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Statistical test on a Single Timepoint

To test a hypothesis, we construct a “test statistic”.

a4

= “Null hypothesis” H, = “there is no effect” = c¢’/f=0
This is what we want to disprove.

= The “alternative hypothesis” H; represents the outcome of interest.

b = The test statistic T

The test statistic summarises the evidence for H,,

= We need to know the distribution of T under the null

1 - b > O hypothesis.

= Observation of test statistic t, a realisation of T
A p-value summarises evidence against Hy,

This is the probability of observing t, or a more extreme value, under
the null hypothesis:

p(l'=t|H,) o Sy




Statistical test at a single voxel/timepoint

T value

Test only this

T distribution

a = p(t>ulHo)

Thresholl



Multidimensional Data
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Statistical test at multiple voxels/timepoints

T value

Test all of this

T distribution

a = p(t > ulHo)

ThresholtllE



Conclusion about null hypothesis
from statistical test

Accept Null Reject Null

Truth about | True Correct Type I error
null Observe difference
hypothesjs in when none exists
population | False | Type Il error Correct

Fail to observe
difference when one
exists

If we have 100,000 voxels,

a=0.05 -> 5,%& Sfglse positive voxels.

Statistical
Parametric Mapping

The Analysis of Functional Brain Images

Signal

Signal + Noise

Statistical Parametric Mapping: The Analysis % 1% o i e B 5
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Conclusion about null hypothesis
from statistical test

Accept Null Reject Null

Truth about | True Correct Type I error
null Observe difference
hypothesjs in when none exists
population | False | Type Il error Correct

Fail to observe
difference when one
exists

If we have 100,000 voxels,
a=0.05 -> 5,000 false positive voxels.
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Percentage of Null Pixels that are False Positives



Common Solutions: 1. Averaging

One solution is to reduce the multi-dimensional data to zero-
dimensional data by averaging over a window of interest

This must be specitied a priors or derived from an independent
contrast.

One cannot base this window on where the effect size is largest!



Don’t do this!

SPM t
4
5t With no prior hypothesis. Test whole
volume. Identify SPM peak.
0 . 5
Then make a test assuming a single
2 voxel/time of interest at that peak.
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2. Family-Wise Null Hypothesis

Family-Wise Null Hypothesis:
Activation s gero everywhere

If we reject a voxel null hypothesis at any voxel,
we reject the family-wise Null hypothesis

A False Positive anywhere 1n the image gives a Family Wise Error (FWE)

Family-Wise Error rate (FWER) = ‘corrected p-value

False
positive

10



Bonferroni Correction

The Family-wise Error rate (FWE) a for a family of N
independent voxels is:

a = Nv

where vV is the voxel-wise error rate. Therefore, to ensure a

particular FWE, we set

U:N

However, Bonferroni correction assumes independence

M/ EEG data are correlated either temporally, spatially or in frequency spacs



Bonferroni correction 1s too conservative for data with

different topologies and smoothness
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Smooth time

Different smoothness
In time and space
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Volumetric ROls

Surfaces
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Nonparametric inference

for FWE rates

e Parametric methods

— Assume distribution of
max statistic under null

hypothesis

* Nonparametric methods

— Use data to find
distribution of max statistic
under null hypothesis

— any max statistic

- Permutation tests to control

13



3. Random Field Theory

A random field: an array of smoothly varying test
statistics. e.g. a slice through a t-statistic brain image.
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Keith Worsley, Karl Friston, Jonathan Taylor, Robert Adler and colleagues
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Euler Characteristic

Euler Characteristic y;:
= Topological measure

Xu = #Dblobs - # holes

= at high threshold u:
Xu = #Dblobs

FWER = p(FWE)

- p(U{Ti > u) Ho)

=p (ml_axTi =>Uu ‘HO)
No holes = p(one or more blobs |H,)

Zero or one ~ p(xy = 1|Hy)
blob (

=~ E[xy|Hol = apyg At high thresholds there are no holes so EC= number blobs
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Good lattice approximation?

