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Abstract  
 

Background 

Recent reports based on conventional SEIR models suggest that the next wave of the COVID-19 

pandemic in the UK could overwhelm health services, with fatalities that far exceed the first wave. 

These models suggest non-pharmaceutical interventions would have limited impact without 

intermittent national lockdowns and consequent economic and health impacts. We used Bayesian 

model comparison to revisit these conclusions, when allowing for heterogeneity of exposure, 

susceptibility, and viral transmission. 

 

Methods 

We used dynamic causal modelling to estimate the parameters of epidemiological models and, 

crucially, the evidence for alternative models of the same data. We compared SEIR models of 

immune status that were equipped with latent factors generating data; namely, location, 

symptom, and testing status. We analysed daily cases and deaths from the US, UK, Brazil, Italy, 

France, Spain, Mexico, Belgium, Germany, and Canada over the period 25-Jan-20 to 15-Jun-20. 

These data were used to estimate the composition of each country’s population in terms of the 

proportions of people (i) not exposed to the virus, (ii) not susceptible to infection when exposed, 

and (iii) not infectious when susceptible to infection. 

 

Findings 

Bayesian model comparison found overwhelming evidence for heterogeneity of exposure, 

susceptibility, and transmission. Furthermore, both lockdown and the build-up of population 

immunity contributed to viral transmission in all but one country. Small variations in 

heterogeneity were sufficient to explain the large differences in mortality rates across countries. 

The best model of UK data predicts a second surge of fatalities will be much less than the first 

peak (31 vs. 998 deaths per day. 95% CI: 24-37)—substantially less than conventional model 

predictions. The size of the second wave depends sensitively upon the loss of immunity and the 

efficacy of find-test-trace-isolate-support (FTTIS) programmes. 

 

Interpretation 

A dynamic causal model that incorporates heterogeneity of exposure, susceptibility and 

transmission suggests that the next wave of the SARS-CoV-2 pandemic will be much smaller than 

conventional models predict, with less economic and health disruption. This heterogeneity means 

that seroprevalence underestimates effective herd immunity and, crucially, the potential of public 

health programmes. 
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Research in context  
 

Evidence before this study  

Hundreds of modelling papers have been published recently, offering predictions and projections 

of the current coronavirus outbreak. These range from peer-reviewed publications to rapid 

reports from learned societies. Many, if not most, of these modelling initiatives commit to a 

particular kind of epidemiological model that precludes heterogeneity in viral exposure, 

susceptibility, and transmission. The ensuing projections can be fantastical in terms of fatalities 

and ensuing public health responses. 

 

Added value of this study  

This study revisits the evidence for conventional epidemiological modelling assumptions using 

dynamic causal modelling and Bayesian model comparison. It provides overwhelming evidence 

for heterogeneity, and the interaction between lockdown and herd immunity in suppressing viral 

transmission. 

 

Implications of all the available evidence 

Heterogeneity of this sort means that low seroprevalence (<20%) is consistent with levels of 

population immunity that play a substantive role in attenuating viral transmission and, crucially, 

facilitating public health measures. 

 

 

Introduction 
 

The UK has suffered one of the highest death rates in the world from the second severe acute 

respiratory   syndrome coronavirus (SARS-CoV-2). Three recent models project an even larger 

second wave of infections—with the UK facing an overwhelmed health service and death rates 

far higher than the first wave, unless a series of national lockdowns are enforced1,2. Okell and 

colleagues (ibid) suggest that ‘the epidemic is still at a relatively early stage and that a large 

proportion of the population therefore remain susceptible’. The Academy of Medical Science in 

their 14-July-20  report i ‘Preparing for a challenging winter 2020/21’ suggest a peak in hospital 

admissions and deaths in January/February 2021 with estimates of 119,900 (95% credible 

interval: 24,500-251,000) hospital deaths between September 2020 and June 2021—double the 

number that occurred during the first wave in the spring of 2020. Davies and colleagues1 project 

a median unmitigated burden of 23 million (95% CI: 13–30 million) clinical cases and 350,000 

deaths (95% CI: 170,000–480,000) due to COVID-19 in the UK by December, 2021, with only 

national lockdowns capable of bringing the reproductive ratio near or below one. These kinds of 

projections have profound consequences for the national economy and the resulting health 

impacts of recession and unemployment. 

This article challenges these projections and, in particular, the underlying assumptions that the 

risk of infection is homogeneous within the population. The role of pre-existing immunity, host 

genetics and overdispersion in nuancing viral transmission—and explaining the course of the 
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pandemic in light of unlocking—calls for a more careful quantitative analysis3-6. The role of 

heterogeneity in exposure, susceptibility and transmission is receiving more attention; especially, 

in relation to the build-up of herd immunity7,8. This article illustrates a formal approach to 

epidemiological modelling that may help resolve some prescient issues.  

