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Overview

Intro: What is the M/EEG inverse problem?

Unifying all M/EEG inversion algorithms with prior
assumptions

Multiple Sparse Priors

Validating source inversion attempts with model evidence
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SNR 1 No unique solutions!

# of sources >> # of sensors
Forward model cannot (trivially)
be inverted

Spatial resolution 7
Clinical viability 1
Richer analyses facilitated



Problem statement

Hard!

Inverse Mapping

AJ

Recorded signals Expected dipole location
at the scalp at the gray matter

Figure credit: neuroelectrics.com VXB = uoJ + po€o —


http://neuroelectrics.com

Formulation

Y=HX+EK

where:
Y - the sensor level data, sensors x time

H - the lead field matrix, sensors x sources
X - the neural signals, sources x time
E - non-brain signals, sensors x time




The lead field matrix

In MEG:
- Head model choice (single sphere, multiple spheres or single
shell)

- Assumptions about the signal generators (layer V pyramidal
neurons)

= (Can be constrained to sources oriented perpendicular to cortex

= Physics - function of sensor/source displacement and
orientation

In EEG:
- All of the above + choices about conduction models. Generally
the same, but harder



Sensor/source position
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Sensor/source orientation
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The lead field matrix

Once computed, the lead field is our projector from each source in
the brain to each of the sensors.

In words, each column of the lead field matrix tells us what
magnetic field we would expect to measure if a source was active
at that part of the brain, given a fixed orientation.

N,

sources

~ 10,000

N,

channels

~ 300




Source reconstruction

Y =HX+E
X =H'Y?

No!
N sources > > N, channels

H isn’t square

H has a maximum rankof NV, .. ;.



Source reconstruction

Three philosophies to proceed

1) Dipole fits: | want to get around the ill-posed problem

¥ 2) Tomographic approaches: | want to reconstruct activity around the whole
___brain and explain variance &

a.k.a Bayesian approaches
3) Spatial filters (beamformers): | want to reconstruct activity at a set of
locations, based upon some other mathematical criterion

All of these approaches introduce some form of assumptions about the
neural generators



Bayesian Formulation
p(Y [ X)p(X)

X|Y) =
pX|Y) )

Likelihood: p(Y | X)
Prior: p(X)
Evidence: p(Y)

Posterior: p(X | Y)



Bayesian Formulation
p(Y | X)p(X)
p(Y)

pX|Y) =

Likelihood: p(Y | X)
Prior: p(X)
Evidence: p(Y)

Posterior: p(X | Y)



Bayesian Formulation

pX|Y) x p(Y|X)p(X)

Likelihood: p(Y | X)
Prior: p(X)

Posterior: p(X | Y)



Bayesian Formulation

pX|Y) x p(Y|X)p(X)

Likelihood: p(Y'| X) = MVN(Y | HX, Cy)
Prior: p(X) = MVN(X|0,Cy)

Posterior:
p(X|Y) x exp |[-0.5(HX — Y)'Cy'(HX - Y) — 0.5X"C 'X|



Bayesian Formulation

Posterior: p(X | Y) o exp [—0.5(HX — Y)'Cy'(HX — Y) — 0.5X" C;'X]

Doing some maths (take the log of the above expression, and
differentiating with respect to X), we find that the maximum a posteriori

solution is given simply by

X = CyHT[C,+ HC,H| ' Y
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X = CXHT [C + HCXHT]

k(1) = Wy (1)

(?k b‘ Current estimates = f (Data covariance, Forward model, Recorded data)
4N



Y

X(1) = Wy(9)

Prior noise covariance matrix
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Source prior covariance matrix



Source prior covariance matrix

“What parts of the brain do I think are active
during my recording?”



Source prior covariance matrix

CX & % sources Nsources

..big!
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X=CH"[C,+

X(1) = Wy(9)

Source prior covariance matrix

[ID, “minimum norm” 1
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1 5,000



Source prior covariance matrix

Dipole fit

5,000
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“If my neighbour is
active, | am also

likely to be active”
eLORETA/sLORETA/local coherence — —
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Source prior covariance matrix




Dipole fit
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f( = CyHT [C, + HC,HT] ' Y
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Multiple Sparse Priors



Dipole fit for dipole at vertex a

Co 1 ifi,j=a
Xl 0O otherwise

[ID, “minimum norm”

eLORETA/sLORETA/local coherence

C X — exp(d GL) G; is from the graph Laplacian of the cortical mesh, i.e. distances

between vertices
o controls the smoothness of the source space



Source prior covariance matrix

K
Cx = Z a;p;



Source prior covariance matrix

K
Cx = Z a;p;
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Source prior covariance matrix

K
Cx = Z a;p;




Source prior covariance matrix

K
Cx = Z a;p;




Source prior covariance matrix

K
Cx = Z a;p;
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Source prior covariance matrix

K
Cx = Z a;p;

5,000

1 5,000

X=CyH'[C,+ HCyH'| " Y



X = CXHT C, + HCXHT]

X(t) = WY(t)

Current estimates =f ( , Forward model, Recorded data)
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Source prior covariance matrix

