

Multiple comparisons: problem and solutions

Gareth Barnes

Wellcome Centre for Human Neuroimaging University College London

SPM M/EEG Course

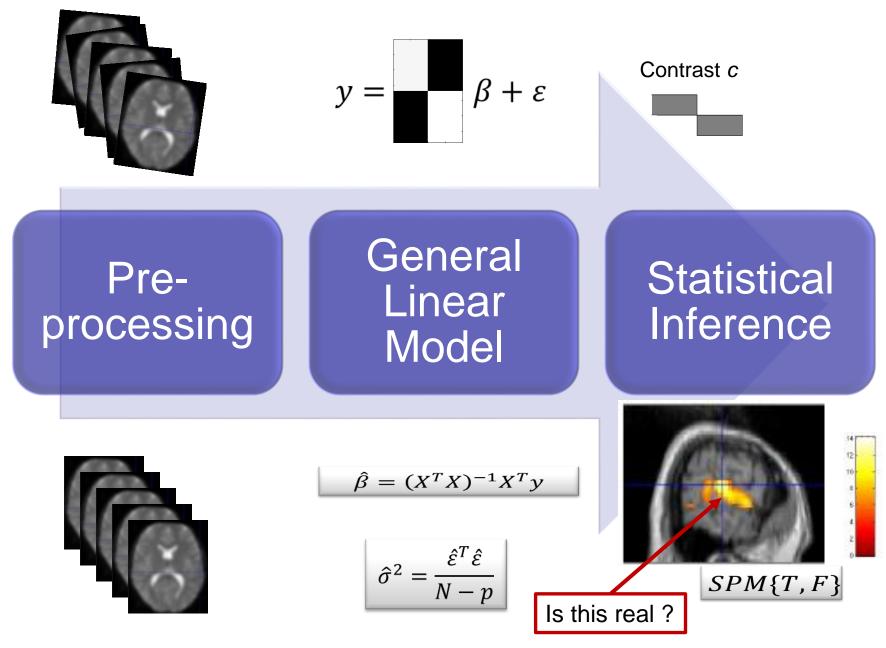
By the end of this talk

Understand what the multiple comparisons problem is.

Be familiar with some common approaches.

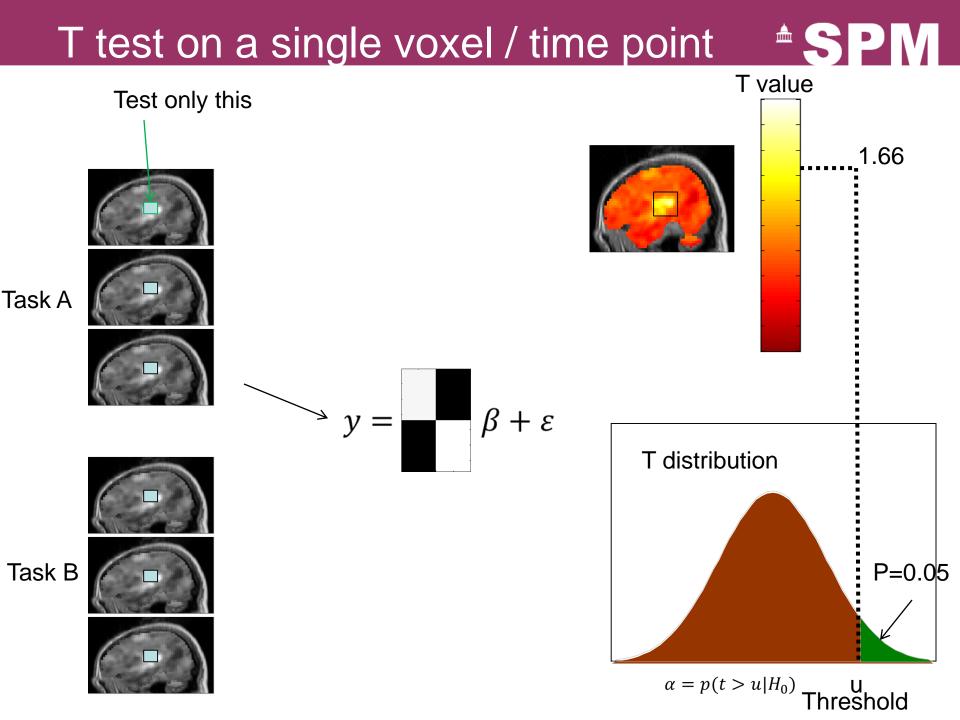
Be able to explain Random field theory.