 

The pessimistic projections above consider two principal mechanisms that underlie the 

mitigation—and possible suppression—of the ongoing coronavirus epidemic: (i) a reduction in 

viral transmission due to lockdown and social distancing measures, and (ii) a build-up of 

population or herd immunity. Herd immunity can be read as the population immunity that is 

required to attenuate community transmission. For example, Okell and colleagues (ibid) review 

three lines of argument and conclude that herd immunity is unlikely to explain differences in 

mortality rates across countries; thereby placing a strategic emphasis on lockdown to preclude a 

rebound of infections. This is in contrast with a herd immunity scenario, whereby immunity in 

the population will reduce transmission to pre-empt a second wave 5,9,10. 

 

We use their analyses as a vehicle to question the validity of projections based upon conventional 

(susceptible, exposed, infected, and removed—SEIR) modelling assumptions. In particular, we 

deconstruct their arguments to show that the empirical observations they draw upon are 

consistent with herd immunity. Furthermore, public health responses and herd immunity are not 

mutually exclusive explanations for mortality rates, they both contribute to the epidemiological 

process and contextualise each other in potentially important ways.  In turn, this has implications 

for the timing of interventions such as lockdown and FTTIS. More generally, we question the 

commitment to conventional epidemiological models that have not been subject to proper model 

comparison.  

 

Methods 
 

Dynamic causal modelling is the application of variational Bayes to estimate the parameters of 

state-space models and, crucially, the evidence for alternative models of the same data. It was 

developed to model interactions among neuronal populations and has been used subsequently in 

radar, medical nosology and recently epidemiology11-15. Variational Bayes is also known as 

approximate Bayesian inference and is computationally more efficient than Bayesian techniques 

based upon sampling procedures (e.g., approximate Bayesian computation), which predominate 

in epidemiological modelling16-18. The particular dynamic causal model used here embeds an SEIR 

model of immune status into a model that includes all latent factors generating data; namely, 

location, infection symptom, and testing status. Please see the foundational paper for structural 

details of the model used in this paper15 and the generic (Variational Laplace) scheme used to 

estimate model parameters and evidence. 

 

Dynamic causal modelling (DCM) differs from conventional epidemiological modelling in that it 

uses mean field approximations and standard variational procedures to model the evolution of 

probability densities16. This contrasts with epidemiological modelling that generally uses 

stochastic realisations of epidemiological dynamics to approximate probability densities with 

sample densities17,19-21. One advantage of variational procedures is that they are orders of 

magnitude more efficient; enabling end-to-end model inversion or fitting within minutes (on a 
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laptop) as opposed to hours or days (on a supercomputer)17. More importantly, variational 

procedures provide an efficient way of assessing the quality of one model relative to another, in 

terms of model evidence (a.k.a., marginal likelihood) 22. This enables one to compare different 

models using Bayesian model comparison (a.k.a. structure learning) and use the best model for 

nowcasting, forecasting or, indeed, test competing hypotheses about viral transmission. 

 

More generally, Bayesian model comparison plays a central role in testing hypotheses given 

(often sparse or noisy) data. It eschews intuitive assumptions, about whether there are sufficient 

data to test this or that, by evaluating the evidence for competing hypotheses or models. If there 

is sufficient information in the data to disambiguate between two hypotheses, the difference in 

log-evidence will enable one to confidently assert one model is more likely than the other. Note 

that this automatically ensures that the model is identifiable, in relation to the model parameters 

or prior assumptions in question. 

 

Dynamic causal models can be extended to generate any kind of epidemiological data at hand: for 

example, the number of positive antigen tests. This requires careful consideration of how positive 

tests are generated, by modelling latent variables such as the bias towards testing people with or 

without infection or, indeed, the time-dependent capacity for testing. In short, everything that 

matters—in terms of the latent (hidden) causes of the data—can be installed in the model, 

including lockdown, self-isolation and other processes that underwrite viral transmission. Model 

comparison can then be used to assess whether the effect of a latent cause is needed to explain 

the data—by withdrawing the effect and seeing if model evidence increases or decreases. Here, 

we leverage the efficiency of dynamic causal modelling to evaluate the evidence for a series of 

models that are distinguished by heterogeneity or variability in the way that populations respond 

to an epidemic. The dynamic causal model used for the analyses below is summarised in terms of 

its structure (Figure 1) and parameters (Table 1): 
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Figure 1: A LIST model. This schematic summarises a LIST (location, infection, symptom, and testing) 

model used for the accompanying analyses. This model is formally equivalent to the model in23. It includes 

a state (isolated) to model people who have yet to be exposed to the virus or are shielding because they 

think they may be infectious (within their home or elsewhere). It also includes a (seronegative) state to 

model individuals who have pre-existing immunity, e.g., via cross-reactivity 24,25 or other protective host 

factors 26,27. This absorbing state plays the role of the recovered or removed states of SEIR models—once 

entered, people stay in this state for the duration of the outbreak. One can leave any of the remaining states. 

For example, one occupies the deceased state for a day and then moves to healthy on the following day. 

Similarly, one occupies the state of testing positive or negative for a day, and then moves to the untested 

state the following day. This enables the occupancy of various states to be quantified in terms of daily rates. 

