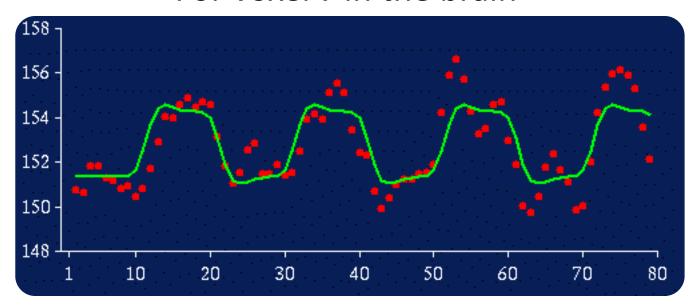
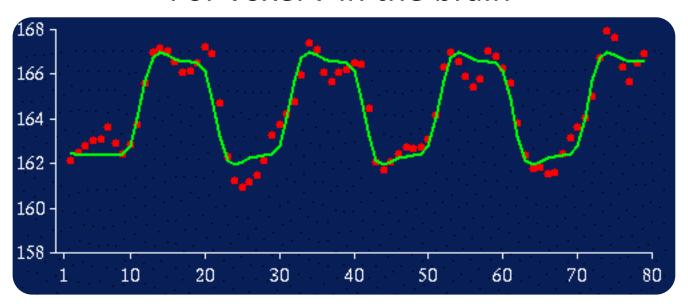

Group Analyses

Emma Holmes




For voxel *v* in the brain

For voxel *v* in the brain

For voxel *v* in the brain

Second Level: Group Analysis

	С
Subject 1	4
Subject 2	3
Subject 3	2
Subject 4	1
Subject 5	1
Subject 6	2
Subject 7	3
Subject 8	3
Subject 9	3
Subject 10	2
Subject 11	4
Subject 12	4

Group effect (mean [m]) = 2.67Between subject variability (stand dev [sb]) = 1.07Standard error of the mean (SEM) = sb/sqrt(N)= 0.31

Is the effect significant at voxel v? (one-sample t-test)

$$t = \text{m/SEM} = 2.67/0.31 = 8.61$$

$$p = 10^{-6}$$

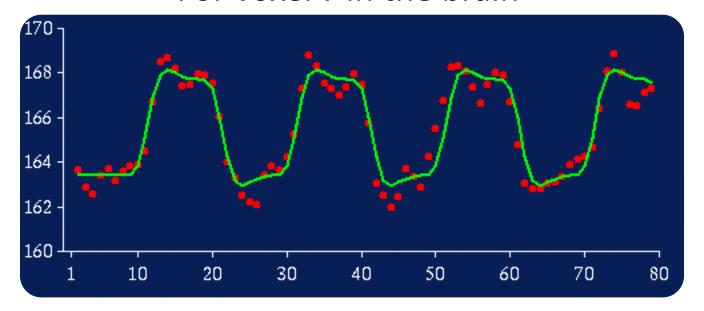
This is called a Random Effects Analysis, because we compare the group effect to the between-subjects variability

Second Level: Group Analysis

	С
Subject 1	4
Subject 2	3
Subject 3	2
Subject 4	1
Subject 5	1
Subject 6	2
Subject 7	3
Subject 8	3
Subject 9	3
Subject 10	2
Subject 11	4
Subject 12	4

Group effect (mean [m]) = 2.67Between subject variability (stand dev [sb]) = 1.07Standard error of the mean (SEM) = sb/sqrt(N)= 0.31

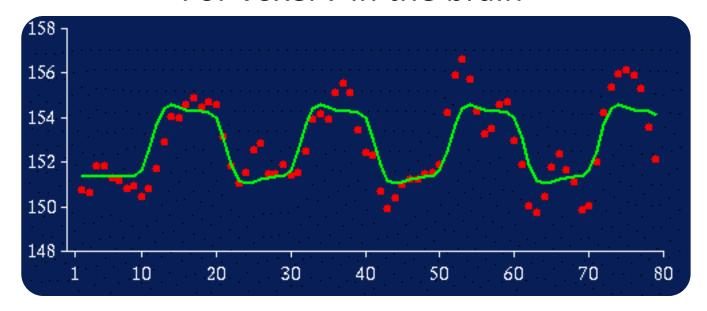
Is the effect significant at voxel v? (one-sample t-test)


