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Ten Simple Rules

definition of model space

‘ inference on model struclure or inference on model parameters?

inferenca on
individual models or model space partition?

‘ parameters of an

inference on

optimal model or parameters of all models?

| l

l

to be identical across subjecis?

| optimal model structure assumed comparison of model
families using

optimal medel structure assumed
to be identical across subjects?

FFX or RFX BMS

yes na
yes no
| FrxBms | | AFx BMS |
‘ FEX BMS ' | RFX BMS ' FFX analysis of RFX analysis of
i p eslimates
(e.0. BPA) (e.9. t-test, ANOVA)

Stephan et al. Neuroimage, 2010
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definition of model space

Model Evidence

e — Complexity
i on model ire Jor inl an model Nonlinear Models
—_—
Bayes factors
Example
inference on inference on
individual models or model space partition? parameters of an optimal model or  parameters of all models?
optimal model structure assumed comparison of model optimal model structure assumed BMA
to be identical across subjects? tamilies using fo be identical across subjects?
FFX or RFX BMS Example
PXPs
yes no
| FFxBws | | REXBMS |
RFX BMS FFX analysis of RFX analysis of
e i p ter estimates

({e.g. BPA) (e.g. t-test, ANOVA)




Model Evidence Bé‘é?:éﬁznf”;’é’de'
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The model evidence is given by integrating out the
dependence on model parameters

p(yIm) / p(y. 0l m)de

— / p(y16, m)p(6|m)dd

Because we have marginalised over 6 the evidence is
also known as the marginal likelihood.

For linear Gaussian models there is an analytic
expression for the model evidence.



Linear Models
For Linear Models
y=Xw+e
where X is a design matrix and w are now regression
coefficients. For prior mean ., prior covariance Cy,
observation noise covariance Cy the posterior distribution
is given by
S, = X'¢'x+¢,

My = S (XTCy“y+CV‘V1uw)

w,
b v Lo 2 v ow s oo
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The log model evidence comprises sum squared

precision weighted prediction errors and Occam factors

N
logp(y|m) = —1eTC 1Iog|Cy|—?ongz7r

27y
1Cw|

17
— —eC e ——Io
v 295,

2

where prediction errors are the difference between what
is expected and what is observed

ew = My — Uw

Bishop, Pattern Recognition and Machine Learning, 2006



Accuracy and Complexity

The log evidence for model m can be split into an
accuracy and a complexity term

log p(y|m) = Accuracy(m) — Complexity(m)

where
1 N,
Accuracy(m) = —58 C ey — Iog |Cy| — > log 27

and

|Cwl

Complexity(m) = 1e,,T,C.,‘ﬂeW flog S
w

2
~ KL(prior||posterior)

The Kullback-Leibler divergence measures the distance
between probability distributions.
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Small KL
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Bayesian Model
Selection and
Averaging

Will Penny

Complexity




Medium KL

b31
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Nonlinear Models
For nonlinear models, we replace the true posterior with
the approximate posterior (my,, Sy), and the previous
expression becomes an approximation to the log model
evidence called the (negative) Free Energy

1 7 1 N,
F = —EeyC flog|Cy]—?Iog27r
1 |Cwl
— fe C e —flo
w w g|SW|
where

e = y—g(mw)
ew = My — pw

and g(my) is the DCM prediction. This is used to
approximate the model evidence for DCMs.

W Penny, Neuroimage, 2011.
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Bayes rule for models

A prior distribution over model space p(m) (or ‘hypothesis

space’) can be updated to a posterior distribution after
observing data y.
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p(mly)

0.1

0

m

12 3 4 5 86 7 8 910
m
This is implemented using Bayes rule

p(mly) =

p(y|m)p(m)
p(y)

where p(y|m) is referred to as the evidence for model m and
the denominator is given by

p(y) = plylm')p(m)
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Bayes Factors

The Bayes factor for model j versus i is the ratio of model
evidences

g _ PyIm=))
| — 3
" p(ylm =)
We have ’
Bi = —
Ul Bji
Hence

logBji = logp(y|m = j) —logp(y|m = i)
= F/ — F,
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Posterior Model Probability