The discs represent the four factors of the model, and the segments correspond to their states (i.e., 

compartments). The green disc is the closest to a conventional (i.e., SEIR) model that is embedded within 

three other factors. The states within any factor are mutually exclusive. In other words, every individual 

has to be in one state associated with four factors. The orange boxes represent the observable outputs that 

are generated by this model, in this instance, daily reports of positive tests and deaths. The rate of transition 

between states—or the dwell time within any state—rests upon the model parameters that, in some 

instances, can be specified with fairly precise prior densities—listed in Table 1. 
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Table 1 

 
Parameters of the epidemic (LIST) model and priors: ( , )N C  

(NB: prior means are for scale parameters exp( ) = ) 

 
Number Parameter Mean Variance  Description 

1 
n  4 1 Number of initial cases 

2 
r  1/2 1/256 Proportion of non-susceptible cases 

3 
N  8 1 Effective population size (millions) 

Location     

4 
out  1/3 1/256 Probability of going out 

5 
sde  1/32 1/256 Social distancing threshold 

6 
cap  16/100000 1/256 Critical care capacity threshold (per capita) 

Infection     

7 
res  1/2 1/256 Proportion of non-infectious cases 

8 
Rin  4 1/16 Effective number of contacts: home 

9 
Rou  48 1/16 Effective number of contacts: work 

10 
trn  1/3 1/16 Transmission strength 

11 1exp( )
inf

inf 
 = −  4inf =  1/256 Infected period (days) 

12 1exp( )
con

con 
 = −  4con =  1/256 Infectious period (days) 

13 1exp( )
imm

imm 
 = −  1: 32imm =  1/512 Seropositive period (months) 

Symptoms     

14 11 exp( )
inc

dev 
− = −  16inc =  1/256 Incubation period (days) 

15 
sev  1/32 1/256 Probability of severe symptoms (e.g. ARDS) 

16 1exp( )
sym

sym 
 = −  8sym =  1/256 Symptomatic period (days) 

17 1exp( )
rds

rds 
 = −  10rds =  1/256 ARDS period (days) 

18 
fat  1/2 1/256 ARDS fatality rate: hospital 

19 
sur  1/8 1/256 ARDS fatality rate: home 

Testing     

20 
ttt  1/10000 1 Efficacy of tracking and tracing 

21 
lat  2 1 Latency of enhanced testing (months) 

22 
sus  4/10000 1/256 Enhanced testing 

23 
bas  4/10000 1/256 Baseline testing 

24 
tes  8 1/16 Selectivity of testing infected people 

25 1exp( )
del

del 
 = −  2del =  1/256 Delay in reporting test results (days) 

 
Secondary sources 28-33. The prior expectations should be read as the effective rates and time constants as 

they manifest in a real-world setting. The incubation period refers to the time constant corresponding to 

the rate at which one becomes symptomatic if infected—it does not refer to the period one is infected prior 

to developing symptoms. For example, early evidence indicates that by 14 days, approximately 95% of 

presymptomatic periods will be over 34,35. The priors for the non-susceptible and non-infectious proportion 

of the population are based upon clinical and serological studies reported over the past few weeks36,37. 

Please see the code base for a detailed explanation of the role of these parameters in transition probabilities 

among states. Although the (scale) parameters are implemented as probabilities or rates, they are 
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estimated as log scale parameters, denoted by ln = . Note that the priors are over log scale parameters 

and are therefore mildly informative. For example, a prior variance of 1/256 corresponds to a prior 

standard deviation of 1/16. This means that the parameter in question can, a priori, vary by a factor of 

about 30%. The default priors used for the current analyses are also listed in spm_COVID_priors.ma and 

can be optimised using Bayesian model comparison (by comparing the evidence with models that have 

greater or lesser shrinkage priors). Please see 15 for details. 

 

 

Notice that this model is more nuanced than most conventional epidemiological models. For 

example, immunity and testing are separate factors. This means that we have not simply added 

an observation model to an SEIR-like model; rather, testing now becomes a latent factor that can 

influence other factors (e.g., the location factor via social distancing). Furthermore, there is a 

difference between the latent testing state and the reported number of new cases—that depends 

upon sensitivity and specificity, via thresholds used for reporting 38. Separating the infection and 

symptom factors allows the model to accommodate asymptomatic infection39: to move from an 

asymptomatic to asymptomatic state depends upon whether one is infected but moving from an 

infected to an infectious state does not depend upon whether one is symptomatic. Furthermore, 

it allows for viral transmission prior to symptom onset40,41. 

