Inference on SPMs: Random Field Theory & Alternatives

Thomas Nichols, Ph.D. Oxford Big Data Institute Li Ka Shing Centre for Health Information and Discovery Nuffield Department of Population Health University of Oxford

FIL SPM Course

Assessing Statistic Images...

Assessing Statistic Images

Where's the signal?

High Threshold

Good Specificity

Poor Power (risk of false negatives)

Med. Threshold

Low Threshold

Poor Specificity (risk of false positives)

Good Power

...but why threshold?!

Blue-sky inference: What we'd like

- Don't threshold, model the signal!
 - Signal location?
 - Estimates and CI's on (x,y,z) location
 - Signal magnitude?
 - CI's on % change
 - Spatial extent?
- on $\hat{\theta}_{mag}$ $\hat{\theta}_{loc}$ $\hat{\theta}_{ext}$ space
- Estimates and CI's on activation volume
- Robust to choice of cluster definition
- ...but this requires an explicit spatial model ₅
 - We only have a univariate linear model at each voxel!

Real-life inference: What we get

- Signal location
 - Local maximum *no inference*
- Signal magnitude
 - Local maximum intensity P-values (& CI's)
- Spatial extent
 - Cluster volume P-value, no CI's
 - Sensitive to blob-defining-threshold

Voxel-level Inference

- Retain voxels above α -level threshold u_{α}
- Gives best spatial specificity
 The null hyp. at a single voxel can be rejected

Cluster-level Inference

- Two step-process
 - Define clusters by arbitrary threshold u_{clus}
 - Retain clusters larger than α -level threshold k_{α}

Cluster-level Inference

- Typically better sensitivity
- Worse spatial specificity
 - The null hyp. of entire cluster is rejected
 - Only means that *one or more* of voxels in cluster active

Set-level Inference

- Count number of blobs *c*Minimum blob size *k*
- Worst spatial specificity
 - Only can reject global null hypothesis

Multiple comparisons...

Hypothesis Testing

- Null Hypothesis H_0
- Test statistic *T*
 - -t observed realization of T
- α level
 - Acceptable false positive rate
 - Level $\alpha = P(T > u_{\alpha} | H_0)$

- Threshold u_{α} controls false positive rate at level α
- P-value
 - Assessment of t assuming H_0
 - $P(T > t | H_0)$
 - Prob. of obtaining stat. as large or larger in a new experiment
 - P(Data|Null) <u>not</u> P(Null|Data)

Multiple Comparisons Problem

• Which of 100,000 voxels are sig.? $-\alpha=0.05 \Rightarrow 5,000$ false positive voxels

• Which of (random number, say) 100 clusters significant? $-\alpha = 0.05 \Longrightarrow 5$ false positives clusters

MCP Solutions: Measuring False Positives

- Familywise Error Rate (FWER)
 - Familywise Error
 - Existence of one or more false positives
 - FWER is probability of familywise error
- False Discovery Rate (FDR)
 - -FDR = E(V/R)
 - R voxels declared active, V falsely so
 - Realized false discovery rate: V/R

MCP Solutions: Measuring False Positives

- Familywise Error Rate (FWER)
 - Familywise Error
 - Existence of one or more false positives
 - FWER is probability of familywise error
- False Discovery Rate (FDR)
 - -FDR = E(V/R)
 - R voxels declared active, V falsely so
 - Realized false discovery rate: V/R

FWE MCP Solutions: Bonferroni

- For a statistic image *T*...
 - $-T_i$ *i*th voxel of statistic image T
- ... use $\alpha = \alpha_0 / V$
 - α_0 FWER level (e.g. 0.05)
 - -V number of voxels
 - $-u_{\alpha}$ α -level statistic threshold, $P(T_i \ge u_{\alpha}) = \alpha$
- By Bonferroni inequality...

FWER = P(FWE) = P($\cup_i \{T_i \ge u_\alpha\} \mid H_0$) $\le \sum_i P(T_i \ge u_\alpha \mid H_0)$ = $\sum_i \alpha$ = $\sum_i \alpha_0 / V = \alpha_0$

Conservative	under correlation
Independent:	V tests
Some dep.:	? tests
Total dep.:	1 test

Random field theory...

SPM approach: Random fields...