Given equal priors, p(m = i) = p(m = j) the posterior

model probability is

p(m = ily)

p(ylm=1i)
p(ylm=1i)+ p(y|m =)
1

By =)
1+ pyim=n

14+ Bj,'
1
1+ exp(log B;;)
1
1 4 exp(—log Bj)
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Posterior Model Probability

Hence
p(m = ily) = o(log By)
where is the Bayes factor for model i versus model j and

1

7= T ()

is the sigmoid function.
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Bayes factors “ouiecion and.
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The posterior model probability is a sigmoidal function of Wil Penny
the log Bayes factor

p(m = ily) = o(log By)

Bayes factors.




Bayes factors Béé?:éﬁSnV:fde'
veraging
The posterior model probability is a sigmoidal function of Will Penny

the log Bayes factor

p(m = ily) = o(log B;) o

Bayes factors.

Table 1
Interpretation of Bayes factors
By pim =1i|y) (%) Evidence in
favor of model i
-3 50-75 Weak
3-20 T75-95 Positive
20-150 95-99 Strong
=150 =99 Very strong

Bayes factors can be interpreted as follows. Given candidate hypotheses i
and j, a Bayes factor of 20 corresponds to a belief of 953% in the statement
‘hypothesis i is true’. This corresponds to strong evidence in favor of i

Kass and Raftery, JASA, 1995.



Odds Ratios

If we don’t have uniform priors one can work with odds

ratios.

The prior and posterior odds ratios are defined as

0
T

mj

resepectively, and are related by the Bayes Factor

eg. priors odds of 2 and Bayes factor of 10 leads

posterior odds of 20.

An odds ratio of 20 is 20-1 ON in bookmakers parlance.

7T,'j:B,'j><7T0
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Example

Modelling auditory responses with DCM for ERP

FB

o)

Garrido et al, PNAS, 2007
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Example

Train DCMs from stimulus onset up to peristimulus time
T. FB model favoured more heavily as T increases.

oy Bayes factor (FB - F)

Evoked responses are generated by feedback loops.

i
150

200 260 3
panstimulus tema (ms)

300

350
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Families

definition of model space

an model

on model

‘ inference on

individual models or model

space partition? ‘ parameters of an

inference on
optimal model or parameters of all models?

RFX BMS

comparison of model

FFX or AFX BMS

families using to be identical

optimal model structure assumead

across subjects?

yes no
| FFxBws | | REXBMS |
FFX analysis of RFX analysis of
it i p ter estimates
({e.g. BPA) (e.g. t-test, ANOVA)
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Posterior Model Probabilities “Seocinang
veraging

Say we've fitted 8 DCMs and get the following distribution Will Penny
over models

0.35

0.31
0.25¢ Families

0.2

p(mly)

0.15¢

0.1+

0.05

Similar models share probability mass (dilution). The
probability for any single model can become very small
esp. for large model spaces.



Model Families

Assign model m to family f eg. first four to family one,
second four to family two. The posterior family probability

is then
p(fly) = > p(mly)
me Sy
1
0.8r
061
%
0.4r
0.2
o I
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Different Sized Families
If we have K families, then to avoid bias in family
inference we wish to have a uniform prior at the family
level

The prior family probability is related to the prior model
probability

p(f) = 3 p(m)

me Sy

where the sum is over all Ny models in family f. So we set

1
p(m) = KN;

for all models in family f before computing p(m|y). This
allows us to have families with unequal numbers of
models.

Penny et al. PLOS-CB, 2010.
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Different Sized Families
So say we have two families. We want a prior for each
family of p(f) = 0.5.