This particular dynamic causal model accommodates heterogeneity at three levels that can have 

a substantive effect on epidemiological trajectories. These effects are variously described in terms 

of overdispersion, super-spreading, and amplification events4,6,42. In the current model, 

heterogeneity was modelled in terms of three bipartitions (summarised in Figure 2): 

 

Heterogeneity in exposure: This was modelled in terms of an effective population size that is 

less than the total (census) population. The effective population comprises individuals who are 

in contact with other infected individuals. The remainder of the population are assumed to be 

geographically sequestered from a regional outbreak or are shielded from it. For example, if the 

population of the UK was 68 million, and the effective population was 39 million, then only 57% 

are considered to participate in the outbreak. Of this effective population, a certain proportion 

are susceptible to infection: 

 

Heterogeneity in susceptibility: This was modelled in terms of a portion of the effective 

population that are not susceptible to infection. For example, they may have pre-existing 

immunity via cross- reactivity24,25,43 or particular host factors26,27 such as mucosal immunity44. 

This non-susceptible proportion is assigned to the seronegative state at the start of the outbreak. 

Of the remaining susceptible people, a certain proportion can transmit the virus to others: 

 

Heterogeneity in transmission: We modelled heterogeneity in transmission with a free 

parameter (with a prior of one half and a prior standard deviation of 1/16). This parameter 

corresponds to the proportion of susceptible people who are unlikely to transmit the virus, i.e., 

individuals who move directly from a state of being infected to a seronegative state (as opposed 

to moving to a seropositive state after a period of being infectious). We associated this transition 

with a mild infection45 that does not entail seroconversion, e.g., recovery in terms of T-cell 

mediated responses25,26. In short, the seronegative state plays the role of a seropositive state of 

immunity for people who never become infectious, either because they are not susceptible to 

 
a https://www.fil.ion.ucl.ac.uk/spm/covid-19/ 

https://www.fil.ion.ucl.ac.uk/spm/covid-19/
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infection or have a mild infection (with or without symptoms, e.g., children). 

 

Modelling heterogeneity of susceptibility in terms of susceptible and non-susceptible individuals 

can be read as modelling the difference between old (susceptible) and young (non-susceptible) 

people29. However, in contrast to models with age-stratification, the current model does not 

consider different contact rates between different strata (e.g., contact matrices). Instead, we 

model variations in contact with location—in terms of the number of people one is exposed to in 

different locations. Although full stratification is straightforward to implementb, this simplified 

model of heterogeneity is sufficient to make definitive inferences about the joint contribution of 

lockdown and population immunity to viral transmission. 

 

This kind of model is sufficiently expressive to reconcile the apparent disparity between 

morbidity/mortality rates and low seroprevalence observed empirically 36,ii. We will see below 

that Bayesian model comparison suggests there is very strong evidence 46 for all three types of 

heterogeneity. 

 

 

 
 
Figure 2: Heterogeneity of exposure, susceptibility, and transmission. Upper panel: this schematic 

illustrates the composition of a population in terms of a proportion that is not exposed to the virus, a 

proportion that is not susceptible when exposed and a further proportion of susceptible people who cannot 

transmit the virus. These proportions are unknown but can be estimated from the data. Lower panel: this 

schematic illustrates the parameterisation of heterogeneity in terms of the parameters in Table 1. 

 

 
b Please see DEM_COVID_I.m for a Matlab demonstration that can be read as pseudocode (see software 

note). 
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Given a suitable dynamic causal model one can use standard variational techniques to fit the 

empirical data and estimate model parameters. Having estimated the requisite model 

parameters, one can then reconstitute the most likely trajectories of latent states: namely, the 

probability of being in different locations, states of infection, symptom, and testing states. An 

example is provided in Figure 3 using daily cases and death-by-date data from the United 

Kingdom from 30-Jan-20 to 01-Sep-20. 

 

 
 
Figure 3: Latent causes.  This figure illustrates posterior predictions of the most likely latent states for the 

United Kingdom. Here, the outcomes in the upper two panels (dots) are supplemented with the underlying 

latent causes or expected states in the lower four panels (the first state in each factor has been omitted for 

clarity: i.e., home, susceptible, healthy, and untested). These latent or expected states generate the 

observable outcomes in the upper two panels. The solid lines are colour-coded and correspond to the states 

of the four factors in Figure 2. For example, under the location factor, the probability of being found at in a 

high-risk location (work: blue line) rises at the onset of the outbreak, falls during lockdown, and then slowly 

recovers during unlocking. At the same time, the proportion of the population who are not exposed to the 
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virus (removed: yellow line) falls, as the exposed proportion increases to the effective population size. 

During lockdown, the probability of isolating oneself rises to about 3% during the peak of the pandemic 

(isolated: purple line). After about six weeks, lockdown starts to relax and slowly tails off, with 

accompanying falls in morbidity (in terms of symptoms: blue line in the symptom panel) and mortality (in 

terms of death rate). Note that seroprevalence (Ab +ve: yellow line in the infection panel) peaks at about 50 

weeks and then starts to decline. Please see software and data note for details about the model inversion 

and data used to prepare this figure—and Figure 6 for confidence intervals on fatality rates. (This figure 

can be reproduced automatically by invoking the Matlab routine DEM_COVID_COUNTRY.m). 

