

DCM for evoked responses

Ryszard Auksztulewicz

SPM for M/EEG course

Modelling aim and approach

*M/EEG are complex data

Analyses / modelling: in time, frequency, time-frequency and space domains

Modelling Aim

Explain all data with few parameters

How to ...

Assume data are caused by few interacting brain sources ...

... and / or their respective intrinsic connectivity / intrinsic parameters

Adapted from Kiebel (n.a.), *Dynamic Causal Modelling for EEG and MEG,* Presentation at TU Dresden; Stoff (n.a.), *DCM for ERP/ERF,* Presentation at UCL

Conventional analyses vs. DCM

A1 - left and right primary auditory cortex STG - left and right superior temporal gyrus

DCM Analysis

How do regions communicate? What role do intrinsic connections have?

Source space / effective connectivity

Does network XYZ explain my data better than network XY? Which XYZ connectivity structure best explains my data? Are X & Y linked in a bottom-up, top-down or recurrent fashion? Is my effect driven by extrinsic or intrinsic connections? Which neural populations are affected by contextual factors? Which connections determine observed frequency coupling? How changing a connection/parameter would influence data?

The DCM analysis pathway

The DCM analysis pathway

Data for DCM for ERPs / ERFs

- 1. Downsample
- 2. Filter (e.g. 1-40Hz)
- 3. Epoch
- 4. Remove artefacts
- Average
 Per subject
 Grand average
- Plausible sources

 Literature / a priori
 Dipole fitting
 Source reconstruction

The DCM analysis pathway

The DCM analysis pathway

Models

load Study (Do	CM) filename ERF	ERP	•
save	data and design	CMC LFP MMM	
1 200	between-trial effects	trials MFM MMDA	
detrend 1 subsample 1			*
modes 8			-

frontiers in COMPUTATIONAL NEUROSCIENCE

REVIEW ARTICLE published: 28 May 2013 doi: 10.3389/fncom.2013.00057

Neural masses and fields in dynamic causal modeling

Rosalyn Moran^{1,2,3}*[†], Dimitris A. Pinotsis^{1†} and Karl Friston¹

Neuronal (source) model

 $\dot{p}_{7} = p_{8}$

Voltage change rate: f(current) Current change rate: f(voltage,current)

$$\dot{p}_8 = \frac{H_4}{\tau_4} (A^F S(p_2) - \gamma_{10} S(p_7) - \gamma_9 S(p_5)) - \frac{2p_8}{\tau_4} - \frac{p_7}{\tau_4^2}$$

 $\dot{p}_7 = p_8$ Voltage change rate: f(current) Current change rate: f(voltage,current)

$$\dot{p}_8 = \frac{H_4}{\tau_4} (A^F S(p_2) - \gamma_{10} S(p_7) - \gamma_9 S(p_5)) - \frac{2p_8}{\tau_4} - \frac{p_7}{\tau_4^2}$$

H, τ Kernels: pre-synaptic inputs -> post-synaptic membrane potentials $[H: \max PSP; \tau: rate constant]$ $P(t)_e = \frac{H_e}{\tau_e} t exp(-t/\tau_e)$ SSigmoid operator: PSP -> firing rate

David et al., 2006; Pinotsis et al., 2012

UCL

Van Wijk et al., 2018

The DCM analysis pathway

UCL

The DCM analysis pathway

load Stud	ly (DCM) filename	ERP	- CM	с ,
save Mod	el1_split_Trial1.mat			new data
time window (ms)	data and o	lesign	display	>
60 460	bins: 5.0ms		trials (1)	hanning
	effects		1	
detrend 1				*
subsample 1				
modes 8	·	,		Ŧ
< MG •	electromagne	tic model	dipoles	>
	source names and locat	ions: prior mean (I	mm)	
onsets (ms)	left V4 right V4 left IPC	 -37 -80 37 -82 -31 -82 	-16 -16 35	*
120	right IPC left 7A	30 -80 -30 -68	40 50	
16	right 7A left SOG right SOG	34 -66 -26 58 ▼ 26 62	46 -4 -4	- load
	-		_	
< reset	neuronal r	model		invert DCM
forward	back	Modula	atory	innut
				0
			000000	
0000000				

mode 5

1.5

0.5

-0.5

-1.5

1.5

0.5

0 -0.5

-1

-1.5

50 100 150 200

50

100 150 200

mode 7

250

Observed (adjusted) 2 0.01 0.01 0.005 0.005 time (ms) -0.005 -0.005 -0.01 ^L-----0 -0.01 Կ— 0 50 100 150 200 250 50 time (ms)

H. Brown

H. Brown

Fitting DCMs to data

1. Check your data

- 1. Check your data
- 2. Check your sources

- 1. Check your data
- 2. Check your sources
- 3. Check your model

- 1. Check your data
- 2. Check your sources
- 3. Check your model
- 4. Re-run model fitting

The DCM analysis pathway

UC

Friston et al., 2016

The DCM analysis pathway

Does network XYZ explain my data better than network XY? Which XYZ connectivity structure best explains my data? Are X & Y linked in a bottom-up, top-down or recurrent fashion? Is my effect driven by extrinsic or intrinsic connections? Which connections/populations are affected by contextual factors?

