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is this real?



Statistical test on a Single Timepoint
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a

b

a - b > 0

§ “Null hypothesis” H0 = “there is no effect”  Þ cTb = 0

This is what we want to disprove.

ð The “alternative hypothesis” H1 represents the outcome of interest.

To test a hypothesis, we construct a “test statistic”.

§ The test statistic T
The test statistic summarises the evidence for H0.

ð We need to know the distribution of  T under the null 
hypothesis.

Null Distribution of  T)|( 0HtTp ³

t

p

§ Observation of  test statistic t, a realisation of  T
A p-value summarises evidence against H0.
This is the probability of  observing t, or a more extreme value, under 
the null hypothesis:



Statistical test at a single voxel/timepoint
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Task A
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T value
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Test only this

Ignore these
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Threshold

T distribution

P=0.05



Multidimensional Data
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Statistical test at multiple voxels/timepoints

Task A
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T value
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Test all of  this

uThreshold ?

T distribution

P= ?
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If we have 100,000 voxels,
α=0.05 -> 5,000 false positive voxels. 

Signal 

Signal + Noise 

Noise 

Statistical Parametric Mapping: The Analysis 
of Functional Brain Images. Elsevier, 2007.
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If we have 100,000 voxels,
α=0.05 -> 5,000 false positive voxels. 



Common Solutions: 1. Averaging
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One solution is to reduce the multi-dimensional data to zero-
dimensional data by averaging over a window of  interest

This must be specified a priori or derived from an independent 
contrast.

One cannot base this window on where the effect size is largest!



Don’t do this!
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With no prior hypothesis. Test whole 
volume. Identify SPM peak. 
Then make a test assuming a single 
voxel/time of  interest at that peak. 

SPM t

James Kilner. Clinical 
Neurophysiology 2013. 



2. Family-Wise Null Hypothesis

10

False
positive

Use of  ‘corrected’ p-value, α =0.1

Use of  ‘uncorrected’ p-value, α =0.1

Family-Wise Null Hypothesis:
Activation is zero everywhere

If  we reject a voxel null hypothesis at any voxel,
we reject the family-wise Null hypothesis 

A False Positive anywhere in the image gives a Family Wise Error (FWE)

Family-Wise Error rate (FWER) = ‘corrected’ p-value



Bonferroni Correction
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However, Bonferroni correction assumes independence
M/EEG data are correlated either temporally, spatially or in frequency space

The Family-wise Error rate (FWE) 𝛼 for a family of  N 
independent voxels is:

where 𝑣 is the voxel-wise error rate. Therefore, to ensure a 
particular FWE, we set

𝛼 = 𝑁𝑣

𝑣 =
𝛼
𝑁



Bonferroni correction is too conservative for data with 
different topologies and smoothness
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Nonparametric inference: Permutation tests to control 
for FWE rates
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• Parametric methods
– Assume distribution of
max statistic under null
hypothesis

• Nonparametric methods
– Use data to find 

distribution of  max statistic
under null hypothesis

– any max statistic



3. Random Field Theory
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Keith Worsley, Karl Friston, Jonathan Taylor, Robert Adler and colleagues

A random field: an array of  smoothly varying test 
statistics. e.g. a slice through a t-statistic brain image. 



Euler Characteristic

15

No holes

Zero or one 
blob

EC=2

EC=1

At high thresholds there are no holes so EC= number blobs



Good lattice approximation?
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Only true for high density recordings



Euler characteristic is given by the Gaussian Kinematic 
Formula
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Taylor & Worsley. 
Journal of  the American Statistical Association. 2007. 

𝐸 𝜒!(Ω) = '
"#$

%

𝐿" Ω 𝑝"(𝑢)

Number peaks= intrinsic volume * peak density

Expected Euler 
Characteristic Intrinsic volume 

(depends on shape and 
smoothness of  space)

Depends only on type
of  test and dimension

Search region: 
Small volume 
correction



Example: one dimensional statistical field

The intrinsic volume (or the number 
of  resels or the Lipschitz-Killing 
Curvature) of  the two fields is 
identical
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Expected Euler 
Characteristic

Intrinsic volume
(depends on shape and 
smoothness of  space)

Depends only on type
of  test and dimension

= 2.9 (in this example)

Threshold u

𝐸 𝜒!(Ω) = '
"#$

%

𝐿" Ω 𝑝"(𝑢)

Barnes et al., NeuroImage. 2013. 



What determines the smoothness?
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Smoothness parameterised in terms of  FWHM:
Size of  Gaussian kernel required to smooth i.i.d. noise to have same 
smoothness as observed null (standardized) data. 

FWHM

1 2 3 4

2 4 6 8 101 3 5 7 9

Eg: 10 voxels, 2.5 FWHM, 4 RESELS

The number of  resels is similar, but not identical 
to the number independent observations.



Euler Characteristic as a Function of  Threshold

-- EC observed
o EC predicted

Barnes et al., NeuroImage. 2013. 
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i.e. we want one 
false positive 
every 20 
simulations 
(FWE=0.05)

𝐸 𝜒!(Ω) = '
"#$

%

𝐿" Ω 𝑝"(𝑢)



𝐸 𝜒+(Ω) = '
,-.

/

𝐿, Ω 𝑝,(𝑢)

How to determine the FWE threshold

Barnes et al., NeuroImage. 2013. 

Know intrinsic volume
(10 resels)

0.05

Want only a 1 in 20
Chance of  a false positive

Know test (t) and 
dimension (1) so can 
get threshold u

(u
)



Topological Inference
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Topological 
feature:
Peak height

space

significant local 
maxima

non significant local 
maxima

uα

sensitivity versus specificity



Topological Inference: Cluster-level
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Topological 
feature:
Cluster extent

spac
esignificant 

cluster
non significant 
clusters

uclus

𝑢!"#$:
𝑘%:

cluster-defining threshold (p = 0.001)
𝛼 − level extent threshold



Topological Inference: Set-level

24

Topological 
feature:
Number of clusters

space

uclus

Here, c=1, only one cluster larger than k.

𝑢!"#$:
𝑘%:

cluster-defining threshold (p = 0.001)
𝛼 − level extent threshold



Peak, cluster, and set level inference
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Peak level test:
height of local maxima

Cluster level test:
spatial extent above u

Set level test:
number of clusters above u

Sensitivity Regional 
specificity



False Discovery Rate
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Use of  ‘corrected’ p-value, α =0.1

Use of  ‘uncorrected’ p-value, α =0.1
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Control of False Discovery Rate as 10%

6.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2% 8.7%



Summary
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q Bonferroni correction for multidimensional data is too conservative as it 
assumes independence of  the samples

q Random Field Theory can be used to resolve the multiple comparisons problem 
that occurs when making inferences over the search-space

q The statistic image is assumed to be a good lattice 
representation of  an underlying continuous stationary 
random field. Typically, FWHM > 3 voxels

q Smoothness of  the data is unknown and estimated:
very precise estimate by pooling over voxels Þ stationarity
assumptions (esp. relevant for cluster size results).

q A priori hypothesis about where an activation should be, 
reduce search volume Þ Small Volume Correction:
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