$$t = \text{m/SEM} = 2.67/0.31 = 8.61$$

$$p = 10^{-6}$$

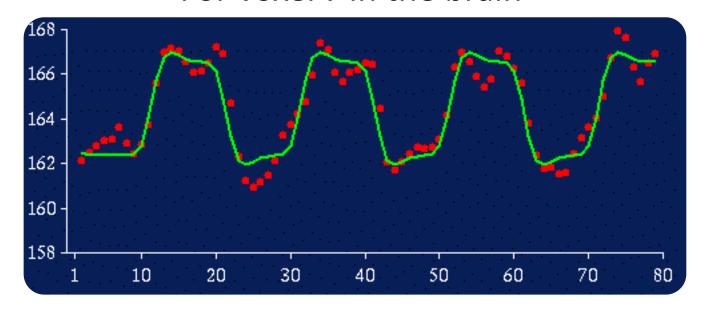
...also known as the SUMMARY STATISTIC approach: We summarise the response of each subject by a single statistic (their effect size)

Not recommended for neuroimaging data


For voxel v in the brain

Effect size (c) ≈ 4 Within subject variability (s_w) ≈ 0.9

Not recommended for neuroimaging data

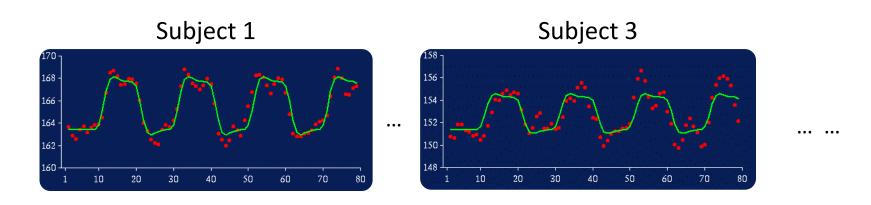

For voxel v in the brain

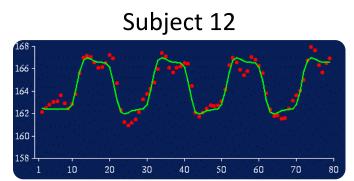
Effect size (c) ≈ 2 Within subject variability (s_w) ≈ 1.5

Not recommended for neuroimaging data

For voxel v in the brain

Effect size (c) ≈ 4 Within subject variability (s_w) ≈ 1.1


Fixed Effects Analysis


FIXED EFFECTS

ANALYSIS:

neuroimaging data

Concatenate timeseries

Each measurement is one scan from one subject ... we now have 600 scans (50 scans in each of 12 subjects)

We use this to calculate the average effect

Group Analysis: Fixed Effects Not recommended for meuroimaging data

= 2.67

= 1.07

= 0.04

= sw /sqrt(N)

	S _w
Subject 1	0.9
Subject 2	1.2
Subject 3	1.5
Subject 4	0.5
Subject 5	0.4
Subject 6	0.7
Subject 7	0.8
Subject 8	2.1
Subject 9	1.8
Subject 10	0.8
Subject 11	0.7
Subject 12	1.1

Group effect (mean [m])

Average within subject variability (sw)

Standard error of the mean (SEMW)

Is the effect significant at voxel v?

$$t = m/SEMW = 62.7$$

$$p = 10^{-51}$$

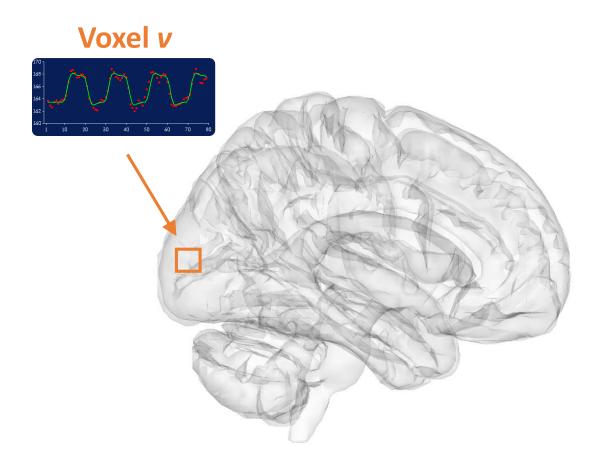
Number of data points is now total number of scans (i.e. 600)

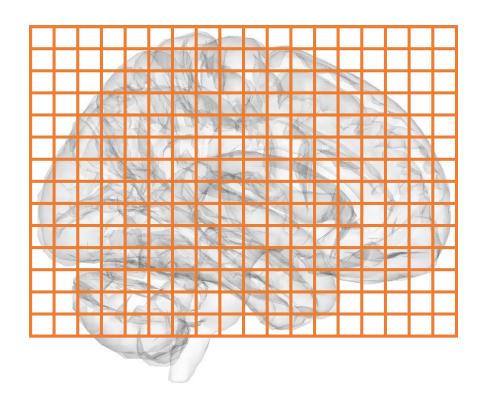
Random Effects vs. Fixed Effects

Fixed Effects Analysis (FFX)

