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A	spectacular	piece	of	information
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This is a question referring to uncertain quantities. Like almost all scientific

questions, it cannot be answered by deductive logic. Nonetheless, quantitative

answers can be given – but they can only be given in terms of probabilities.

Our question here can be rephrased in terms of a conditional probability:

𝑝 𝑁𝑜𝑏𝑒𝑙	 	𝑙𝑜𝑡𝑠	𝑜𝑓	𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 =	?

To answer it, we have to learn to calculate such quantities. The tool for this is

Bayesian inference.

So	will	I	win	the	Nobel	prize	if	I	eat	lots	of	chocolate?
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«Bayesian»	=	logical
and

logical	=	probabilistic

«The actual science of logic is conversant at present only with things either

certain, impossible, or entirely doubtful, none of which (fortunately) we have to

reason on. Therefore the true logic for this world is the calculus of probabilities,

which takes account of the magnitude of the probability which is, or ought to

be, in a reasonable man's mind.»

— James	Clerk	Maxwell,	1850
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But in what sense is probabilistic reasoning (i.e., reasoning about uncertain

quantities according to the rules of probability theory) «logical»?

R. T. Cox showed in 1946 that the rules of probability theory can be derived

from three basic desiderata:

1. Representation of degrees of plausibility by real numbers

2. Qualitative correspondence with common sense (in a well-defined sense)

3. Consistency

«Bayesian»	=	logical
and

logical	=	probabilistic
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By mathematical proof (i.e., by deductive reasoning) the three desiderata as set out by

Cox imply the rules of probability (i.e., the rules of inductive reasoning).

This means that anyone who accepts the desiderata must accept the following rules:

1. ∑ 𝑝 𝑎 = 1�
3 (Normalization)

2. 𝑝 𝑏 = ∑ 𝑝 𝑎, 𝑏�
3 (Marginalization – also called the sum rule)

3. 𝑝 𝑎, 𝑏 = 𝑝 𝑎 𝑏 𝑝 𝑏 = 𝑝 𝑏 𝑎 𝑝 𝑎 (Conditioning – also called the product rule)

«Probability	theory	is	nothing	but	common	sense	reduced	to	calculation.»

— Pierre-Simon	Laplace,	1819

The	rules	of	probability
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The probability of 𝒂 given 𝒃 is denoted by

𝑝 𝑎 𝑏 .

In general, this is different from the probability of 𝑎 alone (the marginal probability of

𝑎), as we can see by applying the sum and product rules:

𝑝 𝑎 =8𝑝 𝑎, 𝑏 =8𝑝 𝑎 𝑏 𝑝 𝑏
�

9

�
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Because of the product rule, we also have the following rule (Bayes’ theorem) for

going from 𝑝 𝑎 𝑏 to 𝑝 𝑏 𝑎 :

𝑝 𝑏 𝑎 =
𝑝 𝑎 𝑏 𝑝 𝑏

𝑝 𝑎 =
𝑝 𝑎 𝑏 𝑝 𝑏

∑ 𝑝 𝑎 𝑏′ 𝑝 𝑏′�
9;

Conditional	probabilities
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In our example, it is immediately clear that 𝑃 𝑁𝑜𝑏𝑒𝑙 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 is very different from

𝑃 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 𝑁𝑜𝑏𝑒𝑙 . While the first is hopeless to determine directly, the second is

much easier to find out: ask Nobel laureates how much chocolate they eat. Once we

know that, we can use Bayes’ theorem:

𝑝 𝑁𝑜𝑏𝑒𝑙 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 =
𝑝 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 𝑁𝑜𝑏𝑒𝑙 𝑃 𝑁𝑜𝑏𝑒𝑙

𝑝 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒

Inference on the quantities of interest in neuroimaging studies has exactly the same

general structure.

The	chocolate	example
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posterior

likelihood

evidence
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forward	problem

likelihood

inverse	problem

posterior	distribution

Inference	in	SPM

𝑝 𝜗 𝑦,𝑚

𝑝 𝑦 𝜗,𝑚
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Likelihood:

Prior:

Bayes’	theorem:

q

generative	model	𝑚

Inference	in	SPM

𝑝 𝑦 𝜗,𝑚

𝑝 𝜗 𝑚

𝑝 𝜗 𝑦,𝑚 =
𝑝 𝑦 𝜗,𝑚 𝑝 𝜗 𝑚

𝑝 𝑦 𝑚

11



A	simple	example	of	Bayesian	inference
(adapted	from	Jaynes	(1976))

Assuming prices are comparable, from which manufacturer would you buy?

