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Introduction
structural, functional and effective connectivity

• structural connectivity

= presence of axonal connections

• functional connectivity 

= statistical dependencies between regional time series

• effective connectivity 

= causal (directed) influences between neuronal populations

! connections are recruited in a context-dependent fashion

O. Sporns 2007, Scholarpedia

structural connectivity functional connectivity effective connectivity
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Does network XYZ explain my data better than network XY?

Which XYZ connectivity structure best explains my data?

Are X & Y linked in a bottom-up, top-down or recurrent fashion?

Is my effect driven by extrinsic or intrinsic connections?

Which neural populations are affected by contextual factors?

Which connections determine observed frequency coupling?

How changing a connection/parameter would influence data?

input

context



DCM for EEG/MEG

Physiological Phenomenological

Neurophysiological model

• DCM for event-related potentials

• DCM for cross-spectral density

• DCM for Induced Responses

• DCM for Phase Coupling

Models a particular data feature
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Source locations not optimized

States x and data y in the same “format”

Electromagnetic forward model included

States x different from data y

x(t)

x~(t)



( , , )x f x u 

neural states dynamics

Electromagnetic
observation model:
spatial convolution

• simple neuronal model
• realistic observation model

• realistic neuronal model
• simple observation model

fMRI EEG/MEG

inputs

Evolution and observation mappings

Hemodynamic
observation model:
temporal convolution



Observed data
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Forward model (measurement)

Model inversion

Forward model (neuronal)
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Forward models and their inversion
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Invert model

Inference

Define likelihood model

Specify priors

Neural dynamics

Observer function

Design experimental inputs)(tu

Inference on models

Inference on parameters

Model specification and inversion
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A really simple example
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Uxkx 

‘Neural’ equation (exponential decay)
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A really simple example



Even simpler

Uxx  2.47

‘Neural’ equation (exponential decay)
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Optimization scheme for fitting the parameters to the data

• The objective function for optimization is the free energy which 

approximates the (log) model evidence:

• There are many possible schemes based on different assumptions. 

Present DCM implementations in SPM use variational Bayesian scheme.

• Once the scheme converges it yields

- The highest value of free energy the scheme could attain

- Posterior distribution of the free parameters

- Simulated data as similar to the original data as the model could generate

What do we need for DCM?
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Neural ensembles dynamics
DCM for M/EEG: extrinsic connections between brain regions
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Neural ensembles dynamics
DCM for M/EEG: systems of neural populations
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Neural ensembles dynamics
DCM for M/EEG: from micro- to meso-scale
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Neural ensembles dynamics
DCM for M/EEG: synaptic dynamics
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Neural ensembles dynamics
DCM for M/EEG: intrinsic connections within the cortical column
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Neural ensembles dynamics
DCM for M/EEG: extrinsic connections between brain regions
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Bayesian inference
forward and inverse problems

 ,p y m

forward problem

likelihood

 ,p y m

inverse problem

posterior distribution
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Bayesian paradigm
deriving the likelihood function

- Model of data with unknown parameters:

 y f  e.g., GLM:  f X 

- But data is noisy:  y f   

- Assume noise/residuals is ‘small’:
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Likelihood:

Prior:

Bayes rule:

Bayesian paradigm
likelihood, priors and the model evidence



generative model m



Principle of parsimony :

« plurality should not be assumed without necessity » 

“Occam’s razor” :
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Bayesian inference
model comparison

Model evidence:
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Bayesian inference
the variational Bayesian approach
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Bayesian inference
model comparison for group studies
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Summary

The main principle of DCM is the use of data and generative models in a 

Bayesian framework to infer parameters and compare models. 

Implementation details may vary – e.g. variational Bayes vs. sampling methods

Model inversion is an optimization procedure where the objective function is the 

free energy which approximates the model evidence.

Model evidence is the goodness of fit expected under the prior parameter values.

The best model is the one with precise priors that yield good fit to the data.

Different models can be compared as long as they were fitted to the same data.

Models and priors can be gradually refined from one study to the next, making it 

possible to use DCM as an integrative framework in neuroscience.

Conclusions



DCM for EEG/MEG: variants

 DCM for steady-state responses

 mean-field DCM for evoked responses

 second-order mean-field DCM

 DCM for induced responses

 DCM for phase coupling
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