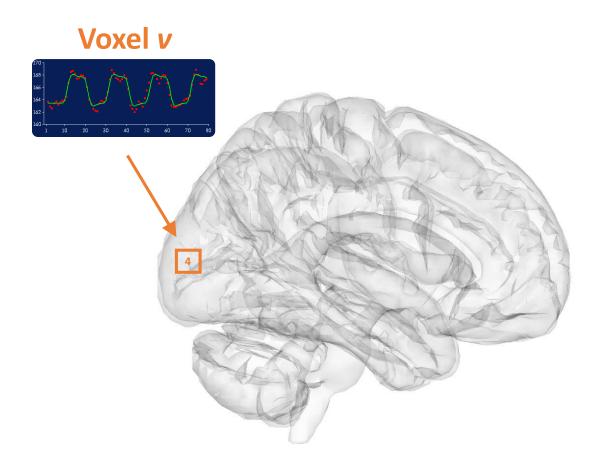
- We compare the group effect to the within-subject variability.
- It an inference about this specific sample of subjects.
- Statistics are often inflated relative to random effects analysis.

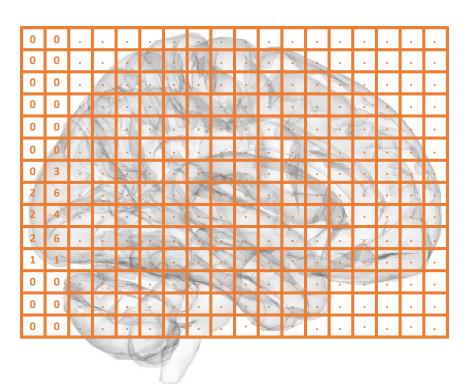
Random Effects Analysis (RFX)


- We compare the group effect to the between-subject variability.
- It is an inference about the population from which the subjects were drawn: If you had a new subject from that population, you could be confident they would also show the effect.

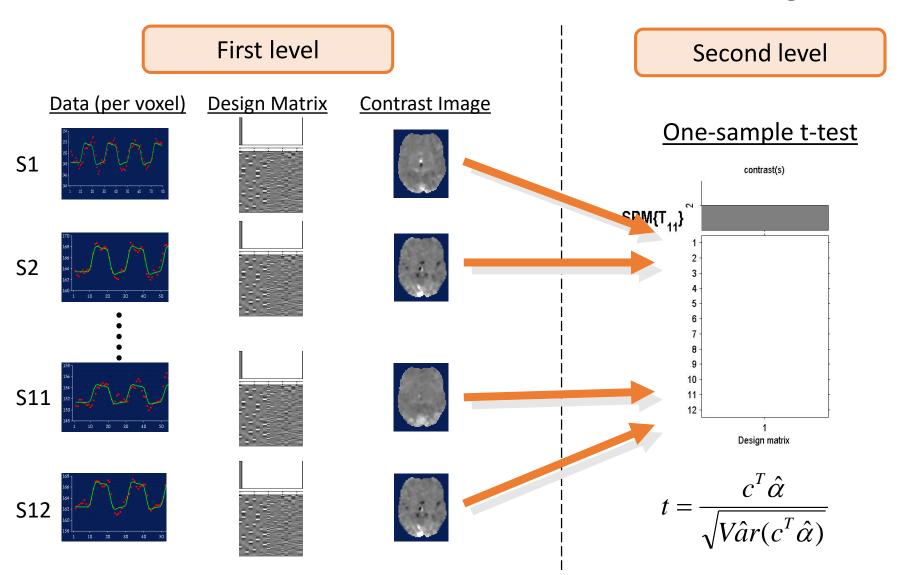

Random Effects vs. Fixed Effects

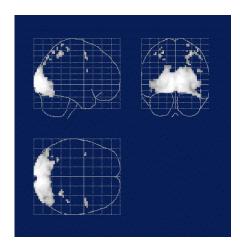
Mixed Effects Analysis (MFX)


- Has some random and some fixed effects.
- spm_mfx


Beyond a single voxel...

Beyond a single voxel...