 

 

Results and commentary 
 

Having briefly established the form and nature of the quantitative modelling, we now apply it to 

daily reports of new cases and deaths from several countries. Our focus is not on the details of the 

model—or its predictions. Rather, we use the modelling to illustrate how Bayesian model 

comparison can be used to test some assumptions that underwrite conventional models. In this 

setting, we frame the results in the form of a commentary and restrict the analysis to data 

available at the time the above reports were published (i.e., from 25-Jan-20 to 15-June-21). 

 

 

Heterogeneity in exposure, susceptibility, and transmission 

 

In what follows, we use dynamic causal modelling to revisit some assumptions implicit in 

conventional epidemiological modelling. We follow the three lines of arguments rehearsed in 

Okell et al (ibid). The first can be summarised as: under herd immunity the cumulative mortality 

rate per million of the population should plateau at roughly the same level in different countries. 

This is true if, and only if, the same proportion of the population can transmit the virus. In other 

words, a plateau to endemic equilibrium—based on the removal of susceptible people from the 

population—only requires people are susceptible to infection to be immune. If this proportion 

depends upon the composition of a country's population (i.e., demography), mortality rates could 

differ from country to country. This can be illustrated by using models with heterogeneous 

population structures, of the sort summarised in Figure 2. Figure 4 shows the data and ensuing 

predictions for ten countries, using the format of Okell et al.2 
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Figure 4: This figure reproduces the quantitative results in the Okell et al (ibid). However, here, they are 

based upon the predictions of a dynamic causal model of the epidemic in the 10 countries with the highest 

mortality on 15-Jun-20. The left panel shows the cumulative deaths per million as a function of time to 

illustrate variation over countries. The middle panel plots the log deaths per million in the six weeks 

following lockdown against the corresponding mortality before lockdown. The right panel plots the 

estimated cumulative deaths against estimated seroprevalence in the effective population over a period of 

180 days. Note that these graphics include both empirical data (dots and circles) and predictions (coloured 

lines) based upon the parameter estimates of the dynamic causal modelling (credible intervals have been 

omitted for clarity). The predictions of seroprevalence are, in this example, based purely upon new cases 

and deaths. Although it would be relatively straightforward to include empirical seroprevalence data in the 

dynamic causal modelling, we have presented the seroprevalence predictions to illustrate the predictive 

validity of the model—given that the predictions are in line with empirical reports (i.e., between 5% and 

20%). 

 

Here, we modelled new cases and COVID-19 related deaths in several countries with an effective 

population of unknown size. The remaining, non-exposed, proportion of the total (census) 

population are taken to be geographically sequestered or shielded from exposure to infection. 

The effective population comprises a mixture of susceptible and non-susceptible individuals with 

pre-existing protection from prior exposure to non-COVID-19 coronaviruses or other host 

protective characteristics24-27,43,44. In reality, this bipartition stands in for a graded susceptibility 

within the population. In turn, susceptible individuals comprise a mixture of people who are able 

and unable to transmit virus following infection (see Figure 2). The latter proportion may have a 

short period of virus shedding and low viral load, rendering them, in effect, non-infectious45. 

These non-infectious individuals are assumed to have a mild infection that does not entail 

seroconversion, e.g., recovery in terms of T-cell mediated responses25,26,47. This kind of model 

accommodates heterogeneity of exposure, susceptibility, and transmission (portrayed as 

‘immunological dark matter’ in the mediaiii). Crucially, slight changes in the composition of the 

ensuing population can produce substantial variations in fatality rates (in the left panel of Figure 

4). 

 

Heterogeneity of transmission may be particularly important here3. This is sometimes framed in 

terms of overdispersion or the notion of superspreading and amplification events4,6,42. For 

example, if only 20% of the population were able to develop a sufficient viral load to infect others, 

then protective immunity in this subpopulation would be sufficient for an innocuous endemic 

equilibrium48. Furthermore, if seroconversion occurs largely in the subpopulation spreading the 

virus49, a sufficient herd immunity may only require a seroprevalence of around 10% of the 

effective population (right panel of Figure 4). In short, one might challenge the assumption that 

COVID-19 is spread homogeneously across the population. Indeed, heterogeneity is becoming 

increasingly evident in high risk settings, and in the variation in the period of infectivity across 

ages. 

 

This begs the question: is there evidence for heterogeneity in the dispersion of SARS-CoV-2? And, 

if so, does this heterogeneity vary from country to country? Figure 5 answers this question using 

Bayesian model comparison. It shows—under the models in question—there is overwhelming 

evidence for heterogeneity of exposure, susceptibility, and transmission. And that a substantial 

proportion of each country's population does not contribute to viral transmission. These 

proportions vary from country to country, leading to the differential mortality rates in Figure 4.  
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Figure 5: Bayesian model comparison of dynamic causal models of the coronavirus outbreak in 10 

countries with the greatest mortality rates. The upper panel shows the drop in log evidence when removing 

a component from the model. This reduction is known as log Bayes factor. For example, if the No build-up 

of herd immunity model for the UK has a log evidence of -54, then it is exp(54) times less likely than the 

full model that includes a build-up of immunity. By convention, a difference in log evidence of 3 is taken to 

indicate strong evidence in favour of the full model. The full model accommodates heterogeneity at three 

levels. The first considers an effective population that is exposed to infection, where the remainder are 

geographically isolated or shielding. Of this effective population, a certain proportion cannot be infected 

