
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And its Parametric Empirical Bayes (PEB) generalisation

Hierarchical linear model

Y = LJ+ E. with Ee ~ N (0,C¢) and Ce = n X n sensor error covariance matrix
J =0+ E; with Ej~ N (O,Cj) and Cj = p x p source prior covariance matrix

Bayesian terms

Likelihood: p(Y | J) =N (LJ,Ce)
Prior: p(J)=N(0,C;)

Posterior: p(J | Y)e<p(Y |J)p(J)

Maximum A Posteriori estimate

MAP estimate: J = GLT [LGLT +Co] 'Y
For C; = (WTW)il, this corresponds to the classical weighted minimum norm
solution: J= (WTW) LT [L(WTW)LT +AC] 'Y

See Phillips et al (2005), Neuroimage
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Sensor and source level covariance components

Covariance priors C are specified as the sum of sensor and source components Q;,
weighted by hyperparameters 4;: C =Y A;Q;
i

Sensor components, Q,.(e) (error):

< o @
2 3
"lID" (White noise) o Empty room: S
+ ;:
# sensors # sensors

Source components, Q,.(J) :

Multiple Sparse

"IID" (Minimum Norm): Priors (MSP):

#sources
#sources

# sources #sourc

Friston et al., 2008
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Source covariance matrices

(a) Minimum norm (b) LORETA-like

# dipoles
# dipoles

# dipoles # dipoles

(c)MSP 1 (d) MspP 2

# dipoles
# dipoles

# dipoles # dipoles
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Bayesian imaging approaches

Hyperpriors

Smoothness

Depth-Weighting

Source priors
projected to sensors

® When multiple @'s are correlated, estimation of hyperparameters A can be
difficult (e.g. local maxima), and they can become negative (improper for
covariances)

® impose positivity on hyperparameters: o = In(4;) <= 4; = exp (o)
e impose shrinkage hyperpriors: p(a)~ N(n,Q) with n =—4 and Q = al,
a=16

e Uniformative priors are 'turned off: o — —c0o <= 1; =0
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Negative Free energy provides a cost function for the
hyperparameters

e Obtain Restricted Maximum Likelihood (ReML) estimates of the
hyperparameters A by maximising the variational (negative) Free energy F:
A :mfxp(Y [A) = mfo
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Negative Free energy provides a cost function for the
hyperparameters

e Obtain Restricted Maximum Likelihood (ReML) estimates of the
hyperparameters A by maximising the variational (negative) Free energy F:
A :mfxp(Y [A)= mfo

e A final expectation step gives us Maximum A Posteriori (MAP) estimates of
source parameters J: J= mep (J | Y,i) = mfo

u]
)
I
il
it

Saskia Helbling | M/EEG origins 22/40



Forward Models VB-ECD Bayesian imaging approaches Multi-modal and multi-subject integration

Negative Free energy provides a cost function for the
hyperparameters

e Obtain Restricted Maximum Likelihood (ReML) estimates of the
hyperparameters A by maximising the variational (negative) Free energy F:
A :mfxp(Y [A)= mfo

e A final expectation step gives us Maximum A Posteriori (MAP) estimates of
source parameters J: J= mep (J | Y,i) = mfo

e Maximal Free energy F approximates the Bayesian log model evidence for a
model m, and in doing so takes accuracy and complexity of the model into
account
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Negative Free energy provides a cost function for the
hyperparameters

e Obtain Restricted Maximum Likelihood (ReML) estimates of the
hyperparameters A by maximising the variational (negative) Free energy F:
A= mfxp(Y [A)= mfo

e A final expectation step gives us Maximum A Posteriori (MAP) estimates of
source parameters J: J= mep (J | Y,i) = mfo
e Maximal Free energy F approximates the Bayesian log model evidence for a

model m, and in doing so takes accuracy and complexity of the model into
account

® Note: a large set of priors does not necessarily mean that the model has a large
complexity (as the according hyperparameters may have eliminated the respective
components)
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Multiple Sparse Priors
Model comparison
% variance explained log-evidence
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& 1000
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Reducing the computational load

Forward Models VB-ECD Bayesian imaging approaches Multi-modal and multi-subject integration

® The computation of the Maximum Free Energy is made computationally feasable
by using the sensor rather than the source level covariance matrix:
Nq
Y=2Qc+ Y ALCTILT
i=1
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Reducing the computational load