A: B:

Two manufacturers, A and B, deliver the same kind of components that turn out to

have the following lifetimes (in hours):
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A	simple	example	of	Bayesian	inference

How do we compare such samples?
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What next?

Is this satisfactory?

A	simple	example	of	Bayesian	inference
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A	simple	example	of	Bayesian	inference

The procedure in brief:

• Determine your question of interest («What is the probability that...?»)

• Specify your model (likelihood and prior)

• Calculate the full posterior using Bayes’ theorem

• [Pass to the uninformative limit in the parameters of your prior]

• Integrate out any nuisance parameters

• Ask your question of interest of the posterior

All you need is the rules of probability theory.

(Ok, sometimes you’ll encounter a nasty integral – but that’s a technical difficulty,

not a conceptual one).
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A	simple	example	of	Bayesian	inference

The question:

• What is the probability that the components from manufacturer B

have a longer lifetime than those frommanufacturer A?

• More specifically: given how much more expensive they are, how

much longer do I require the components from B to live.

• Example of a decision rule: if the components from B live 3 hours

longer than those from A with a probability of at least 80%, I will

choose those from B.
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A	simple	example	of	Bayesian	inference

The model (bear with me, thiswill turn out to be simple):

• Likelihood (Gaussian):

𝑝 𝑥A 𝜇, 𝜆 =D
𝜆
2𝜋

G
H

I

AJG

exp −
𝜆
2 𝑥A − 𝜇 H

• Prior (Gaussian-gamma):
𝑝 𝜇, 𝜆 𝜇O, 𝜅O𝑎O, 𝑏O = 𝒩 𝜇 𝜇O, 𝜅O𝜆 RG Gam 𝜆 𝑎O, 𝑏O
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The posterior (Gaussian-gamma):
𝑝 𝜇, 𝜆 𝑥A = 𝒩 𝜇 𝜇I, 𝜅I𝜆 RG Gam 𝜆 𝑎I, 𝑏I

Parameter updates:

𝜇I = 𝜇O +
𝑛

𝜅O + 𝑛
�̅� − 𝜇O , 𝜅I = 𝜅O + 𝑛, 𝑎I = 𝑎O +

𝑛
2

𝑏I = 𝑏O +
𝑛
2 𝑠H +

𝜅O
𝜅O + 𝑛

�̅� − 𝜇O H

with

�̅� ≔
1
𝑛8𝑥A

I

AJG

, 𝑠H ≔
1
𝑛8 𝑥A − �̅� H

I

AJG

A	simple	example	of	Bayesian	inference
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A	simple	example	of	Bayesian	inference

The limit for which the prior becomes uninformative:

• For 𝜅O = 0, 𝑎O = 0, 𝑏O = 0, the updates reduce to:

𝜇I = �̅�							𝜅I = 𝑛												𝑎I =
𝑛
2								𝑏I =

𝑛
2 𝑠

H

• As promised, this is really simple: all you need is 𝒏, the number

of datapoints; 𝒙], their mean; and 𝒔𝟐, their variance.

• This means that only the data influence the posterior and all influence from the

parameters of the prior has been eliminated. This is normally not what you want.

The prior contains important information that regularizes your inferences. Often,

inference only works with informative priors.

• In any case, the uninformative limit should only ever be taken after the calculation

of the posterior using a proper prior.
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A	simple	example	of	Bayesian	inference

Integrating out the nuisance parameter 𝜆 gives rise to a t-

distribution:
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A	simple	example	of	Bayesian	inference

The joint posterior 𝑝 𝜇`, 𝜇a 𝑥A `, 𝑥b a is simply the product

of our two independent posteriors 𝑝 𝜇` 𝑥A ` and

𝑝 𝜇a 𝑥b a . It will now give us the answer to our question:

𝑝 𝜇a − 𝜇` > 3 = e d𝜇`

g

Rg

𝑝 𝜇` 𝑥A ` e d𝜇a

g

hijk

𝑝 𝜇a 𝑥b a = 0.9501

Note that the t-test told us that there was «no significant

difference» even though there is a >95% probability that the

parts from B will last at least 3 hours longer than those from A.
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Bayesian	inference

The procedure in brief:

• Determine your question of interest («What is the probability that...?»)