If family one has Ny = 2 models and family two has
N> = 8 models, then we set

"y

1

for all models in family one and

1

p(m) = 5%Xg= 0.0625

| =

for all models in family two.
These are then used in Bayes rule for models

p(y|m)p(m)

p(mly) = o0y
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Fixed Effects BMS

definition of model space

or il an model

on model

inference on
individual models or model space partition?

inference on
parameters of an

optimal model or parameters of all models?

optimal model structure assumed
to be identical across subjects?

comparison of model
tamilies using
FFX or RFX BMS

optimal model structure assumead
to be idenfical across subjects?

yes no

| FFxBws | | REXBMS |

RFX analysis of

FFX analysis of
e i p ter estimates

({e.g. BPA) (e.g. t-test, ANOVA)
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Fixed Effects BMS

Two models, twenty subjects.

log p(Y|m) = Zlogp (Yalm)

n=1

m, e m

nll

The Group Bayes Factor (GBF) is
N

B; = [ [ Bi(n)
n—1
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Random Effects BMS

definition of model space

on model

or il

an model

inference on
individual models or model space partition?

parameters of an

inference on
optimal model or parameters of all models?

optimal model structure assumed
to be identical across subjects?

comparison of model
tamilies using
FFX or RFX BMS

optimal model structure assumead
to be idenfical across subjects?

yes no
| FFxBws | | REXBMS |
FFX analysis of RFX analysis of
it i p ter estimates
({e.g. BPA) (e.g. t-test, ANOVA)
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Random Effects BMS e

Averaging

Stephan et al. J. Neurosci, 2007 Will Penny

LD LD|LVF

RVF LD|RVF LVF

LDIRVF-r:s N2

RFX Model
Inference

cts

m,

Subje:

11/12=92% subjects favour model 2.

GBF = 15 in favour of model 1. FFX inference does not
agree with the majority of subjects.



RFX Model Inference

Log Bayes Factor in favour of model 2

p(yilm; = 2)

lo
gp(y/'!m/ =1)

. mm_AlmenliEs |
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RFX Model Inference

Model frequencies r,, model assignments m;, subject

data y;.

Approximate posterior

q(r,m|Y) = q(r|Y)a(m|Y)

Stephan et al, Neuroimage, 2009.
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RFX Model Inference

lteration O

4 ]
=
;_N
£'2

0 J J . |

0 02 0.4 06 08 1

I'2
1

1

2 3 45 6 7 8 9 10 11 12
Subject, i
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RFX Model Inference
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[teration 1
4 L
>
N
5 2
0 : , \
0 02 0.4 06 08 1
r2 RFX Model
Inference
1
>
W 0.5f |
S
T
0

1 2 3 4 5 6 7 8 9 10 11 12
Subject, i



RFX Model Inference
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[teration 2
4 L
>
N
5 2
0 ‘ . : \
0 02 0.4 06 08 1
r2 RFX Model
Inference
1
>
W 0.5f |
S
T
0

1 2 3 4 5 6 7 8 9 10 11 12
Subject, i



RFX Model Inference
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[teration 3
4 L
>
N
5 2
0 ‘ . : \
0 02 0.4 06 08 1
r2 RFX Model
Inference
1
>
W 0.5f |
S
T
0

1 2 3 4 5 6 7 8 9 10 11 12
Subject, i



RFX Model Inference
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lteration 4
4 L
>
N
5 2
0 ‘ . , \
0 02 0.4 06 08 1
r2 RFX Model
Inference
1
>
W 0.5f |
S
T
0

1 2 3 4 5 6 7 8 9 10 11 12
Subject, i



Random Effects
11/12=92% subjects favoured model 2.

LD LOILVF
LDIRVF:: N\ \Q . W Lo
RVF LD LVF RVF LD|RVF LVF
stim. stim,
=
=
=}
e ==
H m; — m,
'g | =]
o =
=
=
% 30 25 2 A5 40 5 0 5

E[r]Y] = 0.84
p(r2>nlY) = 0.99

where the latter is called the exceedance probability.
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Example

Auditory responses to stimuli with ‘roving’ frequencies
modelled with DCM for ERP.

® 90 9090

Boly et al, Science, 2011.
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Example

Model Exceedance Probabilities

Model Exceedance Probability

=
-

0.gf

0.5

0.4

0.3

0.2

0.1

i

234 686 7 8 910 11
Mlociels
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Family interence - number of regions

Controls MCS Vs

[=1
4]

o
@
o
o

=
fur]

=
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o
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(=1
i
o
.