- Consider statistic image as lattice representation of a continuous random field
- Use results from continuous random field theory

FWER MCP Solutions: Random Field Theory

• Euler Characteristic χ_{μ} - Topological Measure • #blobs - #holes - At high thresholds, Threshold just counts blobs Random Field $-FWER = P(Max voxel \ge u \mid H_o)$ = P(One or more blobs $| H_o$) $\simeq P(\chi_u \ge 1 \mid H_o)$ Never more $\rightarrow \approx \mathrm{E}(\chi_{\mu} \mid H_{o})$ than 1 blob

Suprathreshold Sets

RFT Details: Expected Euler Characteristic

 $E(\chi_u) \approx \lambda(\Omega) \ |\Lambda|^{1/2} (u^2 - 1) \exp(-u^{2/2}) / (2\pi)^2$ - $\Omega \longrightarrow$ Search region $\Omega \subset \mathbb{R}^3$

- $-\lambda(\Omega) \rightarrow \text{volume}$
- $|\Lambda|^{1/2} \rightarrow \text{roughness}$
- Assumptions
 - Multivariate Normal
 - Stationary*
 - ACF twice differentiable at 0
- * Stationary
 - Results valid w/out stationary
 - More accurate when stat. holds

Random Field Theory Smoothness Parameterization

• $E(\chi_u)$ depends on $|\Lambda|^{1/2}$ - Λ roughness matrix:

$$\begin{split} \Lambda &= \operatorname{Var} \left(\frac{\partial G}{\partial (x, y, z)} \right) \\ &= \begin{pmatrix} \operatorname{Var} \left(\frac{\partial G}{\partial x} \right) & \operatorname{Cov} \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y} \right) & \operatorname{Cov} \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial z} \right) \\ \operatorname{Cov} \left(\frac{\partial G}{\partial y}, \frac{\partial G}{\partial x} \right) & \operatorname{Var} \left(\frac{\partial G}{\partial y} \right) & \operatorname{Cov} \left(\frac{\partial G}{\partial y}, \frac{\partial G}{\partial z} \right) \\ \operatorname{Cov} \left(\frac{\partial G}{\partial z}, \frac{\partial G}{\partial x} \right) & \operatorname{Cov} \left(\frac{\partial G}{\partial z}, \frac{\partial G}{\partial y} \right) & \operatorname{Var} \left(\frac{\partial G}{\partial z} \right) \end{pmatrix} \\ &= \begin{pmatrix} \lambda_{xx} & \lambda_{xy} & \lambda_{xz} \\ \lambda_{yx} & \lambda_{yy} & \lambda_{yz} \\ \lambda_{zx} & \lambda_{zy} & \lambda_{zz} \end{pmatrix} \end{split}$$

- Smoothness
 parameterized as
 Full Width at Half Maximum
 - FWHM of Gaussian kernel needed to smooth a white noise random field to roughness A

$$|\Lambda|^{1/2} = \frac{(4\log 2)^{3/2}}{\text{FWHM}_x\text{FWHM}_y\text{FWHM}_z}$$

Random Field Theory Smoothness Parameterization

• RESELS

- Resolution Elements
- -1 RESEL = FWHM_x × FWHM_y × FWHM_z
- RESEL Count *R*
 - $R = \lambda(\Omega) \sqrt{|\Lambda|} = (4\log 2)^{3/2} \lambda(\Omega) / (FWHM_x \times FWHM_y \times FWHM_z)$
 - Volume of search region in units of smoothness
 - Eg: 10 voxels, 2.5 FWHM 4 RESELS

- Beware RESEL misinterpretation
 - RESEL are not "number of independent 'things' in the image"
 - See Nichols & Hayasaka, 2003, Stat. Meth. in Med. Res.

