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• Structural connectivity

Presence of axonal connections

• Functional connectivity 

Statistical dependencies between regional time series 

• Effective connectivity 

Causal influences between neuronal populations, and experimental contexts!
O. Sporns 2007, Scholarpedia

Karl Friston
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Very Accurate
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Not complex

Not Accurate

Example: curve fitting!

Richard Feynman

𝐹 ≈ ln 𝑝 𝑦 𝑚 = accuracy(m) − complexity(m)

Model estimation and comparison  in DCM

DCM optimises the free energy of a model (wrt parameters) to infer 
parameters that can accurately replicate the data and are not too complex! 

Hermann von Helmholtz

Noisy observed data 

Hidden generator of data 

Fitted curve to data  



Not Accurate

Very Complex
Very Accurate

Accurate
Not complex

Not Accurate

Example: curve fitting!

𝐹 ≈ ln 𝑝 𝑦 𝑚 = accuracy(m) − complexity(m)

Model estimation and comparison  in DCM

ln 𝐵𝐹 = 𝐹1 − 𝐹2

Model (hypothesis) comparison using Bays factor (or log BF)  



Intuition of Hodgkin & Huxley in balancing complexity and accuracy

Sir Alan Hodgkin 

Sir Andrew Huxley



Sir Alan Hodgkin 

Sir Andrew Huxley

H&H refined the linear model by inclusion of nonlinear terms, having considered balancing 
complexity with accuracy which is highly relevant to the Free energy concept. 
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Data features in DCM:

Evoked potentials Power spectral 

density

Induced or 

Time frequency 

Mixed data features



Modelling of data features in DCM

Evoked potentials Power spectral 

density

In the absence of any input neuronal dynamics are at 
stable equilibrium! Different types of inputs induce 

different data features

Experimental 
inputs  (visual/ 

auditory stimuli) 
induce ERPs

Random neuronal 
fluctuations

induce oscillation around 
the neuronal equilibrium! 

Random  neuronal 
fluctuations about the 

mean evoked response can 
generate induce response

Induce response
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Cortical Column, and brain activity! 

Montcastle

Hubel and Wiesel 

Infragranular layer

Supragranular layer

Granular layer



J Cowan H Wilson 

F Lopes da Silva

W Freeman 

It is hoped that the relative simplicity of the model may serve 
as a basis for a better understanding of the functional 

significance of cortical complexity

(Hugh Wilson and Jack Cowan, 1973)

B Jansen

Mesoscale models of cortical column’s electrical activity



Canonical neural mass models

3
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4

1

2. Superficial 

pyramidal cells

3. Inhibitory 

interneurons

1. Spiny stellate 

cells (excitatory)

4. Deep pyramidal 

cells

Infragranular layer

Supragranular layer

Granular layer

Karl Friston

y = 𝐿 𝑉𝑠𝑝 + 𝛼1 × 𝑉𝑠𝑠 + 𝛼2 × 𝑉𝑑𝑝 + e



spiny stellate

Superficial pyramidal cells

deep pyramidal cells

Inhibitory 

interneurons

thalamus
Forward connectionsBackward connections

Top-down extrinsic afferents

Bottom up extrinsic afferents

2

4

1
3

Canonical neuronal mass models:
Intrinsic and extrinsic connections

2. Superficial 

pyramidal cells

3. Inhibitory 

interneurons

1. Spiny stellate 

cells (excitatory)

4. Deep pyramidal 

cells

Inhibitory

Excitatory 



Forward extrinsic connections  

Superficial pyramidal
→ spiny stellate

Superficial pyramidal
→ deep pyramidal

Input Input

Backward extrinsic connections  

Deep pyramidal
→ inhibitory interneurons

Deep pyramidal
→ superficial pyramidal

B

B

F
F



Firing rate to 
Potential 

conversion

Potential to 
firing rate 
conversion
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Canonical neuronal mass models:
population model
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W Freeman
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J Cowan H Wilson 



For small membrane potentials, firing rates are small. By increasing the potential
firing rate increases but up to a point where it saturate! 



membrane depolarization (mV)
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cumulative probability distribution distribution  of thresholds 
Single neuron firing

Mean Potential to firing rate conversion

∫



synapse

spike 

synapse

𝑡0
𝑡0

synapse

𝑡1

synapse

𝑡1

Mean firing rate to PSP conversion:

u1ℎ(𝑡)

u2ℎ(𝑡 − 𝑡0)

u3ℎ(𝑡 − 𝑡1)

u1

u2

u3

𝑈𝑡 = 𝑢1 + 𝑢2 + 𝑢3 +⋯
𝑉 = 𝑢1ℎ(𝑡) + 𝑢2ℎ(𝑡 − 𝑡0) + 𝑢3ℎ(𝑡 − 𝑡1) + ⋯

𝑉 = ∫ 𝑈𝑡ℎ 𝑡 − 𝑑𝜏 𝑑𝑡 = 𝑈𝑡 ⊗ℎ(𝑡)

Convolution

𝑈𝑡



Different NMM models in SPM12:

ERP NMM based on Jansen & Rit (1995) 

SEP ERP with faster dynamics for evoked potentials

CMC, TFM Canonical Microcircuit Model 

LFP J&R with spike frequency adaptation mechanisms 

NFM Extension of ERP model to a neural field model

In (Convolution) NMM, synaptic mechanisms ℎ(𝑡) has a fixed shape 

regardless of input firing rates. 