^ASPM

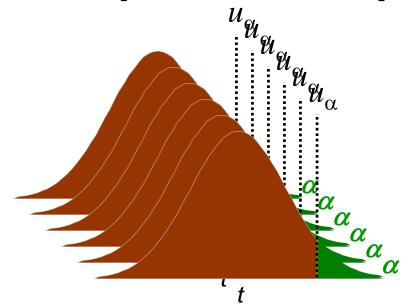


Need to avoid cherry-picking. i.e. need an objective threshold.

Need to adjust this threshold depending on how many independent tests you do. (e.g. if you do 20 tests with a false positive rate of 1/20 .. then expect one peak just due to chance).



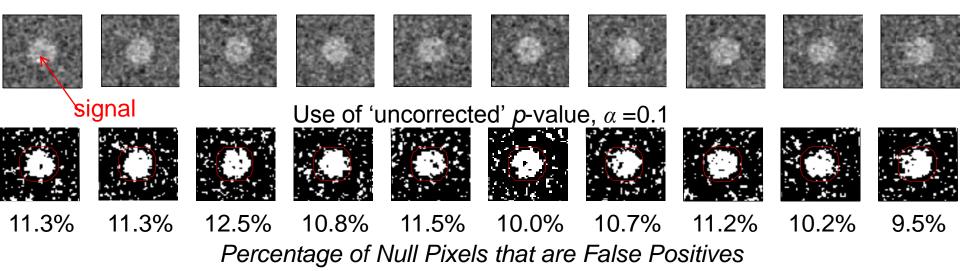
Multiple tests in space



If we have 100,000 voxels,

 α =0.05 \Rightarrow 5,000 false positive voxels.

This is clearly undesirable; to correct for this we can define a null hypothesis for a collection of tests.



Bonferroni correction

Set the test-wise error rate (α) to be a the ideal Family-Wise Error rate (FWER) (α_{FWE}) divided by the number of tests.

$$\alpha = \frac{\alpha_{FWE}}{N}$$

e.g. for five tests choose p<0.01 for each test to control family at p<0.05

This correction does not require the tests to be independent but becomes very stringent if they are not.

Family-Wise Error Rate

Family-Wise Error rate (FWER) = 'corrected' p-value

i.e. p<0.01 corrected, i.e. 1 false positive every 10 experiments

False

positive

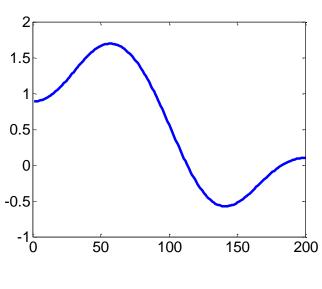
Use of 'corrected' *p*-value, $\alpha = 0.1$

Summary

- Typically we control one test. Set threshold such that one in twenty tests we will get a false positive (p<0.05).
- Need to set family wise error rate so that in one in twenty experiments you will get a false positive (p<0.05, corrected).
- Do this by setting a much more conservative threshold.

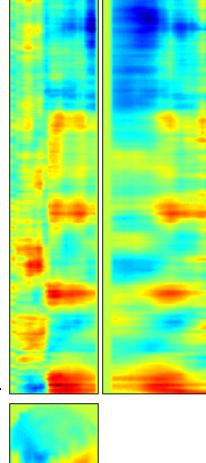
[≜]SPM

What about data with different topologies and smoothness..