Example #1: Architecture of MMN

200 300 400

Garrido et al., 2008

Example #2: Role of feedback connections

Garrido et al., 2007

Example #3: Group differences

Boly et al., 2011

Example #4: Factorial design & CMC

Bastos et al., Neuron 2012

Flexible factorial design Thresholded at p<.005 peak-level Corrected at a cluster-level pFWE<.05

Winning model

Example #5: Same paradigm, different data

Phillips et al., 2016

Example #5: Same paradigm, different data

A : ECoG DCM results

D

Phillips et al., 2016

Example #6: Hierarchical modelling

A Evoked response potentials at Fz r

B Mismatch negativity waveform

C Scalp topography of mismatch responses

Rosch et al., 2017

Example #6: Hierarchical modelling

A First level model space: Effects of repetition

B Second level model space: Effects of ketamine

S36

S36

AFWD

ABWD

B

Bawn

τ g

М Ν

Rosch et al., 2017

Example #6: Hierarchical modelling

Bayesian model comparison on reduced models explaining ketamine effects

Rosch et al., 2017

Motivate your assumptions!

References

Overview

Moran R, Pinotsis DA, Friston K. Neural masses and fields in dynamic causal modeling. Front Comput Neurosci. 2013 May 28;7:57. doi: 10.3389/fncom.2013.00057.
Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. Canonical microcircuits for predictive coding. Neuron. 2012 Nov 21;76(4):695-711. doi: 10.1016/j.neuron.2012.10.038.

Model specifics

David O, Kilner JM, Friston KJ. Mechanisms of evoked and induced responses in MEG/EEG. Neuroimage. 2006 Jul 15;31(4):1580-91. doi: 10.1016/j.neuroimage.2006.02.034.
Kiebel SJ, Garrido MI, Moran RJ, Friston KJ. Dynamic causal modelling for EEG and MEG. Cogn Neurodyn. 2008 Jun;2(2):121-36. doi: 10.1007/s11571-008-9038-0.
Pinotsis DA, Moran RJ, Friston KJ. Dynamic causal modeling with neural fields. Neuroimage. 2012 Jan 16;59(2):1261-74. doi: 10.1016/j.neuroimage.2011.08.020.
van Wijk BCM, Cagnan H, Litvak V, Kühn AA, Friston KJ. Generic dynamic causal modelling: An illustrative application to Parkinson's disease. Neuroimage. 2018 Nov 1;181:818-830. doi: 10.1016/j.neuroimage.2018.08.039.

Group inference

Friston KJ, Litvak V, Zeidman P, et al. Bayesian model reduction and empirical Bayes for group (DCM) studies. Neuroimage. 2016 Mar;128:413-431. doi: 10.1016/j.neuroimage.2015.11.015.

Examples

Garrido MI, Kilner JM, Kiebel SJ, Friston KJ. Evoked brain responses are generated by feedback loops.
Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20961-6. doi: 10.1073/pnas.0706274105.
Garrido MI, Friston KJ, Kiebel SJ, Stephan KE, Baldeweg T, Kilner JM. The functional anatomy of the MMN: a DCM study of the roving paradigm. Neuroimage. 2008 Aug 15;42(2):936-44. doi: 10.1016/j.neuroimage.2008.05.018.

- Boly M, Garrido MI, Friston K, et al. Preserved feedforward but impaired top-down processes in the vegetative state. Science. 2011 May 13;332(6031):858-62. doi: 10.1126/science.1202043.
- Auksztulewicz R, Friston K. Attentional Enhancement of Auditory Mismatch Responses: a DCM/MEG Study. Cereb Cortex. 2015 Nov;25(11):4273-83. doi: 10.1093/cercor/bhu323.
- Phillips HN, Blenkmann A, Rowe JB, et al. Convergent evidence for hierarchical prediction networks from human ECoG and MEG. Cortex. 2016 Sep;82:192-205. doi: 10.1016/j.cortex.2016.05.001.
- Rosch RE, Auksztulewicz R, Baldeweg T, et al. Selective Prefrontal Disinhibition in a Roving Auditory Oddball Paradigm Under NMDAR Blockade. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019 Feb;4(2):140-150. doi: 10.1016/j.bpsc.2018.07.003.

Thank you!

Karl Friston Gareth Barnes Andre Bastos Harriet Brown Hayriye Cagnan Jean Daunizeau Marta Garrido Stefan Kiebel Vladimir Litvak Rosalyn Moran Will Penny **Dimitris Pinotsis Richard Rosch** Bernadette van Wijk