Random Field Theory Smoothness Estimation

- Smoothness est'd from standardized residuals
 - Variance of gradients
 - Yields resels per voxel (RPV)
- RPV image
 - Local roughness est.
 - Can transform in to local smoothness est.
 - FWHM Img = (RPV Img)^{-1/D}
 - Dimension D, e.g. D=2 or 3

spm_imcalc_ui('RPV.img', ...
'FWHM.img','i1.^(-1/3)')

Random Field Intuition

• Corrected P-value for voxel value *t*

 $P^{c} = P(\max T > t)$ $\approx E(\chi_{t})$ $\approx \lambda(\Omega) |\Lambda|^{1/2} t^{2} \exp(-t^{2}/2)$

- Statistic value *t* increases
 - P^c decreases (but only for large *t*)
- Search volume increases
 - P^c increases (more severe MCP)
- Smoothness increases (roughness $|\Lambda|^{1/2}$ decreases)
 - P^c decreases (less severe MCP)

RFT Details: Unified Formula

• General form for expected Euler characteristic

• χ^2 , *F*, & *t* fields • restricted search regions • *D* dimensions •

$$\mathsf{E}[\chi_u(\Omega)] = \sum_d \mathsf{R}_d(\Omega) \,\rho_d(u)$$

$R_d(\Omega)$: *d*-dimensional Minkowski functional of Ω

– function of dimension, space Ω and smoothness:

- $R_0(\Omega) = \chi(\Omega)$ Euler characteristic of Ω
- $R_1(\Omega)$ = resel diameter

 $R_2(\Omega)$ = resel surface area

 $R_3(\Omega) = resel volume$

 $\rho_d(\Omega)$: *d*-dimensional EC density of $Z(\underline{x})$

-function of dimension and threshold, specific for RF type:

E.g. Gaussian RF:

 $\rho_0(u) = 1 - \Phi(u)$

 $\rho_1(u) = (4 \ln 2)^{1/2} \exp(-u^2/2) / (2\pi)$

 $\rho_2(u) = (4 \ln 2) \exp(-u^2/2) / (2\pi)^{3/2}$

 $\rho_3(u) = (4 \ln 2)^{3/2} (u^2 - 1) \exp(-u^2/2) / (2\pi)^2$

 $\rho_4(u) = (4 \ln 2)^2 (u^3 - 3u) \exp(-u^2/2) / (2\pi)^{5/2}$

Random Field Theory Cluster Size Tests

- Expected Cluster Size
 - E(S) = E(N)/E(L)
 - S cluster size
 - N suprathreshold volume $\lambda(\{T > u_{clus}\})$
 - L number of clusters
- $E(N) = \lambda(\Omega) P(T > u_{clus})$
- $E(L) \approx E(\chi_u)$ - Assuming no holes

Random Field Theory Limitations

- Sufficient smoothness
 - FWHM smoothness $3-4 \times \text{voxel size}(Z)$
 - More like $\sim 10 \times$ for low-df T images
- Smoothness estimation
 - Estimate is biased when images not sufficiently Continuous Random Field
 Smooth
- Multivariate normality
 - Virtually impossible to check
- Several layers of approximations
- Stationary required for cluster size results

Lattice Image

 $\boldsymbol{\mathcal{N}}$

Real Data

- fMRI Study of Working Memory - 12 subjects, block design Marshuetz et al (2000) – Item Recognition • Active: View five letters, 2s pause, view probe letter, respond • Baseline: View XXXXX, 2s pause, view Y or N, respond • Second Level RFX – Difference image, A-B constructed for each subject
 - One sample *t* test

Real Data: RFT Result

- Threshold
 - -S = 110,776
 - $\begin{array}{c} \ 2 \times 2 \times 2 \text{ voxels} \\ 5.1 \times 5.8 \times 6.9 \text{ mm} \\ \text{FWHM} \end{array}$
 - u = 9.870
- Result
 - 5 voxels above the threshold
 - 0.0063 minimum
 FWE-corrected
 p-value

Massive Null (resting-state) fMRI Evaluation

Goal: Evaluate AFNI, FSL & SPM *task* fMRI with *resting-state* fMRI data, using 4 designs, 3 million randomised analyses

Outcome: Voxel FWE *OK* (Conservative) Cluster FWE 0.001 *OK* Cluster FWE 0.01 *Very Bad* (Liberal)

Why? Spatial ACF not Gaussian, Nonstationarity smoothness

Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates (2016). Eklund, TE Nichols, H Knutsson PNAS, 113(28), 7900-5

Real Data: SnPM Promotional

t₁₁ Statistic, RF & Bonf. Threshold

t₁₁ Statistic, Nonparametric Threshold

- Nonparametric method more powerful than RFT for low DF
- "Variance Smoothing" even more sensitive
- FWE controlled all the while!
- http://nisox.org/Software/SnPM

Smoothed Variance *t* Statistic, ³⁶ Nonparametric Threshold False Discovery Rate...