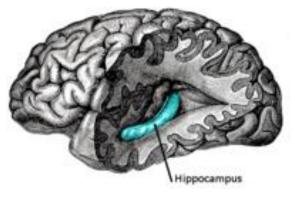


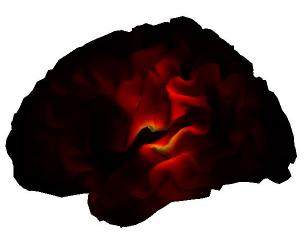
Smooth time

Different smoothness In time and space



Volumetric ROIs



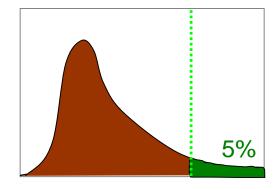


[▲]SPN

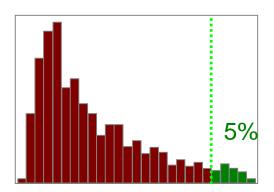
Non-parametric inference: permutation tests

to control FWER

- Parametric methods
 - Assume distribution of max statistic under null hypothesis.

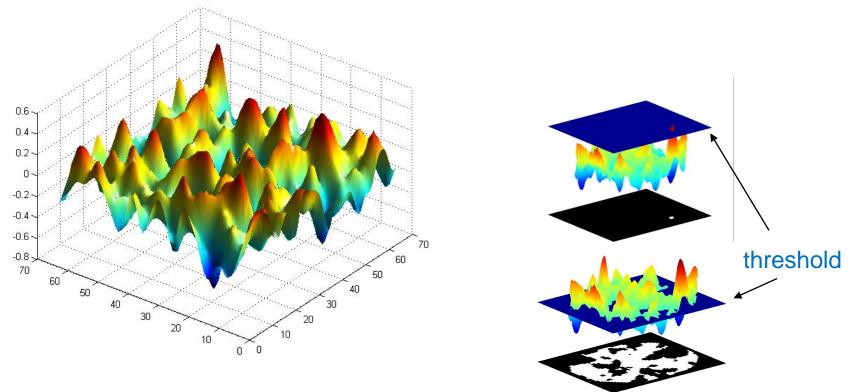


- Nonparametric methods
 - Use *data* to find
 distribution of *max* statistic
 under null hypothesis.



Random Field Theory

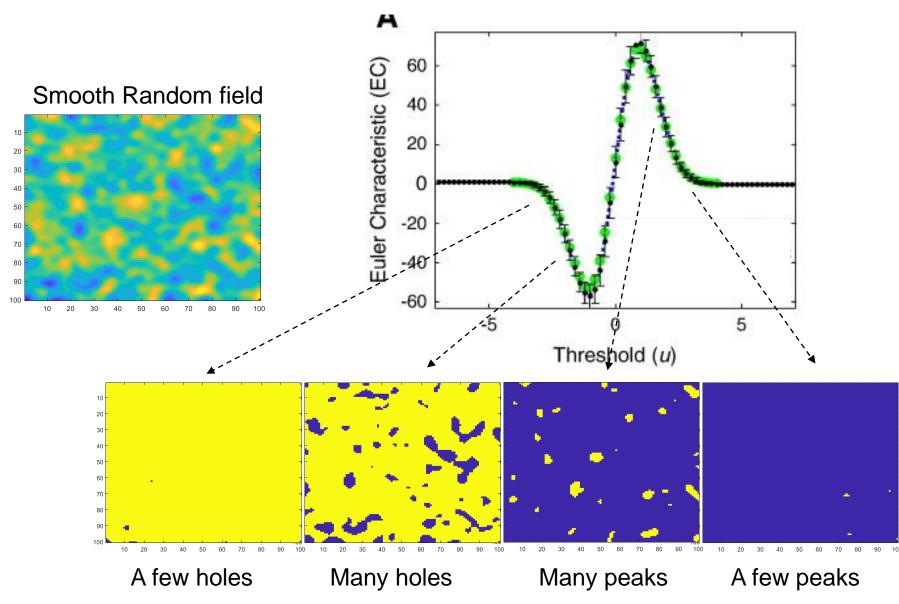
A random field : an array of smoothly varying test statistics. e.g. a slice through a t-statistic brain image.