(e.g., due to host factors such as pre-existing immunity). Of the remaining susceptible population, a certain 

proportion cannot transmit the virus (e.g., through having a short period of viral shedding). This leaves a 

subpopulation who are both susceptible to infection and capable of transmission. By removing these three 

kinds of heterogeneity—and re-evaluating the evidence for the reduced models in relation to the full 

model—one can assess the evidence for the contribution of heterogeneity. Similarly, one can remove social 

distancing and the build-up of seropositive immunity from the model and evaluate their respective 

contribution. The results in the upper panel indicate very strong evidence in favour of the full model for 

nearly all countries. The exceptions are Brazil and Spain—where the entire population appears to 

participate in the outbreak—and Mexico, where social distancing is not evident. Mexico is an interesting 

example where removing a model parameter increases model evidence (via a reduction model complexity). 

Full model: this model incorporates all three forms of heterogeneity, social distancing, and seropositive 

immunity. Exposure: heterogeneity to exposure was removed by equating the effective and total population. 

Susceptibility: heterogeneity of susceptibility was reduced by decreasing the prior proportion of non-

susceptible people by a factor of e. Transmission: heterogeneity of transmission was reduced by decreasing 

the prior proportion of non-infectious people by a factor of e. Lockdown: social distancing was reduced by 

increasing the social distancing threshold by a factor of e2. Immunity: the effect of immunity was reduced 

by decreasing the period of seropositivity by a factor of e2. The lower panels provide the posterior 

expectations (i.e., most likely value given the data) of the effective population under the full model, 

alongside the census population (left panel). The subsequent panels show the non-susceptible proportion 

of the effective population (middle panel) and non-infectious proportion of the susceptible population 
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(right panel). Credible intervals have been submitted for clarity but were in the order of 10 to 20%. 

 

 

In general, the effective population is roughly half of the census population, with some variation 

over countries. The non-susceptible and non-infectious proportions are roughly half of the 

effective and susceptible populations, respectively—varying between 45% and 65%. This 

variation underwrites the differences in fatality rates in Figure 4. It could be argued that the 

estimates of the proportion of non-susceptible individuals is at odds with empirical data from 

contained outbreaks. For example, on the aircraft carrier Charles de Gaulle, about 70% of sailors 

were infectedc. However, this argument overlooks the contribution of heterogeneity: there were 

no children on the Charles de Gaulle. 

 

Okell et al (ibid) wrote: “If acquisition of herd immunity was responsible for the drop in incidence 

in all countries, then disease exposure, susceptibility, or severity would need to be extremely 

different between populations.” On the basis of the above quantitative modelling, this assumption 

transpires to be wrong: small variations in heterogeneity of exposure and susceptibility are 

sufficient to explain differences between countries. Our point here, is that predicates or 

assumptions of this sort can be evaluated quantitatively in terms of model evidence. 

 

 

Do countries that went into lockdown early experience fewer deaths in subsequent weeks?  

 

This is the second argument made by Okell et al (ibid) for the unique role of lockdown in 

mitigating fatalities: However, exactly the same correlation—between cumulative deaths before 

and after lockdown—emerges under epidemiological models that entertain heterogeneity and 

herd immunity. See Figure 4 (middle panel). In short, had the authors tested the hypothesis that 

lockdown or herd immunity were necessary to explain the data, they would have found very 

strong evidence for both—and may have concluded that lockdown nuances the emergence of 

herd immunity. See Figure 5. 

 

 

Does a correlation between antibodies to SARS-CoV-2 (i.e., seroprevalence) and COVID-19 

mortality rates imply a similar infection fatality ratio (IFR) over countries? 

 

Conventional models generally assume this is the case2,29. The problem with this assumption is 

that it precludes pre-existing immunity and loss of immunity (as in SEIRS models)24. Population 

immunity could fall over a few months due to population flux and host factors, such as loss of 

neutralising antibodies49. This is important because it means that seroprevalence could fall slowly 

after the first wave of infection (indeed, empirical seroprevalence is not increasing and may be 

decreasing in the UK iv). In turn, this produces a nonlinear relationship between the prevalence of 

antibodies and cumulative deaths at the time seroprevalence is assessed. This is illustrated by the 

curvilinear relationships in the right panel of Figure 4 (under a loss of seroprevalence with a time 

constant of three months). If one associates IFR with the slope of fatality rates—as a function of 

seroprevalence—then the IFR changes over time. In short, the IFR changes as the epidemic 

 
c https://en.wikipedia.org/wiki/COVID-19_pandemic_on_Charles_de_Gaulle 

https://en.wikipedia.org/wiki/COVID-19_pandemic_on_Charles_de_Gaulle
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progresses, as the proportion of susceptible and transmitting people falls, or those at highest risk 

succumb early in the pandemic. This begs the question: are quantities such as IFR fit for purpose 

when trying to model epidemiological dynamics? 