=
[

Family Exceedance Probability
- P
Family Exceedance Probability

=
=]
o
=]

Example
0
Zareas 4 areas Gareas

Family Exceedance Probahility

o 2areas 4 areas 5 areas 2areas 4areas SHareas

This study used people in a Minimally Conscious State
(MCS), in a Vegetative State (VS) or in a normal level of
consciousness (Controls).



Example

Family inference - type of connections

= Controls = MCS = VE]
= 1 = 1 =

[l [ [

= =1 =]

S 08 S 08 S 08

o [sl} o

2 08 2o 2 08

s I3 o

& 04 T 04 & 04

o Q @

2 b4 2

Woga 0oz Wogz

= = =

E £ £

g 0 none F FB g v none F FB g oo none F FB

This study used people in a Minimally Conscious State
(MCS), in a Vegetative State (VS) or in a normal level of
consciousness (Controls).
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Protected Exceedance Probabilities e

Averaging

Will Penn
The use of Exceedance Probabilities (xp’s) assumes the ’

frequencies are different for each model.

But what if the model frequencies are all the same ? (Hp:
omnibus hypothesis)

Let po = p(Ho|Y). Then the (posterior) probability that
frequencies are differentis 1 — pg.

Rigoux et al. (Neuroimage, 2014) show how to compute
Ppo and then define Protected Exceedance Probabilities as

’
pxp = Xp(1 — Po) + 4Po

where K is the number of models.

Po also referred to as 'Bayes Omnibus Risk (BOR)'.



Protected Exceedance Probabilities
The function spm_BMS .m reports pxp’s and pg.

Synthetic data (K = 2 models, N = 12 subjects, mean log

evidence difference=0) .

09

08

o7

06

05

04

03

02

01

We have py = 0.72.

XP

PXP

1 2

09

08

07

06

05

0.4

03

02

01
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spm_BMS.m

Protected Exceedance Probabilities

Synthetic data (K = 2 models, N = 12 subjects, mean log

evidence difference=1).

1

(1] "REOPRREC R

08

1 SOOI RS

06

05

03

01

0

We have pp = 0.11.

L TEIEEN

1

XP

2

1

09k

08

[ .

06

05

(1 U

03

(1] S

01

0

PXP

PXPs also very useful for large K.
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The ranking of models from RFX inference can depend
on the comparison set.

Say we have two models with 7 subjects prefering model
1 and 10 ten subjects preferring model 2. The model
frequenciesare ry =7/17 =0.41 and . = 10/17 = 0.59.

Now say we add a third model which is similar to the
second, and that 4 of the subjects that used to prefer
model 2 now prefer model 3. The model frequencies are
nowry =7/17=0.41,r,=6/17 = 0.35 and

r3 =4/17 = 0.24.

This is like voting in elections.
Penny et al. PLOS-CB, 2010.



Model Averaging

definition of model space

on model

or il an model

inference on
individual models or model space partition?

inference on
parameters of an optimal model or  parameters of all models?

optimal model structure assumed

A . comparison of model
to be identical across subjects?

tamilies using

optimal model structure assumead
to be idenfical across subjects?

Con ]

FFX or AFX BMS

yes no
| FFxBws | | REXBMS |
RFX BMS FFX analysis of RFX analysis of
it i p ter estimates
({e.g. BPA) (e.g. t-test, ANOVA)
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Bayesian Model

MOdeI Ave raglng Selection and

Each DCM.mat file stores the posterior mean (DCM.Ep) s
and covariance (DCM.Cp) for each fitted model. This

defines the posterior mean over parameters for that

model, p(6|m, y).

Will Penny

This can then be combined with the posterior model
probabilities p(m|y) to compute a posterior over
parameters

p(oly) = Zp(f), mly)

Model Averaging

= Zp o|m, y)p(mly)

which is independent of model assumptions (within the
chosen set). Here, we marginalise over m.

The sum over m could be restricted to eg. models within
the winning family.



Model Averaging
The distribution p(6|y) can be gotten by sampling;

sample m from p(m|y), then sample 6 from p(6|m, y).