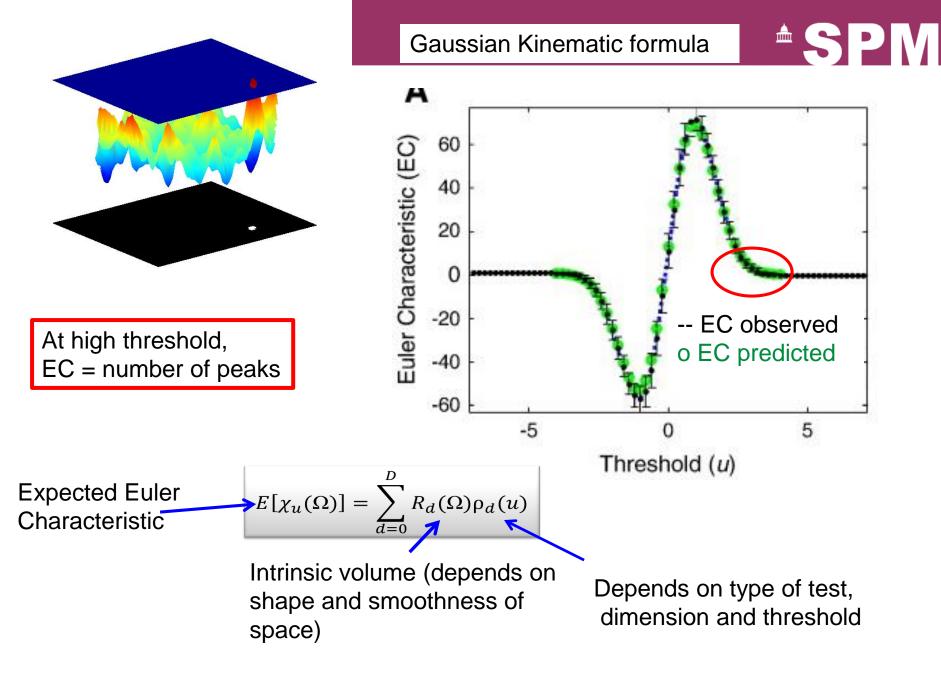


Keith Worsley, Karl Friston, Jonathan Taylor, Robert Adler and colleagues

Euler characteristic (EC) at threshold (u) = Number blobs- Number holes

[≜]SPM





Number peaks= intrinsic volume * peak density

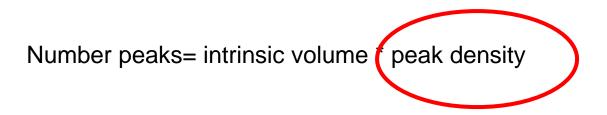
Currant bun analogy

$$E[\chi_u(\Omega)] = \sum_{d=0}^D R_d(\Omega) \rho_d(u)$$

Number peaks= intrinsic volume * peak density

Number of currants = volume of bun * currant density

How do we specify peak (or EC) density



$$E[\chi_u(\Omega)] = \sum_{d=0}^{D} R_d(\Omega) \rho_d(u)$$

Number peaks= intrinsic volume * peak density

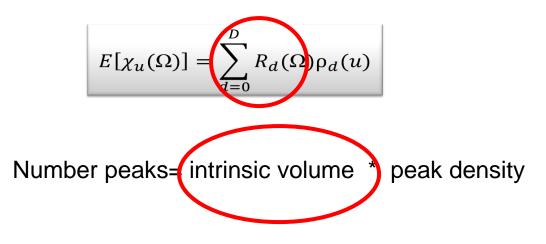
The EC density - depends on the type of random field (t, F, Chi etc), the dimension of the test (2D,3D), and the threshold. i.e. it is **data independent**

Number of currants = bun volume * currant density

Peak densities (as a function of threshold) for the different fields are known

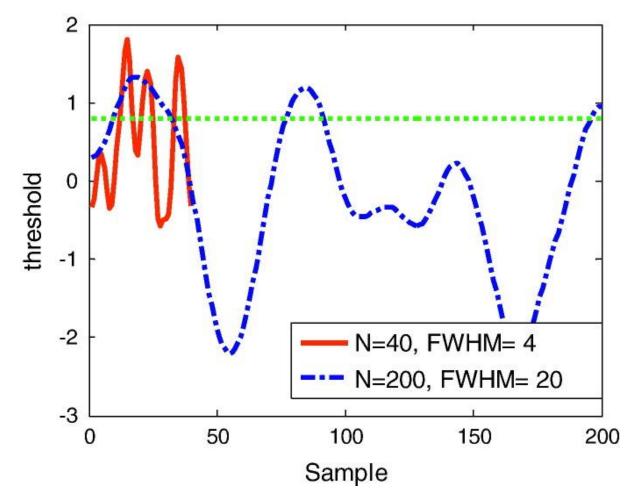
See J.E. Taylor, K.J. Worsley. J. Am. Stat. Assoc., 102 (2007), pp. 913–928

