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Learning Objectives

By the end of today, you should be able to:

1.

Place DCM in the fMRI analysis pipeline

State the difference between structural, functional and effective
connectivity

Explain how a generative model helps to separate the BOLD signal into
neuronal activity (effective connectivity), haemodynamics and noise.

Explain the interpretation of the parameters in the neuronal formula in
DCM for fMRI

Explain how parameter estimates and the log model evidence are used
to test hypotheses
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Dynamic Causal Modelling

IS a framework

for inferring systems / effective connectivity

In the brain
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 Structural Connectivity

Physical connections of the brain

* Functional Connectivity

Dependencies between BOLD observations

 Effectivity Connectivity

Causal relationships between brain regions

"Connectome" by jgmarcelino. CC 2.0 via Wikimedia Commons
Figure 1, Hong et al. 2013 PLOS ONE.
KE Stefan, SPM Course 2011



Where DCM sits in the pipeline

Image preprocessing
(realignment, coregistration,
normalisation, smoothing)

Functional MRI
acquisition and
Image reconstruction

Dynamic Causal Modelling
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Timeseries extraction from
Regions of Interest (ROISs)



DCM Framework
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DCM Framework
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DCM Framework

_ Neural Model Observation Model _
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DCM Framework

Model 1:

Model 2:

Experimental
Stimulus (u)

Neural Model

Observation Model

Observations (y)

Model comparison: Which model best explains my observed data?

Experimental
Stimulus (u)

Neural Model

Observation Model

neuronal input
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DCM Framework

1. We embody each of our hypotheses in a
generative model.

2. We perform model estimation (inversion)

3. We inspect the estimated parameters and / or we
compare models to see which best explains the
data.
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The Neural Model

The brain activity in each of n regions: Z =

The “response” of these regions is their change over time:

Zy
Z = = f(z,u,0)
Neural response Parameters (e.g. connection strengths)
function

Experimental input



The Neural Model

Z1
7 = = f(z,u,0)
Zn
Deterministic DCM for fMRI DCM for CSD Canonical Microcircuit
Task Resting State Multi-modal data
m
Z=(A+Zuij)z+Cu z=Az+v /A
j=1
(Taylor approximation) /‘

Friston et al., Neuroimage, 2003 Friston et al., Neuroimage, 2014 Friston et al., Neuroimage, 2017



The Neural Model

m
zZ = (A+2uij)Z+Cu
j=1

Where does this come from?

z=f(z,u)
) ) 5%
= f(zo,u) +5—Zz+£u+525];

z<A+EBfuj>+Cu
J

UZ + -

Taylor series



The Neural Model

“How does brain activity, z, change over time?”

Subjects viewed moving dots during fMRI

On some trials, subjects were instructed to pay attention to the
speed of the dots’ motion

Question: How does attention to motion change the strength of
the connections between V1, V5 and Superior Parietal Cortex?



The Neural Model

“How does brain activity, z, change over time?”

o UL ?D

Z M Driving input u,

Zl — + Cul Inhibitory self-connection (Hz).
Rate constant: controls rate of decay

in region 1. More negative = faster
decay.




The Neural Model

“How does brain activity, z, change over time?”

Change of activity in V1.

Z1 = Aq1Z1 + C11Uq

Change of activity in V5:

) aqq

Zy = Qp3Zy + Q174

Cip T

Self decay V1 input . :
Driving Input u, M



The Neural Model

“How does brain activity, z, change over time?”
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The Neural Model

“How does brain activity, z, change over time?”

Z=AZ+CU1
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The Neural Model

“How does brain activity, z, change over time?”
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The Neural Model

“How does brain activity, z, change over time?”