• Specify your model (likelihood and prior)

• Calculate the full posterior using Bayes’ theorem

• [Pass to the uninformative limit in the parameters of your prior]

• Integrate out any nuisance parameters

• Ask your question of interest of the posterior

All you need is the rules of probability theory.
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Frequentist	(or:	orthodox,	classical)	versus	
Bayesian	inference:	hypothesis	testing

if then reject H0

• estimate	parameters	(obtain	test	stat.	𝑡∗)

•	define	the	null,	e.g.:	

• apply	decision	rule,	i.e.:

Classical

𝐻O: 𝜗 = 0

𝑝 𝑡 𝐻O

𝑝 𝑡 > 𝑡∗ 𝐻O

𝑡∗ 𝑡 ≡ 𝑡 𝑌

𝑝 𝑡 > 𝑡∗ 𝐻O ≤ 𝛼
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if then accept H0

• invert	model	(obtain	posterior	pdf)

• define	the	null,	e.g.:	

• apply	decision	rule,	i.e.:

Bayesian

𝑝 𝜗 𝑦

𝐻O: 𝜗 > 𝜗O

𝑝 𝐻O 𝑦 ≥ 𝛼

𝑝 𝐻O 𝑦

𝜗O
𝜗



• Principle	of	parsimony:	«plurality	should	not	be	assumed	without	necessity»
• Automatically	enforced	by	Bayesian	model	comparison

y=
f(x

)
y 

=
 f(

x)

x

Model	comparison:	general	principles

m
od
el
	e
vi
de
nc
e

p(
y|

m
)

space of	all	data	sets

Model	evidence:

“Occam’s	razor” :

𝑝 𝑦 𝑚 = e𝑝 𝑦 𝜗,𝑚 𝑝 𝜗 𝑚 d𝜗
�

�
															≈ exp 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦
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Model	comparison:	negative	variational	free	energy	F
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𝐥𝐨𝐠 −𝐦𝐨𝐝𝐞𝐥	𝐞𝐯𝐢𝐝𝐞𝐧𝐜𝐞 ≔ log 	𝑝 𝑦 𝑚

																																															= loge𝑝 𝑦, 𝜗 𝑚 d𝜗
�

�

																																															= loge𝑞 𝜗
𝑝 𝑦, 𝜗 𝑚
𝑞 𝜗 d𝜗

�

�

	

																																															≥ e𝑞 𝜗 log
𝑝 𝑦, 𝜗 𝑚
𝑞 𝜗 d𝜗

�

�
																																															=: 𝑭 = 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞	𝐯𝐚𝐫𝐢𝐚𝐭𝐢𝐨𝐧𝐚𝐥	𝐟𝐫𝐞𝐞	𝐞𝐧𝐞𝐫𝐠𝐲Jensen’s	inequality

sum	rule

multiply	by	1 = � �
� �

𝐹 ≔e𝑞 𝜗 log
𝑝 𝑦, 𝜗 𝑚
𝑞 𝜗 d𝜗

�

�

					= e𝑞 𝜗 log
𝑝 𝑦 𝜗,𝑚 𝑝 𝜗 𝑚

𝑞 𝜗 d𝜗
�

�

					= e𝑞 𝜗 log 𝑝 𝑦 𝜗,𝑚 d𝜗
�

�
𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲	(𝐞𝐱𝐩𝐞𝐜𝐭𝐞𝐝	𝐥𝐨𝐠R𝐥𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝)

− 𝐾𝐿 𝑞 𝜗 , 𝑝 𝜗 𝑚
𝐂𝐨𝐦𝐩𝐥𝐞𝐱𝐢𝐭𝐲

product	rule

Kullback-Leibler	divergence

a lower	bound	on	the
log-model	evidence



Model	comparison:	F	in	relation	to	Bayes	factors,	AIC,	BIC
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𝐁𝐚𝐲𝐞𝐬	𝐟𝐚𝐜𝐭𝐨𝐫 ≔
𝑝 𝑦 𝑚G

𝑝 𝑦 𝑚O
= exp log

𝑝 𝑦 𝑚G

𝑝 𝑦 𝑚O
= exp log 𝑝 𝑦 𝑚G − log 𝑝 𝑦 𝑚O

	
																												≈ exp 𝐹G − 𝐹O

[Meaning	of	the	Bayes	factor:				� 𝑚G 𝑦
� 𝑚O 𝑦

= � 𝑦 𝑚G
� 𝑦 𝑚O

� � 
� �¡

]