K
Cx = Z a;p;

l




Each source prior has a representation at the
sensor level




Problem: our posterior distribution (the thing that we
want) is currently a function of the source space
currents. This means our optimisation problem (i.e.
learning the alphas) is in a very large space - the source

space
pX,alY) xpY|X, a)p(X|a)p(a)



Problem: our posterior distribution (the thing that we
want) is currently a function of the source space
currents. This means our optimisation problem (i.e.
learning the alphas) is in a very large space - the source

space
pX,alY) xpY|X, a)p(X|a)p(a)

P(a\Y)=JP(X,a\Y)dX




Problem: our posterior distribution (the thing that we
want) is currently a function of the source space
currents. This means our optimisation problem (i.e.
learning the alphas) is in a very large space - the source

space
pX,alY) xpY|X, a)p(X|a)p(a)

P(a\Y)=JP(X,a\Y)dX

= Jp(Y | X, )pX| a)p(@)dX fem il

= Jp(Y\ X, 0)p(X|a)dXp(a)



Problem: our posterior distribution (the thing that we
want) is currently a function of the source space
currents. This means our optimisation problem (i.e.
learning the alphas) is in a very large space - the source

space
pX,alY) xpY|X, a)p(X|a)p(a)

plalY) = JP(X,OC\ Y)dX
= JP(Y | X, O)p(X | a)p(a)dX

= Jp(Y\ X, 0)p(X|a)dXp(a)

= p(Y|a)p(a) x exp [—O.Str (YTIY)] p(a)




Before:

K
Cx = Z a;p;

Now:
Can just model the sensor level data covariance (i.e. the

covariance of the data which we measure, C,):

K K

These are the same alphas!

R——




Each source prior has a representation at the
sensor level

K K

l l



Aside: an introduction to Variational Free Energy



Variational Free Energy

We would like to calculate the true (marginalised) posterior distribution,
p(a|Y). This can be hard to calculate in practice.

Instead, we approximate the true posterior with some simpler
parameterised distribution(s), g(a).

We then minimise the KL-divergence between the approximate posterior,
g(a), and the true posterior distribution, p(a | Y).

__P(640r6,|D)
- q(6 or 6)

()2 ()1



Variational Free Energy

We can show that the KL divergence between the true and approximate

posterior can be written as __P(6, or 6,|D)

- q(0; or 6)

log [p(Y)| = F + KL |g(a)| | p(a| )]

()2 ()1

The KL divergence is strictly greater than or equal to zero. We would
like to make this equal zero.

The log model evidence is a constant.

Hence maximising the variational Free Energy, F, is equivalent to
minimising the distance between the true and approximate posterior
distribution.



Variational Free Energy

F = log |p(Y)| = KL |g(a)| | p(a] Y)]



Variational Free Energy

y—Complexity;

| want to explain my data well But not at any expense



Choosing between solutions

 No way of knowing the ground truth on real data

 (Can use variance explained as a means of choosing between source priors
Dangerous!

Y (measured field)

How do we chose between priors ?

Incorrect Ground ini
: truth Beamformer Minimum
prior ru norm

Estimated
Current flow

Predicted
data
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Figure credit: José David Lopez



Choosing between solutions

e [f | maximise the Free Energy, the KL divergence will have to decrease

= log [p(Y)| = KL |q(a) | | p(a| V)|

How do we chose between priors ?

Estimated -
Current flow

Predicted
data

30

Free energy 20

(log model 10
evidence) 0 - — - |

Dip1 Dip 2 BMF Min Norm

Figure credit: José David Lopez



Multiple Sparse Priors

e Find the optimal set of @’s which maximises the Free Energy

F = Accuracy — Complexity




X = CyHT [C, + HCyH] ™ Y

Va\

X = a,CyH" [0,C, + a,HCyH"| " Y

Point of note: we are always data driven in SPM,
even when using an |lID prior

l.e. we learn o and a,



X = CyHT [C, + HCyH] ™ Y

Va\

X = a,CyH" [0,C, + a,HCyH"| " Y

Note!

These algorithms (in SPM) are designed to work on
averaged data. Cannot apply to resting state etc.



Recap

Hard!

Inverse Mapping\

Recorded signals Expected dipole location
at the scalp at the gray matter

Forward Mapping

e — e—

Easy!

Figure credit: neuroelectrics.com VXB = uyJ + po€o =

\\

—



http://neuroelectrics.com

Recap

X = CXHT C, + HCXHT]

k() = Wy

Current estimates =f ( , Forward model, Recorded data)
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Recap

How do we chose between priors ?
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In practice
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4. SPM12 (12.6): Graphics -

File Edit View Inset Tools Desktop Window SPMFigure Help

Welcome to SPM12

Please refer to this version as "SPM12" in papers and communications.
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The SPM12 Manual and Release Notes are available as PDF documents in the man
directory of your SPM installation.

Updates will be made available from time to time and advertised on the SPM mailing list.
You can also check for updates by clicking here.
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Not covered today

“Classic”/non-Bayesian source recon: beamformers, dipole fits,
MUSIC etc

Group source reconstruction in SPM. See work by Wakeman and
Henson.

Other software packages: MNE-Python, FieldTrip, EEGLab etc.

Other ways of quantifying performance. See work by Hauk et al.,
2011

Practical pre-processing steps: coreg, forward model choices,
exporting to NIFTI etc.

DAISS toolbox
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