Only true for high density recordings
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Fuler characteristic is given by the Gaussian Kinematic
Formula

Search region:
Small volume
correction

E x| Ld (Q)pa(u)

Expected Euler / \

Characteristic Intrinsic volume Depends only on type
(depends on shape and of test and dimension

smoothness of space)

Number peaks= intrinsic volume * peak density

Taylor & Worsley.
Journal of the American Statistical Association. 2007. 17



threshold

Example: one dimensional statistical field

h, . The intrinsic volume (or the number
iA iR of resels or the Lipschitz-Killing
I A ! 1\ Curvature) of the two fields is
@ ' \.';5.“. ‘_ ! . .
L v identical
AT “ I ‘-‘ L Barnes et al., Newurolmage. 2013.
S | . [}
'\ \ g
2 F \, e N=40, FWHM= 4 Threshold u
=+= N=200, FWHM= 20
_3 ] 1 ]
0 50 100 150 200 D
Sample z :
Expected Euler E [Xu (Q)] _ L d (Q)pd (u) = 2.9 (in this example)
Characteristic — /, d 6\

Intrinsic volume

(depends on shape and Depends only on type

) f 18
of test and dimension

smoothness of space)



What determines the smoothness?

Smoothness parameterised in terms of FWHM:
Size of Gaussian kernel required to smooth 1.1.d. noise to have same
smoothness as observed null (standardized) data.

RESELS (Resolution Elements):
1 RESEL = FWHM,FWHM,FWHM,

RESEL Count R = volume of search region in units of smoothness

| 1 5 6 7 8 0

2 |3 |4

Eg: 10 voxels, 2.5 FWHM, 4 RESELS

The number of resels is similar, but not identical
to the number independent observations.

19



Euler Characteristic as a Function of Threshold
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Euler Characteristic (EC)
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How to determine the FWE threshold

threshold (u)

Know test (t) and
dimension (1) so can

get threshold u

10 )

Know intrinsic volume

(10 resels)

== N=40, FWHM= 4
=== N=200, FWHM= 20 Want only a 1 in 20

: : Chance of a false positive

100 150 20

Sample
Barnes et al., Newurolmage. 2013.



Topological Inference
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Topological
feature:

sensitivity versus specificity Peak height
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e

significant local
maxima

non significant local
maxima
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Topological Inference: Cluster-level

Topological
feature:
Cluster extent

intensity

Uclys: cluster-defining threshold (p = 0.001)
k,: a — level extent threshold

< kg =

A L /2
significant e
cluster

non significant
clusters 23




Topological Inference: Set-level

Uclus

intensity

<k

Topological
feature:
Number of clusters

Uclys: cluster-defining threshold (p = 0.001)
k,: a — level extent threshold

<k

Here, c=1, only one cluster larger than k.
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Peak, cluster, and set level inference

Sensitivity

SPM intensity

-
SPM position

s . Significant at the set level
== m  significant at the cluster level L1 > spatial extent threshold

B B E :significant at the peak level L, < spatial extent threshold

Regional
specificity

Peak level test:
height of local maxima

Cluster level test:
spatial extent above u

Set level test:
number of clusters above u
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False Discovery Rate
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Control of False Discovery Rate as 10%
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Family-wise
Error Rate
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Summary

L Bonferroni correction for multidimensional data is too conservative as it
assumes independence of the samples

1 Random Field Theory can be used to resolve the multiple comparisons problem : ’

that occurs when making inferences over the search-space

 The statistic image is assumed to be a good lattice 1
representation of an underlying continuous stationary

random field. Typically, FWHM > 3 voxels

[ Smoothness of the data is unknown and estimated: e T
very precise estimate by pooling over voxels = stationarity e
assumptions (esp. relevant for cluster size results). §

A priori hypothesis about where an activation should be,
reduce search volume = Small Volume Correction:

27



Statistical
Parametric Mapping

s of Functional Brain Im:
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