 

 

What is the impact of different rates of loss of immunity?  

 

So, what are the implications of heterogeneity for seroprevalence and a second wave? The 

Bayesian model comparisons in Figure 5 speak to a mechanistic role for herd immunity in 

mitigating a rebound of infections. Note that this model predicts seroprevalences that are 

consistent with empirical community studies, without ever seeing these serological data (e.g., in 

the UK if 11% of the effective population is seropositive and the effective population is 49% of 

the census population, we would expect 5.4% of people to have antibodies, which was the case at 

the time of analysisv).  

 

Predictive validity of this sort generally increases with model evidence. This follows from the fact 

that the log-evidence is accuracy minus complexity. In other words, models with the greatest 

evidence afford an accurate account of the data at hand, in the simplest way possible. Unlike the 

Akaike and widely used Bayesian information criteria (AIC and BIC), the variational bounds on 

log-evidence used in in dynamic causal modelling evaluate complexity explicitly22. Models with 

the greatest evidence have the greatest predictive validity because they do not overfit the data. 

An example of the posterior predictions afforded by the current model is provided in Figures 3 

and 6 that speak to the timing and amplitude of a second wave in the UK. Figure 6 focuses on 

fatality rates under a couple of different scenarios; namely, under a rapid loss of antibody-

mediated immunity and under an accelerated FTTIS program.  

 

 

 

 

Figure 6: Expected death rates as a function of time for a heterogeneous United Kingdom population. The 

trajectories (lines) and accompanying 90% Bayesian credible intervals (shaded areas) correspond to 

posterior predictions with a loss of immunity over 32 (blue) and 6 (orange) months. This subsumes loss of 

protective immunity due to population fluxes and the immunological status of individuals. The six-month 

scenario can be considered a worst-case prediction, under which we would expect a second peak of about 



DCM and dark matter 

15 

100 deaths per day. Under the more optimistic prior of enduring immunity, fatality rates would be 

substantially lower than witnessed during the first peak (31 versus 856 per day, respectively. CI: 24-37). 

The green line reproduces the predictions after increasing the efficacy of find, test, trace, isolate and 

support to 25% (from its posterior estimate of about 1%).  

 

 

 

These posterior predictions suggest that, under the assumption that immunity endures for a year 

or two, there may be a mild inflation of fatality rates over the autumn, peaking at about 30 per 

day. This second wave could be eliminated completely with an increase in the efficacy of contact 

tracing (FTTIS)—modelled as the probability of self-isolating, given one is infected but 

asymptomatic. It can be seen that even with a relatively low efficacy of 25%, elimination is 

possible by November, with convergence to zero fatality rates. Please see 50 for a more 

comprehensive analysis. Note that in a month or two, death rates should disambiguate between 

these scenarios.  
 

The credible intervals in Figure 6 may appear rather tight. This reflects two issues. First, the well-

known overconfidence problem with variational inference—discussed in 15,51. Second, these 

posterior predictive densities are based upon the entire timeseries, under a dynamic causal 

model that constrains the functional form of the trajectories. Put simply, this means that 

uncertainty about the future can be reduced substantially by data from the past. 
 

 

Discussion 
 

Our reading of the epidemiological modelling literature suggests a systemic failure to formally 

evaluate the evidence for alternative models (e.g., models with age stratification and 

heterogeneous contact structure). This may reflect the fact that agent-based, stochastic 

transmission models are notoriously difficult to evaluate in terms of their evidence16,18. In 

contrast, the variational approaches used in dynamic causal modelling34-39 furnish a variational 

bound on model evidence that allows competing models to be assessed quickly and efficiently. 

The central role of model comparison is established in many disciplines and is currently 

attracting attention in epidemiology52. 

 

Although model evaluation using the AIC (or widely used BIC) can be found in the epidemiological 

literature53-55, this kind of comparison does not constitute proper model comparison. This is 

because the complexity part of model evidence is not estimated by the AIC (or widely used BIC). 

The model complexity corresponds to the degrees of freedom used to explain the data 

(technically, the KL divergence between the posterior and prior). The AIC and BIC approximate 

complexity with (functions of) the number of free parameters, irrespective of whether these 

parameters are used or not. This means that the AIC is not fit for purpose when comparing models 

in a clinical or epidemiological setting. Please see 22 for illustrations of the failure of the AIC (and 

BIC). In short, it appears that most of the predictions underwriting ‘scientific advice’ to 

governmental agencies are based on epidemiological models that have not been properly 

compared with alternative models. If there is no rebound in fatality rates in the next few months, 

the conclusions in Okell et al, Davies et al and the Academy of Medical Sciences report (ibid) will 
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be put under some pressure. This pressure might license a more (model) evidence-based 

approach, using the requisite variational methods that predominate in statistical physics, 

machine learning and (dynamic) causal modelling.  

