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Primer

Formally, define the probability of an event, e:

𝑝 𝑒 =
∑𝑒
∑ 𝑠

, ∈ [0,1]

where 𝑠 the sample space of all possible outcomes. 

Holds under the assumption that each outcome in the sample space is equally likely
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Primer
Formally,	define	the	probability	of	an	event,	e:

𝑝 𝑒 =
∑𝑒
∑ 𝑠

, ∈ [0,1]

s ∈ {1, 2, 3, 4, 5, 6} 𝑖. 𝑒., ∑ 𝑠=6

Fair a six−sided die, the sample space:

if 𝑒 ∈ 2,4,6 𝑖. 𝑒. , ∑𝑒 = 3 ⇒ 𝑝 𝑒 = (
)
= 0.5
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𝑝(𝑐𝑎𝑢𝑠𝑒|𝑒𝑓𝑓𝑒𝑐𝑡) =
𝑝 𝑒𝑓𝑓𝑒𝑐𝑡 𝑐𝑎𝑢𝑠𝑒 𝑝(𝑐𝑎𝑢𝑠𝑒)

𝑝(𝑒𝑓𝑓𝑒𝑐𝑡)



Example of ill-posed problem*

*Example from Peter Zeidman and Chris Mathys
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Random variables

Random variable, 𝑋 is a function that assigns a real number to each 
outcome in the sample space, Ω, of a random process:

𝑋:Ω → ℝ ,

where ℝ denotes the set of real numbers.

We can have two types of random variables: discrete and continuous



Example of continuous random variable 

Here, we want to infer: 
𝑝 𝜃 𝑦 ∼ 𝒩(𝜇, 𝜎!)

𝑝 𝜃 𝑦

𝜃𝜇

𝜎!
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Example of continuous random variable 
Here, we want to infer: 
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1
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Example of continuous random variable 
Here, we want to infer: 

𝑝 𝜃̅ 𝑦 ∼ 𝒩 𝜇̅, ∑ ,

𝜃!

𝜃"

𝜃̅ =
𝜃"
𝜃!

𝑛𝑒𝑢𝑟𝑎𝑙 𝑠𝑜𝑢𝑟𝑐𝑒: 𝜃

𝜃"

𝜃!

𝜇"

𝜇!



Overview

Brief primer on ill-posed problems
Random variables and PDFs
Axioms of probability
Bayes rule and approximate inference 
Demo: variational Bayes in SPM



We assume a probability space Ω with subsets 𝑦 and 𝜃.

From this, we can define 3 kinds of probabilities:
1. Joint probabilities e.g., 𝑝(𝜃, 𝑦)

Different kinds of probabilities

Ω
𝐴 𝐵
𝜃 𝑦



Ω

𝜃 𝑦

𝑝(𝜃, 𝑦)

Joint probability

𝜃

𝑦

𝑝(𝜃, 𝑦)

_𝑝 𝑦, 𝜃 𝑑𝜃𝑑𝑦 = 1



We assume a probability space Ω with subsets 𝑦 and 𝜃.

From this, we can define 3 kinds of probabilities:
1. Joint probabilities e.g., 𝑝(𝜃, 𝑦)
2. Marginal probabilities e.g., 𝑝(𝜃)

Different kinds of probabilities

Ω
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Ω

𝐴𝜃 𝑦

𝑝(𝜃)

Marginal probability

𝜃

𝑦

𝑝(𝜃, 𝑦)

𝑝(𝜃)

𝑝 𝜃 = _𝑝 𝑦, 𝜃 𝑑𝑦



Example for discrete random variables 

• Let	𝐴 be	the	statement	
‘the	sun	is	shining’

• Let	𝐵 be	the	statement	
‘it	is	raining’

• 𝐴̅ negates	𝐴,	 c𝐵 negates	
𝐵

0.1

0.2

0.5

0.2



We assume a probability space Ω with subsets 𝑦 and 𝜃.

From this, we can define 3 kinds of probabilities:
• Joint probabilities e.g., 𝑝(𝜃, 𝑦)
• Marginal probabilities e.g., 𝑝(𝑦)
• Conditional probabilities e.g., 𝑝(𝜃|𝑦)

Different kinds of probabilities

Ω
𝐴 𝐵𝜃 𝑦



Conditional probability

𝜃

𝑦

𝑝(𝜃, 𝑦)

𝑝(𝜃)

𝑝 𝜃|𝑦 = _𝑝 𝑦, 𝜃 𝑑𝑦

𝑦∗

𝑝 𝜃 𝑦∗

𝜃

𝑝 𝜃, 𝑦 = 𝑝 𝑦 𝜃 𝑝 𝜃
= 𝑝 𝜃 𝑦 𝑝 𝑦



What	is	the	probability	
that	the	sun	is	shining	
given	that	it	is	not	raining?