® The computation of the Maximum Free Energy is made computationally feasable
by using the sensor rather than the source level covariance matrix:

Nq
Y=2Qc+ Y ALCTILT
i=1

® Project data to spatial and temporal subspaces by means of Singular Value
Decomposition

= decreases computational cost of the gradient ascent

= increases the signal to noise ratio by removing redundancy in the data and
reducing noise
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Reducing the computational load

® The computation of the Maximum Free Energy is made computationally feasable
by using the sensor rather than the source level covariance matrix:

Nq
Y=2Qc+ Y ALCTILT
i=1

® Project data to spatial and temporal subspaces by means of Singular Value
Decomposition
= decreases computational cost of the gradient ascent
= increases the signal to noise ratio by removing redundancy in the data and
reducing noise

® Reduce number of hyperparameters to be estimated in each step by applying a
heuristic optimisation step
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Bayesian imaging approaches

Automatic relevance detection and Greedy Search

® ARD: each covariance component has an associated hyperparameter;
components are pruned during the optimisation scheme

® GS: performs a single to many optimisation of hyperparameters and splits sets of
hyperparameters recursively

® In SPM you can either use one of these heuristics alone or apply a final
optimisation step on the ARD, GS and error covariance matrices to avoid local
minima

(a) ARD optimisation of hyperparam- (b) GS optimisation of hyperparame-
eters ters

5

Component/hyperp
Component

1 2 3 4
Tteration Iteration/hyperp
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PEB Summary

Multi-modal and multi-subject integration

fMRI priors can be incorporated

® Allows for multiple priors in the form of covariance components to the extent
that hundreds of sparse priors (MSP), multiple error components or multiple
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PEB Summary

Multi-modal and multi-subject integration

® Allows for multiple priors in the form of covariance components to the extent

that hundreds of sparse priors (MSP), multiple error components or multiple
fMRI priors can be incorporated

® The parametric empirical Bayes approach automatically “regularises” the inverse
problem in a principled fashion
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PEB Summary

® Allows for multiple priors in the form of covariance components to the extent
that hundreds of sparse priors (MSP), multiple error components or multiple
fMRI priors can be incorporated

® The parametric empirical Bayes approach automatically “regularises” the inverse
problem in a principled fashion

® Furnishes estimates of model evidence which allow us to evaluate the different
priors: on the level of sensor or source covariances, but also for the forward
models (Henson et al. 2009, Lopez et al., 2012)
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O Multi-modal and multi-subject integration
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MEG and EEG data fusion

(MEG) (MEG) Electrodes (EEG)

= B

ZebbmpcnEoe

ms
400 0 100 200 300 400 -100 O 100 200 500 400 +100 O 100 200 300 400

Henson et al., 2009

e Different MEG sensors and EEG are sensitive to different source configurations
and hence can provide (partly) independent information on the underlying sources
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MEG and EEG data fusion

Electrodes (EEG)

¥

§is

ms
400 0 100 200 300 400 -100 O 100 200 500 400 +100 O 100 200 300 400

Henson et al., 2009

e Different MEG sensors and EEG are sensitive to different source configurations
and hence can provide (partly) independent information on the underlying sources

® Rescale concatenated data and leadfield matrices to accommodate different
scaling and measurement units across the different sensor-types
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MEG and EEG data fusion

Electrodes (EEG)

= B

ZebbmpcnEoe

ms
400 0 100 200 300 400 -100 O 100 200 500 400 +100 O 100 200 300 400

Henson et al., 2009

e Different MEG sensors and EEG are sensitive to different source configurations
and hence can provide (partly) independent information on the underlying sources

® Rescale concatenated data and leadfield matrices to accommodate different
scaling and measurement units across the different sensor-types

® We apply the same source covariance priors across all modalities, but sensor
covariance priors are assumed to differ

[m] = =

it
«

£
€
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MEG and EEG data fusion

Symmetric multimodal (E+MEG) fusion model

D Fixed OVan‘able ® EEG data @ MEG data

Source and sensor space
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MEG and EEG data fusion

Faces > Scrambled, 150-190ms

E 19 -4
T +31-51-15 — +19-48 6
- a3 - --
- g -
- Max=167 = - Max =1.74
L e 0
tima (ms)
G +43 67 11 e
- » 3 - -
g
Max=238 = . Max =1.14
- ~
’ o 200 00 o 200 00
time (ms} time (ms}