Change of activity in V1.:

Z1 = Aq1Z1 + C11Uq b,,

>

_ a
Attention u, | 2

Change of activity in V5: .
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The Neural Model @

“How does brain activity, z, change over time?” "
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DCM Framework

_ Neural Model Observation Model _
Experimental Observations (Y)
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The Haemodynamic Model

BOLD signal
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Bayesian Models
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Model estimation

Inverting or estimating the model gives:

1. Posterior probability distribution for each
parameter p(8|y, m)

2. Estimation of the model evidence p(y|m)

F = log p(y|m) = accuracy — complexity

\ Free energy

A



Bayes Factors

Assuming the prior probability on each model is equal, two models (i and j) can
easily be compared using the Bayes factor B:

Ratio of model evidence Table 1
Interpretation of Bayes factors
— 5 B, (m =ily) (%) Evidence in
m = y plm =i :
B" — p(yl ]) favor of model i
Jt p(ylm = 1) 1-3 50—75 Weak
3-20 75-95 Positive
Evidence for model j relative to i 20-150 9599 Strong
’ =150 =99 Very strong
7 Bayes factors can be interpreted as follows. Given candidate hypotheses i
1 and j, a Bayes factor of 20 corresponds to a belief of 95% in the statement
B e *hypothesis i is true’. This corresponds to strong evidence in favor of i.
lj B N
J From Raftery et al. (1995)

Evidence for model i relative to j

Note: The free energy approximates the log of the model evidence. So the log Bayes factor is:

log Bjj = logp(ylm = j) —logp(ylm = i) = F; — F;



Bayes Factors cont.

We might like to transform our Bayes factor into a posterior probability for each of
models i and j . This is done using Bayes rule (assuming equal priors per model):

..y byIm=1i)
p(m=ily) = >0
_ p(y|m =i)
p(ylm =1i) + p(y|lm = j)
1
~ L pOIm =)
L oG im=1)
1
- 1+ By
1

- 1 + exp(log(Bj;))

1
pr(—log(&j)) "~~~ Posterior probability of a model is
the sigmoid function of the log Bayes factor




Log BF relative to worst model
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Bayesian Model Reduction

Full model

F = logp(y|lmg)
Model inversion
(VB)
Or = p(6|mp)

Priors:  pr(6F)
Nested / reduced model

Fr
pr(0F), pr(6g), OF { Bayesian Model
Reduction (BMR)

Or

Priors: pr(6g)



Summary

« DCM is a framework which enables us to make inferences
about the effective connectivity of brain regions, which we
can’t directly observe

« \We create one or more generative models, each
expressing a hypothesis

« We invert the model(s), using Bayesian inference to
estimate coupling parameters and the model evidence

« We compare models using Bayesian Model Selection



EXAMPLE



Meuropsychologia 50 (2012) 3621-3635
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Neuropsychologia

journal homepage: www.elsevier.com/locate/neuropsychologia

Research Report
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B Reading > fixation (29 controls)
" Lesion (Patient AH)



1. Extracted regions of interest. Spheres placed at
the peak SPM coordinates from two contrasts:

A. Reading in patient > controls
B. Reading in controls

2. Asked which region should receive the driving
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Bayesian Model Averaging
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Seghier et al., Neuropsychologia, 2012



Learning Objectives

By the end of today, you should be able to:

1.

Place DCM in the fMRI analysis pipeline

State the difference between structural, functional and effective
connectivity

Explain how a generative model helps to separate the BOLD signal into
neuronal activity (effective connectivity), haemodynamics and noise.

Explain the interpretation of the parameters in the neuronal formula in
DCM for fMRI

Explain how parameter estimates and the log model evidence are used
to test hypotheses
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Ten Simple Rules for DCM

Stephan 2004, J Anatomy
Kahan et al. 2013, Neurolmage
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DCM Extensions
Two-state DCM
Non-linear DCM
Stochastic DCM

Post-hoc DCM

A DCM for Resting State fMRI

Marreiros et al. 2008, Neurolmage
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Friston et al. 2011, Neurolmage
Daunizeau et al. 2012, Front Comput
Neurosci
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Extras



Inference on Models

We can compare models of Or we can compare models of
single-subject data (DCM) group-level data
(Parametric Empirical Bayes, PEB)
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all all




Bayesian Model Averaging (BMA)

Having compared models, we can look at the parameters (connection strengths).
We average over models, weighted by the posterior probability of each model.
This can be limited to models within the winning family.

We marginalise over models m:

p(6ly) = ) p(8lm, y)p(mly)

SPM does this using sampling
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