Random Effects: Summary Statistic

First level Data (per voxel) **Design Matrix Contrast Image S1 S2** S11

Random Effects: Summary Statistic

SPM(t)

Random effects: summary statistic approach

Hierarchical model

$$y = X^{(1)}\theta^{(1)} + \varepsilon^{(1)}$$

Level 2:

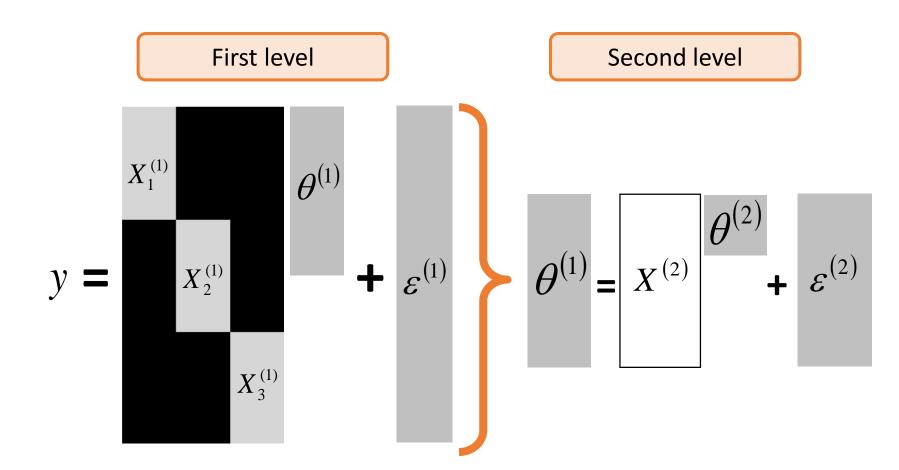
$$\theta^{(1)} = X^{(2)}\theta^{(2)} + \varepsilon^{(2)}$$

•

$$\theta^{(n-1)} = X^{(n)}\theta^{(n)} + \varepsilon^{(n)}$$

At each level, the distribution of parameters is dependent on the level above

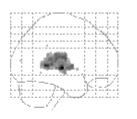
Multiple variance components at each level

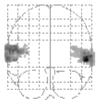

$$C_{\varepsilon}^{(i)} = \sum_{k} \lambda_{k}^{(i)} Q_{k}^{(i)}$$

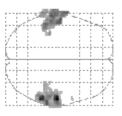
What we don't know: distribution of parameters and variance parameters.

Hierarchical Model

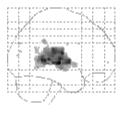
$$y = X^{(1)}\theta^{(1)} + \varepsilon^{(1)}$$
$$\theta^{(1)} = X^{(2)}\theta^{(2)} + \varepsilon^{(2)}$$

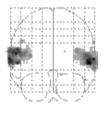

(1) Within subject
variance, s_w(i)
(2) Between subject
variance, s_b

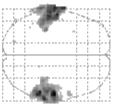



spm_reml

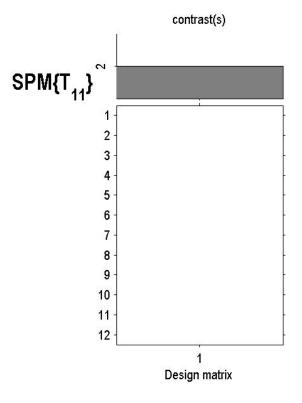
Example Results: Auditory Experiment


Summary statistic





Hierarchical model


Summary Statistic vs. Hierarchical Model

- The summary stats approach is exact if, for each session/subject:
 - Within-subject variances are the same
 - First-level design (e.g. number of trials) are the same
- The summary stats approach is robust against typical violations (SPM book 2006; Mumford and Nichols, 2009, Neuroimage).

 We might use a hierarchical model in epilepsy research where number of seizures is not under experimental control and is highly variable over subjects.

Beyond the one sample t-test...

Second level

Multiple Conditions (within subjects)

Condition 1	Condition 2	Condition 3
Subject 1	Subject 1	Subject 1
Subject 2	Subject 2	Subject 2
•••		•••
Subject 12	Subject 12	Subject 12

Second level: One-way ANOVA within subjects

Multiple Conditions (between subjects)

Condition 1	Condition 2	Condition 3
Subject 1	Subject 13	Subject 25
Subject 2	Subject 14	Subject 26
•••		•••
Subject 12	Subject 24	Subject 36

e.g., effects of a drug

Second level: One way ANOVA between subjects (or if only two conditions, a two-sample t-test)

Summary

- Group inference usually proceeds with random effects analysis, not fixed effects analysis. Group effects are compared to between rather than within subject variability
- Hierarchical models provide a gold-standard for random effects group analysis, but are computationally intensive
- Summary statistics are a robust method for random effects group analysis when conditions are met
- If you want to contrast two conditions within subjects, you can use a one-sample t-test at the second level. If more conditions, you can use a one-way ANOVA. If different groups, you can use a between-subjects ANOVA or two-sample t-test