Posterior	odds Prior	odds
Bayes	factor

𝑭 = e𝑞 𝜗 log 𝑝 𝑦 𝜗,𝑚 d𝜗
�

�

− 𝐾𝐿 𝑞 𝜗 , 𝑝 𝜗 𝑚

				= Accuracy	 − Complexity

𝐀𝐈𝐂 ≔ Accuracy − 𝑝
	
𝐁𝐈𝐂 ≔ Accuracy −

𝑝
2 log𝑁

Number	of	parameters

Number	of	data	points



A	note	on	informative	priors
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• Any	model	consists	of	two	parts:	likelihood	and	prior.

• The	choice	of	likelihood	requires	as	much	justification	as	the	choice	of	prior	because	
it	is	just	as	«subjective»	as	that	of	the	prior.

• The	data	never	speak	for	themselves.	They	only	acquire	meaning	when	seen	through	
the	lens	of	a	model.	However,	this	does	not	mean	that	all	is	subjective	because	
models	differ	in	their	validity.

• In	this	light,	the	widespread	concern	that	informative	priors	might	bias	results	
(while	the	form	of		the	likelihood	is	taken	as	a	matter	of	course	requiring	no	
justification)	is	misplaced.

• Informative	priors	are	an	important	tool	and	their	use	can	be	justified	by	
establishing	the	validity	(face,	construct,	and	predictive)	of	the	resulting	model	as	
well	as	by	model	comparison.



A	note	on	uninformative priors

• Using	a	flat	or	«uninformative»	prior	doesn’t	make	you	more	«data-driven»	than	
anybody	else.	It’s	a	choice	that	requires	just	as	much	justification	as	any	other.

• For	example,	if	you’re	studying	a	small	effect	in	a	noisy	setting,	using	a	flat	prior	
means	assigning	the	same	prior	probability	mass	to	the	interval	covering	effect	
sizes	-1	to	+1	as	to	that	covering	effect	sizes	+999	to	+1001.

• Far	from	being	unbiased,	this	amounts	to	a	bias	in	favor	of	implausibly	large	
effect	sizes.	Using	flat	priors	is	asking	for	a	replicability	crisis.

• One	way	to	address	this	is	to	collect	enough	data	to	swamp	the	inappropriate	
priors.	A	cheaper	way	is	to	use	more	appropriate	priors.

• Disclaimer:	if	you	look	at	my	papers,	you	will	find	flat	priors.
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Applications	of	Bayesian	inference
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realignment smoothing

normalisation

general linear model

template

Gaussian 
field theory

p <0.05

statistical
inference

segmentation
and normalisation

dynamic causal
modelling

posterior probability
maps (PPMs)

multivariate
decoding
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grey matter CSFwhite matter

…

…

yi ci l

µk

µ2

µ1

s1 s 2 s k

class variances

class
means

ith voxel
value

ith voxel
label

class
frequencies

Segmentation	(mixture	of	Gaussians-model)
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PPM: regions best explained
by short-term memory model

PPM: regions best explained 
by long-term memory model

fMRI time series

GLM coeff

prior variance
of GLM coeff

prior variance
of data noise

AR coeff
(correlated noise)

short-term memory
design matrix (X)

long-term memory
design matrix (X)

fMRI	time	series	analysis
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m2m1 m3 m4

V1 V5stim

PPC

attention

V1 V5stim

PPC

attention

V1 V5stim

PPC

attention

V1 V5stim

PPC

attention

m1 m2 m3 m4

15

10

5

0

V1 V5stim

PPC

attention

1.25

0.13

0.46

0.39
0.26

0.26

0.10
estimated

effective synaptic strengths
for best model (m4)

models marginal likelihood

ln p y m( )

Dynamic	causal	modeling	(DCM)
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m1

m2

di
ffe

re
nc

es
 in

 lo
g-

m
od

el
 e

vi
de

nc
es

( ) ( )1 2ln lnp y m p y m-

subjects

Fixed	effect

Random	effect

Assume	all	subjects	correspond	to	the	same	model

Assume	different	subjects	might	correspond	to	different	models

Model	comparison	for	group	studies
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Thanks
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