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Introduction

structural, functional and effective connectivity

structural connectivity functional connectivity effective connectivity

O. Sporns 2007, Scholarpedia

structural connectivity
= presence of axonal connections

functional connectivity
= statistical dependencies between regional time series

effective connectivity
= causal (directed) influences between neuronal populations

I connections are recruited in a context-dependent fashion
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Does network XYZ explain my data better than network XY?
Which XYZ connectivity structure best explains my data?
Are X &Y linked in a bottom-up, top-down or recurrent fashion?
Is my effect driven by extrinsic or intrinsic connections?
Which neural populations are affected by contextual factors?
Which connections determine observed frequency coupling?

How changing a connection/parameter would influence data?




DCM for EEG/MEG
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Electromagnetic forward model included
States x different from data y

« DCM for event-related potentials
« DCM for cross-spectral density

Phenomenological

Models a particular data feature
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Source locations not optimized
States x and data y in the same “format
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« DCM for Induced Responses
« DCM for Phase Coupling



Evolution and observation mappings

Hemodynamic Electromagnetic
observation model: observation model:
temporal convolution spatial convolution

neural states dynamics
X=f(x,u,d)

* realistic neuronal model
* simple observation model

* simple neuronal model
* realistic observation model

inputs



Forward models and their inversion

Wy - V‘i]‘j’.::‘i:‘
—Observed-data —

Forward model (measurement)

y=0(x,0)+¢

p(y|x,6,u,m)

Model inversion

p(x,01y,u,m)

Forward model (neuronal)

X=f(x,u,0)+w

input U(t)



Model specification and inversion

U(lt) Design experimental inputs
Neural dynamics Xx=f(x,u,08)
Define likelihood model
Observer function y=g¢ (X, 9) + &

p(y[6,m) =N (g(6),2(0))

p(@,m)=N (u,,%2,) Specify priors
Inference on models p(y | m) = J- p(y | 0, m) p(@)d@ Invert model
o, o,
Inference on parameters p(@|y,m)= p(y |6, m)p(d,m)
p(y|m)

Inference



Overview

2 Differential equations



X=—K-X

> >—> 0 ¢+ <« < O
0
Analytic solution Numerical solution
X(t) = x,e ™ x(0) = X,
1 X(0+ At) = x(0) —k - x(0) - At

X(0+ 2At) = x(0+ At) —k - X(0+ At) - At




‘Neural’ equation (exponential decay) Observation equation

X=—k-x+U y=G-X

(t-to)°




‘Neural’ equation (exponential decay) Observation equation

X=-247-x+U y=1-X

(t-to)°
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* The objective function for optimization is the free energy which
approximates the (log) model evidence:

p(y[m)= | p(y[m)p(m)ds

* There are many possible schemes based on different assumptions.
Present DCM implementations in SPM use variational Bayesian scheme.

» Once the scheme converges it yields
- The highest value of free energy the scheme could attain
- Posterior distribution of the free parameters
- Simulated data as similar to the original data as the model could generate
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Neural ensembles dynamics

DCM for M/EEG: extrinsic connections between brain regions
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Overview

3 Neural states dynamics



Neural ensembles dynamics
DCM for M/EEG: systems of neural populations
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Neural ensembles dynamics

DCM for M/EEG: from micro- to meso-scale

X; (t) . post-synaptic potential of j™ neuron within its ensemble

T H (o (0)-0) = [ W (x(1)-6) (x(1)

~ $ (1) mean-field firing rate

ensemble density P(X)
mean firing rate (Hz)

membrane depolarization (mV) mean membrane depolarization (mV)



Neural ensembles dynamics
DCM for M/EEG: synaptic dynamics
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Neural ensembles dynamics

DCM for M/EEG: intrinsic connections within the cortical column
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Neural ensembles dynamics

DCM for M/EEG: extrinsic connections between brain regions
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Overview

4 Bayesian inference



Bayesian inference

forward and inverse problems

forward problem

p(y|g.m) )

likelihood

p(9]y.m)

Y e o am mm ==

inverse problem



Bayesian inference

the electromagnetic forward problem

y(t)= Z LDw Zj:ﬂjy(“) (t)+&(t)




Bayesian paradigm

deriving the likelihood function

- Model of data with unknown parameters:
y="1(0) e.g., GLM: f(6)=X6

-Butdatais noisy: y="f(0)+¢

- Assume noise/residuals is ‘small’:

f A

P(|&|>40)~0.05

> &

— Distribution of data, given fixed parameters:

p(y|9)ocexp(— sy (9))2j




Bayesian paradigm

likelihood, priors and the model evidence

Likelihood: — p(y]@,m)

Prior: p(ﬁ"m)

Bayes rule: p(@ v, m)—
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Bayesian inference

model comparison

Principle of parsimony :
« plurality should not be assumed without necessity »
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i A

In p(y[m)=(In p(8 y[m)) +5(a)+Dg (a(): p(Sly.m))

: functional of g

mean-field: approximate marginal posterior distributions: {q (191) e (192 )}

- p(‘glor2|y1m)

- = q(‘glorz)




Bayesian inference

DCM: key model parameters

bs \ /05

(6,1,65,,6,) state-state coupling

0, input-state coupling

O, iInput-dependent modulatory effect



Bayesian inference

model comparison for group studies
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Overview

5 Conclusions



The main principle of DCM is the use of data and generative models in a
Bayesian framework to infer parameters and compare models.

Implementation details may vary — e.g. variational Bayes vs. sampling methods

Model inversion is an optimization procedure where the objective function is the
free energy which approximates the model evidence.

Model evidence is the goodness of fit expected under the prior parameter values.
The best model is the one with precise priors that yield good fit to the data.
Different models can be compared as long as they were fitted to the same data.

Models and priors can be gradually refined from one study to the next, making it
possible to use DCM as an integrative framework in neuroscience.



DCM for EEG/MEG:

e mean-field DCM for evoked responses
e second-order mean-field DCM

e DCM for steady-state responses

e DCM for induced responses

e DCM for phase coupling
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