AtoP FtoP
PtoA FtoA
PtoF AtoF

N

If a connection doesn’t exist for model m the relevant
samples are set to zero.
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RFX Parameter Inference

definition of model space

on model

or i an model

‘ infarenca on

individual medels or model space partition?

‘ parameters of an

inference on
optimal model or parameters of all models?

optimal model structure assumead
to be identical across subjects?

FrxBms | [ Arxewms ||

comparison of model
families using
FFX or RFX BMS

fo be identical

optimal medal structure assumad

across subjects?

yes

| FrxBms |

| RFX BMS |

FFX analysis of

RFX analysis of
p estimates

(e.g. BPA)

(.. I-test, ANOVA
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RFX Parameter Inference e
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If ith subject has posterior mean value m; we can use

these in Summary Statistic approach for group parameter

inference (eg two-sample t-tests for control versus patient

inferences).

eg P to A connection in controls: 0.20, 0.12, 0.32, 0.11,
0.01, ...

eg P to A connection in patients: 0.50, 0.42, 0.22, 0.71,
0.31, ...

Two sample t-test shows the P to A connection is i Parameter
stronger in patients than controls (p < 0.05). Or one
sample t-tests if we have a single group.

RFX is more conservative than BPA.
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T-tests on backward connection from IFG to STG

Fig. 4. Quantitative of-

fective connectivity anal-

wis revealed that the only @ -

significant difference be- g 2

tween ¥§ patients and A

cortrols was an impair- ¥ 3

ment of backward con- @ o f:@ 1

rectiity from frontal to ’ - ;

temporal cortex. MCS sub- “ ‘ :

jects showed significant- i d . K]

ly preserved connectivity 2

compared with V5 subjects

and were not significantly g

different from controls. B RFX Parameter

| input " Inference

Jl s Controls MCs Vs

Boly et al. Science, 2011



FFX Parameter Inference

definition of model space

on model

or i an model

‘ infarenca on

individual medels or model space partition?

‘ parameters of an

inference on

optimal model or parameters of all models?

to be identical across subjects?

| optimal model structure assumed | | comparison of model

FrxBms | [ Arxewms ||

families using
FFX or RFX BMS

fo be identical

optimal medal structure assumad

across subjects?

yes
FFXBMS | | RFX BMS |
RFX analysis of
p P estimates
[y, _le.0- BPA) (e.g. t-test, ANOVA)
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FFX Parameter Inference

RFX parameter inference (eg. t-tests, F-tests) - allow for
variability over eg. subjects.

FFX parameter inference - assumes no variability over
eg. subjects/sessions.

FFX parameter inference - implemented using ‘Bayesian
Parameter Averaging’ (BPA)
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If for the ith subject the posterior mean and precision are

i and A;

B,
N
N\

0 L
At
FFX Parameter
2 . Inference
-2 1 0 1 2 3 4 5 6 7

Three subjects shown.



Bayesian Parameter Averaging

If for the ith subject the posterior mean and precision are
wi and A; then the posterior mean and precision for the
group are

N
po= /\712/\/'/1/
i—1

Kasses et al, Neuroimage, 2010.

This is a FFX analysis where each subject adds to the
posterior precision.
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Bayesian Parameter Averaging

B

N
A = Z/\,
i=1

I

N
AT Z Aipaj
i—1
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Informative Priors e

Averaging
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If for the ith subject the posterior mean and precision are
w; and A; then the posterior mean and precision for the
group are

N

A= SN (N= 1)

i—1
N

po= A (Z Nipi — (N — 1)/\0M0>
i—1

Formulae augmented to accomodate non-zero priors Ag FEX Parameter
nierence
and .
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Forthcoming “ouiecion and.

. . . Averaging
A new method for taking fitted DCMs from a group of subjects,
‘ . , . . Will Penny
and ‘refitting’ them according to a mixed effects model.
Models Parameter estimates Bayesian model averages
ooooa csees e
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o0 aoseem - a
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0ooooo aopeee (=] v
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References

The method is highly computationally efficient and is very
flexible, allowing e.g. for parametric random effects, and
comparison of models at the group level.

K. Friston et al. Bayesian model reduction and empirical Bayes for group (DCM) studies, Submitted, 2015.
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