MCP Solutions: Measuring False Positives

- Familywise Error Rate (FWER)
 - Familywise Error
 - Existence of one or more false positives
 - FWER is probability of familywise error
- False Discovery Rate (FDR)
 - -FDR = E(V/R)
 - R voxels declared active, V falsely so
 - Realized false discovery rate: V/R

False Discovery Rate

• For any threshold, all voxels can be cross-classified:

	Accept Null	Reject Null	
Null True	V _{0A}	V _{0R}	m ₀
Null False	V _{1A}	V _{1R}	m ₁
	N _A	N _R	V

Realized FDR

 $rFDR = V_{0R}/(V_{1R}+V_{0R}) = V_{0R}/N_R$

- If $N_R = 0$, rFDR = 0

• But only can observe N_R , don't know V_{1R} & V_{0R} – We control the *expected* rFDR FDR = E(rFDR)

False Discovery Rate Illustration:

Noise

Signal+Noise

Control of Per Comparison Rate at 10%

11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% Percentage of Null Pixels that are False Positives

Control of Familywise Error Rate at 10%

Occurrence of Familywise Error

Control of False Discovery Rate at 10%

6.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2% 8.7% Percentage of Activated Pixels that are False Positives 41

Benjamini & Hochberg Procedure

- Select desired limit *q* on FDR
- Order p-values, $p_{(1)} \le p_{(2)} \le ... \le p_{(V)}$
- Let *r* be largest *i* such that

JRSS-B (1995) 57:289-300

 $p_{(i)} \leq i/V \times q$

 Reject all hypotheses corresponding to *p*₍₁₎, ..., *p*_(r).

Adaptiveness of Benjamini & Hochberg FDR

P-value threshold when all signal: α

P-value threshold when no signal: α/V

Real Data: FDR Example

• Threshold

-u = 3.83

- Result
 - 3,073 voxels above u
 <0.0001 minimum
 FDR-corrected
 p-value

FDR Threshold = 3.83 3,073 voxels FWER Perm. Thresh. = 9.87 7 voxels

FDR Changes

- Before SPM8
 - Only voxel-wise FDR
- SPM8
 - Cluster-wise FDR
 - Peak-wise FDR
 - Voxel-wise available: edit spm_defaults.m to read
 defaults.stats.topoFDR = 0;
 - Note!
 - Both cluster- and peak-wise FDR depends on cluster-forming threshold!

Item Recognition data

Cluster-forming threshold P=0.001 Peak-wise FDR: t=4.84, P_{FDR} 0.836 Cluster-forming threshold P=0.01 Peak-wise FDR: t=4.84, P_{FDR} 0.027

Cluster FDR: Example Data

Level 5% Voxel-FWE

Level 5% Voxel-FDR

Level 5% Cluster-FWE P = 0.001 cluster-forming thresh $k_{FWE} = 241, 5$ clusters

Level 5% Cluster-FDR, P = 0.001 cluster-forming thresh $k_{FDR} = 138, 6$ clusters

SPM{T₁₁}

Level 5% **Cluster-FWE** P = 0.01 cluster-forming thresh $k_{FWE} = 1132$, 4 clusters

Level 5% Cluster-FDR P = 0.01 cluster-forming thresh $k_{FDR} = 1132$, 4 clusters

Conclusions

- Must account for multiplicity
 - Otherwise have a fishing expedition
- FWER
 - Very specific, not very sensitive
- FDR
 - Voxel-wise: Less specific, more sensitive
 - Cluster-, Peak-wise: Similar to FWER

References

 TE Nichols & S Hayasaka, Controlling the Familywise Error Rate in Functional Neuroimaging: A Comparative Review. Statistical Methods in Medical Research, 12(5): 419-446, 2003.

TE Nichols & AP Holmes, Nonparametric Permutation Tests for Functional Neuroimaging: A Primer with Examples. *Human Brain Mapping*, 15:1-25, 2001.

CR Genovese, N Lazar & TE Nichols, Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate. *NeuroImage*, 15:870-878, 2002.

JR Chumbley & KJ Friston. False discovery rate revisited: FDR and topological inference using Gaussian random fields. *NeuroImage*, 44(1), 62-70, 2009