Neural mass model



Different NMM models in SPM12:

In conductance based models, presynaptic inputs directly influence 
synaptic mechanisms and they incudes details physiology.

Conductance based models (Morris-Lecar)

NMM based on Morris & Lecar (1981)

MFM dynamics of mean & cov of neuronal population ensemble

CMM, CMM_NMDA canonical micro circuit and mean field model, includes (ligand 

gated) NMDA receptors 



ss: Spiny stellate cells

sp: Superficial pyramidal cells

in: Inhibitory interneurons

dp: Deep pyramidal cells
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Firing rates

Synaptic gains

passive leak current
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Prior in DCM
1- Model should 
be stable in prior 

space ! 

𝑃 𝜃 = 𝑁(𝜇, Σ)

in

sp

dp

ss

2- Model 
parametrisation 

and prior can help 
indefinability!

Klass Stephan

3- Prior can add a sense of 
geometry and/or 

interpretability  to the 
model!

Posterior correlation matrix
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Examples 



Miss match negativity with agency  recorded by  MEG, fMRI

The subject received an auditory cue, instructing them to respond to auditory tones 
or control the tones (by pressing a button). 
After 2s, a series of tones was presented. Deviant tones (red striped circles) differed 
in frequency from the preceding tone. 
Whether a tone was a standard or deviant was independent of whether the tone 
was triggered by the computer or the subject.



Standard respond (SR) Standard control (SC)

Deviant respond (DR) Deviant control (DC)

Statistical analysis of fMRI data 





rHGlHG

rPT

rIFG

rPI

thalamic 

input

DCM infers neuronal parameters that generates
standard response (baseline condition).

Condition-specific parameters is embedded in
DCM to model other conditions (deviants) with
respect to the baseline condition!





Prediction of the model given the estimated 
parameters 

rHGlHG

rPT

rIFG

rPI

thalamic 

input

Simulated response of a 
population to each stimulation 



Principles of multimodal dynamic 
causal Modelling

Amirhossein Jafarian, PhD,



MEG

fMRI

Multimodal DCM: functional (MEG) +functional (fMRI) 

MEG MRS

Multimodal DCM: structural (MRS) + functional (MEG) 



Multimodal dynamic casual modelling 
of MEG and fMRI
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1. Spiny stellate cells

2. Superficial pyramidal cells

3. Inhibitory interneurons

4. Deep pyramidal cells

Canonical micro 

circuit (CMC)

3

2

4

1

Simulation of pre/post-synaptic

responses of a population in a

source for each experiential

condition (e.g., 4 conditions)
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Simulating neuronal drive function
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Neuronal / haemodynamic model

Neurovascular 

coupling

𝑧

signal
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BOLD response

Q1) Whether neurovascular coupling is excited by presynaptic

versus postsynaptic neuronal drive;

Q2) Whether distal neuronal sources exert changes on

regional BOLD responses;

Q3) Whether the parameters of neurovascular coupling are

region specific or equal for all regions

Q4) Whether a static vs linear model best describes the

dynamics of astrocyte responses associated with the release

of vasoactive agents (e.g., calcium).

Q5) Whether the power of ERP signals drive the BOLD or

ERP signals?



The most likely neurovascular coupling mechanisms that induce BOLD responses receive 
instantaneous local presynaptic neuronal activity, with region-specific parameterization! 
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Bayesian Model Reduction
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Parameter (neuronal population)

Structure learning: Comparing hypothesis  



MEG

fMRI

Multimodal DCM: functional (MEG) +functional (fMRI) 

MEG MRS

Multimodal DCM: structural (MRS) + functional (MEG) 



Dynamic Causal Modelling
of

MEG data

Neurotransmitter
concentration 

Synaptic activity 
& connection

Neuronal oscillation 
(MEG) 

Magnetic resonance spectroscopy 
DCM for  MEG

(Yoon, et al. 2016)



Inclusion of empirical prior -MRS data- into DCM pipeline

MEG data Dynamic causal modelling

F

Prior 

Posterior estimate of unkown

Model prediction vs observed data 

Model evidence

Magnetic resonance
spectroscopy 

Predicted

Observed

Data
Model
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First level DCM

1
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1

4

2

3 Posterior estimate of 

parameters and first level 
model evidences 

Maximisation evidence of 
group DCM 

w.r.t 
transformed MRS scores as 

prior on 
some synaptic connections 

MRS

Which specific synaptic connections should be influenced by transformed MRS data and how?

Model 4: Sigmoid transformations of MRS GABA & intrinsic connections 

Model 2: Sigmoid transformations of MRS GABA & self-inh connections 

Model 1: Polynomial transformations of MRS GABA & self-inh connections 

Model 3: Polynomial transformations of MRS GABA & intrinsic connections 

Γ(MRS)



Laplace transform 

Inverse Laplace transform 

Using Γ notation to simplify 
writing of the left hand side! 

First order differential equations equivalent of 
the convolution integral.

Appendix:

Input-output relation:
Convolution of input and synaptic

Impulse response
After Laplace transform: 
convolution becomes product

Laplace transform of input 

Laplace transform of h(t) 

We  multiply the 
denominator 
In right hand side with 
𝑣𝑖(s)𝑠𝑛𝑣(𝑠) in Laplace domain is equal to  𝑛𝑡ℎ derivative of v(t) in time domain

ℎ 𝑡 = 𝛼
𝑡

𝑘
𝑒
−𝑡
𝑘



Thanks for your attention 
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