 

The recurrent theme above is the danger of committing to one particular model or conception of 

the epidemiological process. In other fields—dealing with population dynamics—Bayesian model 

comparison is used to identify the best structure and parameterisation of models28-30 known as 

structure learning31,32. Figure 5 offers an example of Bayesian model comparison in epidemiology, 

evincing very strong evidence for heterogeneity in responses to viral infection—and a synergistic 

role for social distancing and herd immunity. 

 

Identifying the right epidemiological model has considerable public health and economic 

implications. While SARSCo-V2 may not be eradicated, model selection suggests that any second 

wave will be much smaller than other models have projected, and the virus will become endemic 

rather than epidemic. The size of a second wave may depend sensitively on the efficacy of FTTIS 

programmes and the rate of loss of immunity. Recent evidence suggests T-cell immunity may be 

more important for longer term immunity with circulating SARS-CoV-2-specific CD8+ and CD4+ 

T cells identified in 70% and 100% of COVID-19 convalescent patients, respectively25. 

Furthermore, 90% of people who seroconvert make detectible neutralizing antibody responses 

that are stable for at least 3 months56. If the above dynamic causal model is broadly correct, future 

national lockdowns may be unnecessary. As an endemic and potentially fatal virus, especially in 

elderly people and those with underlying conditions, attention to the details of FTTIS and 

shielding becomes all the more important. This emphasises the need for clear criteria for when 

and how to implement local lockdowns in ‘hotspot’ areas. 

 

In summary, lockdown and social distancing have undoubtedly restricted the transmission of the 

virus. Model comparison suggests that these approaches remain an essential component of 

pandemic control, particularly at current levels of infections in the UK. However, extending the 

notion of ‘herd immunity’—to include seronegative individuals with lower susceptibility and/or 

lower risk of transmission—engenders an immune subpopulation that can change over time and 

country. The implicit immunity may reduce mortality and lower the risk of a second wave to a 

greater extent than predicted under many epidemiological models. On this view, herd immunity 

subsumes people who are not susceptible to infection or, if they are, are unlikely to be infectious 

or seroconvert; noting that SARS-CoV-2 can induce virus-specific T-cell responses without 

seroconversion. This reconciles the apparent disparity between reports of new cases, mortality 

rates and the low seroprevalence observed empirically. Crucially, Bayesian model comparison 

confirms that there is very strong evidence for the heterogeneity that underwrites this kind of 

herd immunity. 

 

Put simply, an effective herd immunity—that works hand-in-hand with appropriate public health 

and local lockdown measures—requires less than 20% seroprevalence. This seroprevalence has 

already been reached in many countries and is sufficient to preclude a traumatic second wave, 

even under pessimistic assumptions about loss of humoral immunity endowed by antibodies. 
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Glossary of terms 
 

Dynamic causal modelling: the application of variational Bayes to estimate the unknown 

parameters of state-space models and assess the evidence for alternative models of the same data. 

See http://www.scholarpedia.org/article/Dynamic_causal_modeling.  

 

Variational Bayes (a.k.a., approximate Bayesian inference): a generic Bayesian procedure for 

fitting and evaluating generative models of data by optimising a variational bound on model 

evidence. 

See https://en.wikipedia.org/wiki/Variational_Bayesian_methods. 

 

Model evidence (a.k.a. marginal likelihood): the probability of observing some data under a 

particular model. It is called the marginal likelihood because its evaluation entails marginalising 

(i.e., integrating) out dependencies on model parameters. Technically, model evidence is accuracy 

minus complexity, where accuracy is the expected log likelihood of some data and complexity is 

the divergence between posterior and prior densities over model parameters. 

 

Variational bound (a.k.a., variational free energy): known as an evidence lower bound (ELBO) 

in machine learning because it is always less than the logarithm of model evidence. In brief, 

variational free energy converts an intractable marginalisation problem—faced by sampling 

procedures—into a tractable optimisation problem. This optimisation furnishes the posterior 

density over model parameters and ensures the ELBO approximates the log evidence for a model: 

https://en.wikipedia.org/wiki/Variational_Bayesian_methods. Crucially, the variational bound 

includes an explicit estimate of model complexity, in contrast to the Akaike and Bayesian 

information criteria 22. 

 

Bayesian model comparison: a procedure to compare different models of the same data in 

terms of model evidence. The marginal likelihood ratio of two models is known as a Bayes 

factor: https://en.wikipedia.org/wiki/Bayes_factor. 

 

Agent-based simulation models: an alternative to equation-based models, usually used to 

simulate scenarios that are richer than models based upon population dynamics. Agent-based 

models simulate lots of individuals to create a sample distribution over outcomes. Evaluating the 

marginal likelihood from the ensuing sample distributions is extremely difficult, even with 

state-of-the-art estimators such as the harmonic mean: see 

https://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-

monte-carlo-method-ever/. 

 

 

 

 

 

http://www.scholarpedia.org/article/Dynamic_causal_modeling
https://en.wikipedia.org/wiki/Variational_Bayesian_methods
https://en.wikipedia.org/wiki/Variational_Bayesian_methods
https://en.wikipedia.org/wiki/Bayes_factor
https://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever/
https://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever/
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