Currant bun analogy



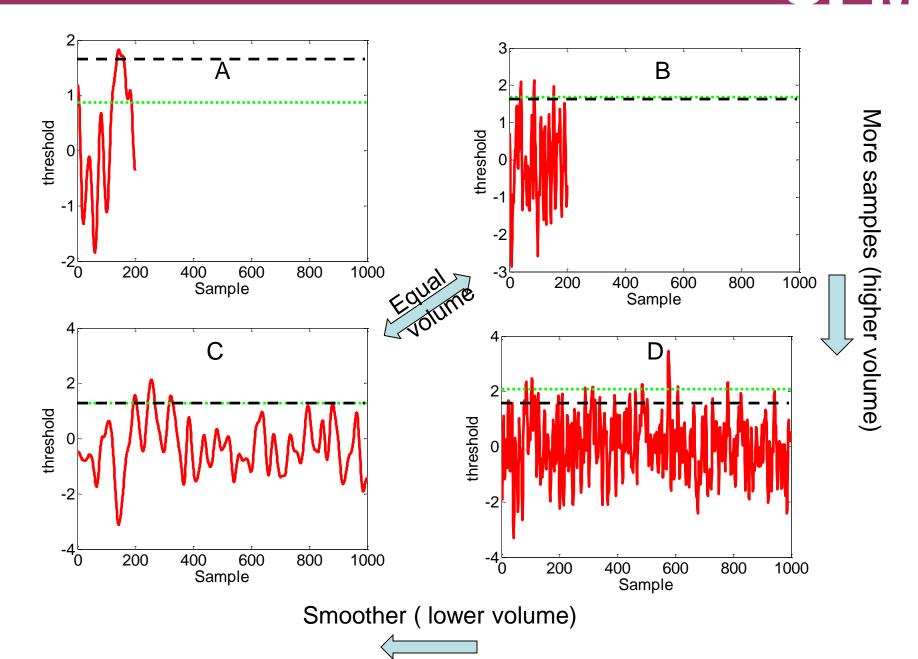
Number of currants = bun volume * currant density

LKC or resel estimates normalize volume



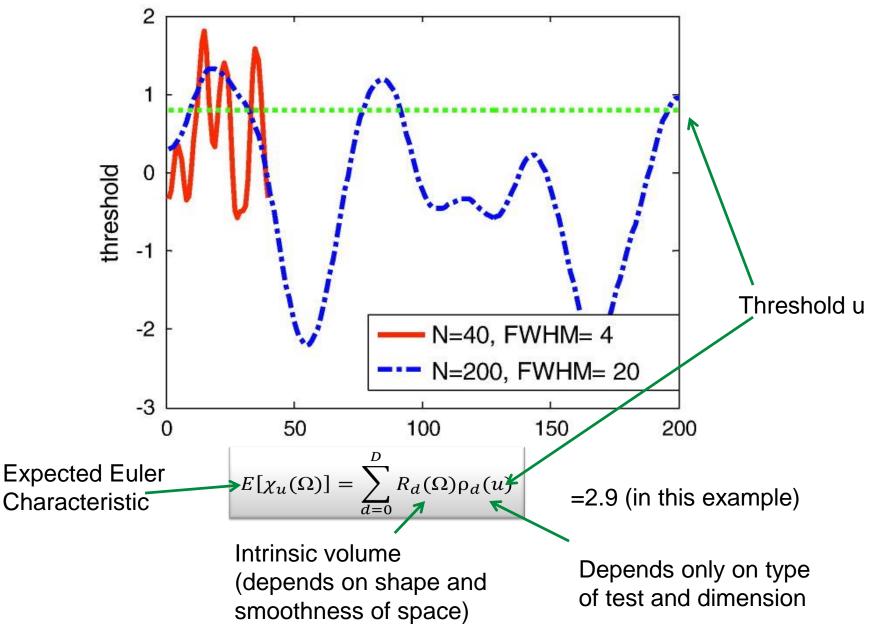
The intrinsic volume (or the number of resels or the Lipschitz-Killing Curvature) of the two fields is identical