Example for discrete random variables 

0.1

0.2

0.5

0.2

0.3 0.7

0.4

0.6



1. ∫ 𝑝 𝑦, 𝜃 𝑑𝜃𝑑𝑦 = 1 (Normalisation)

2. 𝑝 𝜃 = ∫𝑝 𝑦, 𝜃 𝑑𝑦 (Marginalisation – the sum rule)

3. 𝑝 𝜃, 𝑦 = 𝑝 𝑦 𝜃 𝑝 𝜃

= 𝑝 𝜃 𝑦 𝑝 𝑦 (Conditioning – the product rule)

31

Axioms of probability
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Product rule states that:

𝑝 𝜃 𝑦 𝑝 𝑦 = 𝑝 𝑦 𝜃 𝑝 𝜃

Next, we rearrange:

𝑝 𝜃 𝑦 =
𝑝 𝑦 𝜃 𝑝 𝜃

𝑝 𝑦

Apply the sum and product rules:

𝑝 𝑦 = _𝑝 𝑦, 𝜃 𝑑𝜃 =_𝑝 𝑦 𝜃 𝑝 𝜃 𝑑𝜃

33

Bayes’ rule



𝑝 𝜃 𝑦 =
𝑝 𝑦 𝜃 𝑝 𝜃

𝑝 𝑦

34

Bayes’ rule
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Demo

c𝑦 = 𝑥 𝛽̅ + ̅𝜖

General linear model formulation:

where,

[20 ⋅ 1] [20 ⋅ 1]

[20 ⋅ 2] [2 ⋅ 1]
1 18
1 32
1 …

𝛽"
𝛽!

i𝜖+ ∼ 𝒩(0, 𝜎!)



Demo

c𝑦 = 𝑥 𝛽̅ + ̅𝜖

General linear model formulation:

where, 

[100 ⋅ 1] [100 ⋅ 1]

[100 ⋅ 2][2 ⋅ 1]
1 18
1 32
1 …

𝛽"
𝛽!

i𝜖+ ∼ 𝒩(0, 𝜎!)



Demo

Σ =
𝜎!

𝜎!
…

𝑝 𝑦 𝛽̅ ~𝒩(𝑥𝛽̅, Σ)
Likelihood:

Prediction is given by 𝑥𝛽̅ ; uncertainty can be thought of as following a 
normal distribution over that prediction. 



Demo

Σ =
𝜎!

𝜎!
𝜎!

𝑝 𝑦 𝛽̅ ~𝒩(𝑥𝛽̅, Σ)
Likelihood:

Prior:
𝑝(𝛽̅)~𝒩( 00 , 1 0

0 1 )

Prediction is given by 𝑥𝛽̅ ; uncertainty can be thought of as following a 
normal distribution over that prediction. 



Demo

𝑝 𝛽̅ 𝑦 =
𝑝 𝑦 𝛽̅ 𝑝(𝛽̅)

𝑝(𝑦)Posterior:

where, 𝑝(𝑦) = /𝑝 𝑦 𝛽̅ 𝑝 𝛽̅ 𝑑𝛽



Variational inference
• Calculate	the	evidence	by	marginalising	out	the	parameters	from	the	joint	density:

• The evidence integral is not available in closed form + computing this requires variational  
inference.

• We introduce a variational density 𝑞 that can be integrated: 𝑞( <𝛽) ≈ 𝑝( <𝛽|𝑦)
• We now make a move from 𝑝 𝑦 → l𝑜𝑔 𝑝 𝑦 to make the computations easier. 

𝑝(𝑦) = /𝑝 𝑦 𝛽̅ 𝑝 𝛽̅ 𝑑𝛽



Deriving the free energy 
Assumptions:𝑝( <𝛽|𝑦) ≠ 0 𝑎𝑛𝑑 𝑞( ̅𝛽) ≠ 0

divergence is 0 
iff 𝑞 ⋅ = 𝑝(⋅ |𝑦)

Free energy 𝑲𝑳-divergence

log 𝑝 𝑦 = log 𝑝 𝑦 +_ 𝑙𝑜𝑔
𝑝(𝛽̅|𝑦)
𝑝(𝛽̅|𝑦)

𝑑𝛽

= _𝑞(𝛽̅) log 𝑝 𝑦 𝑑𝛽 +_𝑞(𝛽̅)𝑙𝑜𝑔
𝑝(𝛽̅|𝑦)
𝑝(𝛽̅|𝑦)

𝑑𝛽

= ∫𝑞(𝛽̅)𝑙𝑜𝑔 0(23,5)
0(23|5)

𝑑𝛽

= ∫𝑞(𝛽̅)𝑙𝑜𝑔 0 23,5
8(23)

𝑑𝛽+ ∫𝑞(𝛽̅)𝑙𝑜𝑔 8(23)
0(23|5)

𝑑𝛽



Demo

𝑝 𝛽̅ 𝑦 =
𝑝 𝑦 𝛽̅ 𝑝(𝛽̅)

𝑝(𝑦)Posterior:

where, 𝑝(𝑦) = /𝑝 𝑦 𝛽̅ 𝑝 𝛽̅ 𝑑𝛽

𝑝 𝛽̅ 𝑦 ∼ 𝒩(𝜇, Σ) and log 𝑝 𝑦 ≈ 𝐹



Matlab demo
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Probability theory is nothing but common sense 
reduced to calculation.
— Pierre-Simon Laplace, 1819