® The maximal sources recovered from fusion were a plausible combination of the
ventral temporal sources recovered by MEG and the lateral temporal sources
recovered by EEG (Henson et al., 2009, Neuroimage)

=] 5
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Using fMRI priors in M/EEG source reconstruction

Asymmetric (E+MEG+fMRI) multimodal integration model

D Fixed O Variable @ EEG data MRI data

Source and sensor space

Henson et al. (2011) Frontiers in Human Neurosci
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Multi-modal and multi-subject integration

Convert fMRI clusters into covariance components

T1-weighted MRI {T.F,Z}-SPM

Functional data
N

s
S
s
.

b

1. Thresholding and connected component labelling
I
. I
Gray matter Cortical surface !
segmentation extraction i

N e &

2. Projection onto the cortical surface
using the Veranai dlsgmm

- 3 i

27 1

» & N
3D geadesc . . .

Voronol diagram

3. Prior covariance components ('
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Multi-modal and multi-subject integration

Using fMRI priors from a face perception task

< <
- i
-
SPM{F} for faces versus
< scrambled faces

15 voxels, p<05 FWE

Henson et al., 2010, HBM
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Multi-modal and multi-subject integration

Valid fMRI priors increase the log model evidence

3493

3334

7082

6774

1256

Negative Free Energy (a.u.)

(model evidence)

1222

Magnetometers (MEG)

_— .

Gradiometers (MEG)

— i .

Electrodes (EEG)

None Global Local (Valid) Local (Invalid) Valid+Invalid

From Henson et al., 2010
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fMRI priors counteract superficial bias of L2-norm

solutions

= €D
~
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- ®D
~
-
L 3 ‘s
r
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None
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Multi-modal and multi-subject integration

fMRI priors affect the variance but not the exact time
course

Gradiometers (MEG) (5 Local Valid Priors)

o ) Right Lateal Fusiform (1LF)
w2781 *7H [l 4324542 % \fh‘ +41 4324
' |
AN N
| B
\ (FAl \
[ iy I :
"\ o | Y Gradiometers (MEG)
N i A v \,
L d
40 60 600 R W a0 w0 o m am em 1z,
18
R |
L
L

Leftoceipital poe (OP) Lef Latera Fusiform (L)

ey arese T 34721
L ‘|¢Wﬁ
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o i \
| N P \ = AL
J L :
o A H0prLE !
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Bayesian group inversion

e Concatenate data across subjects and re-aligned leadfields to an average leadfield

e Common source priors CU) = Z,l,g) Q,((j), but subject specific sensor level priors
Cl.(e) = ):ll.(ke)A,-Ql({e)A?—, with alignment matrices A;

® Group increases the detection of differences at the group or between subject level
without applying additional smoothing

Minimum norm (MN) ARD with group constraints (g ARD)

L. ‘y‘ ':*."' = “\'1

£ »
SPM [T, | CoERIETD SPMUTy) LA SPMITY)
5

Litvak & Friston (2008) Neuroimage
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Bayesian group inversion

Multisubject fusion model

N M/EEG data for
Fixed Variable fhsansor-type MRI data

from ith subject

Source and sensor space
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Summary

® SPM offers a range of standard forward models (via FieldTrip) and supports
canonical headmodels

e Offers unique Bayesian approaches to inversion and allows us to compare
different sets of prior assumptions by using the log model evidence
o Variational Bayesian ECD
e A PEB approach to distributed imaging (e.g. MSP, MNE, Bayesian
Beamformer)

e PEB framework offers a natural way to conduct multi-subject and multi-modal
integration
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Main references

® Friston et al. (2008) Multiple sparse priors for the M/EEG inverse problem

® Henson et al. (2007) Population-level inferences for distributed MEG source
localization under multiple constraints: application to face-evoked fields

® Henson et al. (2010) A Parametric Empirical Bayesian framework for
fMRI-constrained MEG/EEG source reconstruction

® Henson et al. (2011) A Parametric Empirical Bayesian Framework for the
EEG/MEG Inverse Problem: Generative Models for Multi-Subject and
Multi-Modal Integration.

® Kiebel et al. (2008) Variational Bayesian inversion of the equivalent current
dipole model in EEG/MEG

® |lopez et al. (2014) Algorithmic procedures for Bayesian MEG/EEG source
reconstruction in SPM

e Mattout et al. (2007) Canonical Source Reconstruction for MEG

e Phillips et al. (2005) An empirical Bayesian solution to the source reconstruction
problem in EEG
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