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Overview

Brief primer on ill-posed problems



Primer

Formally, define the probability of an event, e:

e
p(e) = s , € (0,1}

where s the sample space of all possible outcomes.

Holds under the assumption that each outcome in the sample space is equally likely
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Primer

Formally, define the probability of an event, e:

e
p(e) = s , € (0,1}

Fair a six—sided die, the sample space:

s€ {1,2,3,4,5,6}i.e, ). s=6

%

if e€{24,6}i.e.,Ye=3 =pe) = % = 0.5



[1I-posed problem




[1I-posed problem

cause




[1I-posed problem

Forward: p(ef fect|cause) € [0,1]
Inverse: p(causel|ef fect) € [0,1]



[1I-posed problem

_ p(effect|cause)p(cause)
p(causelef fect) = > (effect)

cause ef fect T

8, /
0 Forward: p(ef fect|cause) € [0,1]

Inverse: p(causelef fect) € |0,1]




Example of 1ll-posed problem™

recordings,y

neural source: 6

*Example from Peter Zeidman and Chris Mathys



Example of 1ll-posed problem™

recordings,y ¥ ‘02 ... 09]

¥ 0 = [

04 - 0.1

p(6 = [1ly)
i.e.,p(causeleffect)

neural source: 6

*Example from Peter Zeidman and Chris Mathys



Example of 1ll-posed problem™

recodngS, \4 X 0.2 - 0.9

2 | 9=[)’l;y: : E

' 4 ' t\., M\rV\, Z _04‘ Tt 01'
' p(0 = []]y)

i.e.,p(causeleffect)

neural source: 6

ill-posed problems

*Example from Peter Zeidman and Chris Mathys
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Random variables and PDFs



Random variables

Random variable, X 1s a function that assigns a real number to each
outcome 1n the sample space, (1, of a random process:

X: Q- R,
where R denotes the set of real numbers.

We can have two types of random variables: discrete and continuous



Example of continuous random variable

Here, we want to infer:
p(8ly) ~ N (u,0%)

p61y) §

Q

-: ——————3—
v
N



Example of continuous random variable

Here, we want to infer:
p(8ly) ~ N (u,0%)

>

p(6]y) p61y) §




Example of continuous random variable

Here, we want to infer:

1
p(61y) ~ N (1,0%) 7 =

>

p(6]y) p61y) §




Example of continuous random variable

Here, we want to infer:

1
p(61y) ~ N (1,0%) 7 =

>

p(6]y) p61y) §




Example of continuous random variable

Here, we want to infer: p
1

p@y) ~N@Y), 0= (0)

U2 F — —/ ==

> neural source: 6
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Axioms of probability



Different kinds of probabilities

We assume a probability space ) with subsets y and 6.

From this, we can define 3 kinds of probabilities: [~
1. Joint probabilities e.g., p(0, y)




Joint probability
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fp(y, 0)dody =1

p(6,y)




Different kinds of probabilities

We assume a probability space ) with subsets y and 6.

From this, we can define 3 kinds of probabilities: /~
1. Joint probabilities e.g., p(0, y)
2. Marginal probabilities e.g., p(6)




Marginal probability

p(6)

p(0) = fp(y, 0)dy

p(6,y)




Example for discrete random variables

* Let A be the statement B 5 Marginal

( ) .. ) probabilities
the sun is shining

* Let B be the statement A 0.1 0.5
‘itis raining’

0.2 0.2

|

A negates A, B negates
B

Sum of all
Marginal probabilities

probabilities z p() =1




Different kinds of probabilities

We assume a probability space ) with subsets y and 6.

From this, we can define 3 kinds of probabilities: /~
 Joint probabilities e.g., p(0, y)
 Marginal probabilities e.g., p(y)

* Conditional probabilities e.g., p(6|y) QZ




Conditional probability

p(0]y) = f p(y,8)dy

p(0)

0

A

p(6,y)

p@ly") |

p(0,y) =p(y|0)p(0)
=p@ly)p(y)




Example for discrete random variables

What is the probability
that the sun is shining
given that it is not raining?

¢ Let A be the statement

‘the sun is shining’

* Let B be the statement

‘it is raining’

 Anegates A, B negates

B
— Marginal
B B probabilities
A 0.1 0.5 0.6
A 0.2 0.2 0.4
Sum of all
Marginal 0.3 probabilities
s , 0.7
probabilities Z p() =1




Axioms of probability

1. [p(y,0)dody =1 (Normalisation)

2. p(6) = [p(y,6)dy (Marginalisation — the sum rule)

3. p0,y) =pyl0)p(6)

=p@ly)p(y) (Conditioning — the product rule)
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Bayes’ rule and approximate inference



Bayes’ rule

Product rule states that:

p@ly)r(y) = p(y|6)p(6)

Next, we rearrange:
p(y|0)p(6)

p(y)

p(@ly) =

Apply the sum and product rules:

p(y) = f p(y,6)d6 = f p(y10)p(6)d6



Bayes’ rule

p(y|0)p(6)
p(y)

p(@ly) =



Overview

Demo: variational Bayes in SPM



Demo

General linear model formulation:




Demo

General linear model formulation:

[100-1]  [100-1]
_=x,8+
[100 - 2][

E l

where, & ~ (0, 02)




Demo

Likelihood: - 2
p(y|B)~N (xB,%) = o

Prediction is given by xf3 ; uncertainty can be thought of as following a
normal distribution over that prediction.



Demo

Likelihood: - 2
p(y|B)~N (xB,%) = o

Prior:

pB~N (ol [y 3

Prediction is given by xf3 ; uncertainty can be thought of as following a
normal distribution over that prediction.



Demo

p(y|B)p(B)
p(y)

Posterior: p(ﬁ_ ‘ y) =

where. py) = [ p(y|B)p(F)d8



Variational inference

Calculate the evidence by marginalising out the parameters from the joint density:

p(y) = jp(y\[?)p(ﬁ)dﬁ

The evidence integral is not available in closed form + computing this requires variational

inference.

We introduce a variational density g that can be integrated: q(,g ) = p(,g V)

We now make a move from p(y) — log p(y) to make the computations easier.



Deriving the free energy
Assumptions:p(fB|y) # 0 and q(B) # 0

logp(y)=logp(y)+fl P dp

pGB1)
B - . p(Bly)
- j (B logp(y) dB + f 1(Blog =25 dp

— Y)
= [ q(B)log = p(ﬁm ag

) p(ﬁ 3’) 2] Q(ﬁ) divergence is 0

Free energy K L-divergence

| S



Demo

p(y|B)p(B)
p(y)

Posterior: p(ﬁ_ ‘y) —

wheres py) = [ p(y|B)p(F)d8

p(Bly) ~ M(,%) and log p(y) ~ F



Matlab demo
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Probability theory 1s nothing but common sense
reduced to calculation.
— Pierre-Simon Laplace, 1819