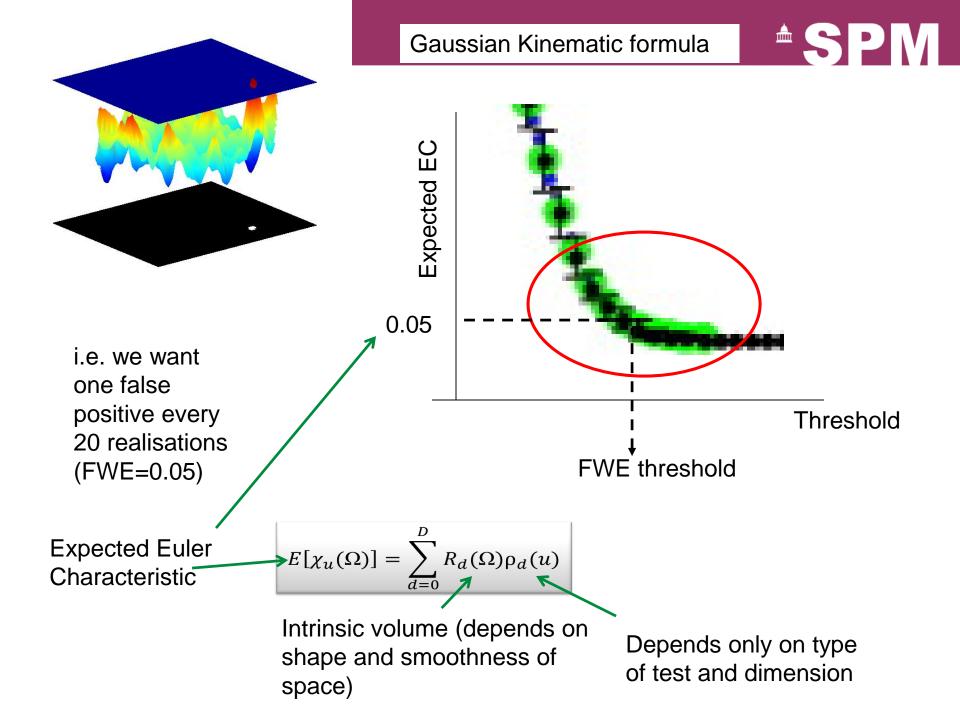
Which field has highest intrinsic volume ?



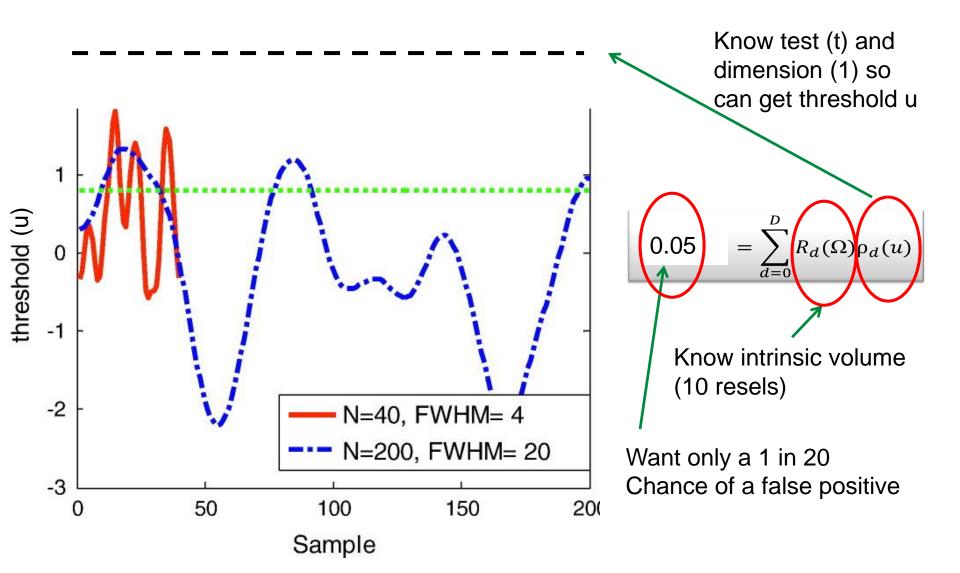
≜ SPN

Gaussian Kinematic formula

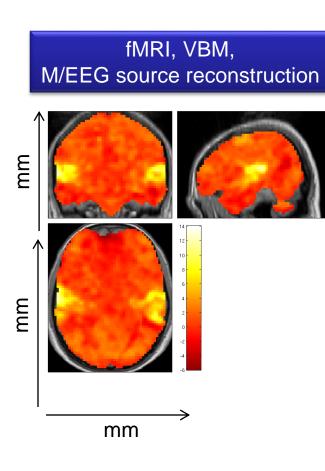


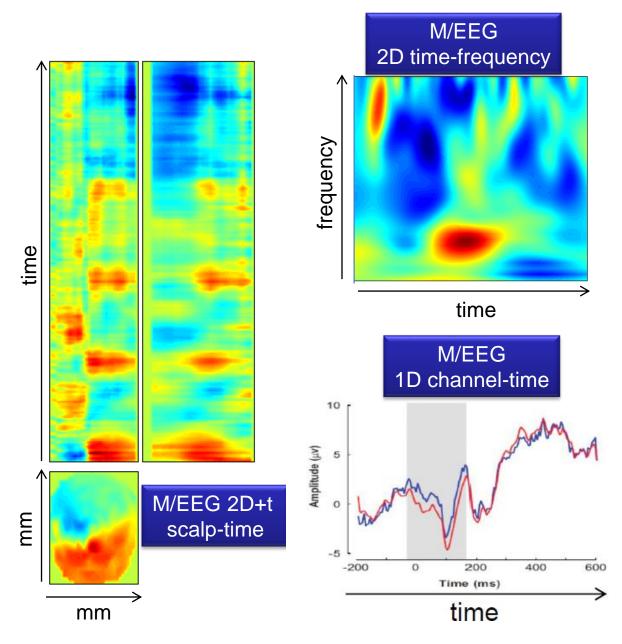


Getting FWE threshold



Can get correct FWE for any of these..

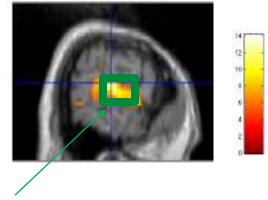




If you already know something

If you know where or when (or both) (eg left auditory cortex at t=100ms) then you can avoid the multiple comparisons problem.

More powerful inference, simpler message.



Region of interest (ROI) Defined before you do the experiment

To summarize

Multiple comparisons problem- more tests, more false positives.

□ Bonferroni correction – simple but conservative

Random field theory- just like cooking- number of currants you would expect by chance.

Conclusions

- Strong prior hypotheses can reduce the multiple comparisons problem.
- Random field theory is a way of predicting the number of peaks you would expect in a purely random field (without signal).
- Can control FWE rate for a space of any dimension and shape.

Acknowledgments

Guillaume Flandin

Vladimir Litvak

James Kilner

Stefan Kiebel

Rik Henson

Karl Friston

Methods group at the FIL

[▲] SPM

References

- Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab. 1991 Jul;11(4):690-9.
- Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC. A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping 1996;4:58-73.
- Chumbley J, Worsley KJ, Flandin G, and Friston KJ. Topological FDR for neuroimaging. NeuroImage, 49(4):3057-3064, 2010.
- Chumbley J and Friston KJ. False Discovery Rate Revisited: FDR and Topological Inference Using Gaussian Random Fields. NeuroImage, 2008.
- Kilner J and Friston KJ. Topological inference for EEG and MEG data. Annals of Applied Statistics, in press.
- Bias in a common EEG and MEG statistical analysis and how to avoid it. Kilner J. Clinical Neurophysiology 2013.