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Summary 
 
This report uses dynamic causal modelling of daily cases and deaths to distinguish between secondary 
and second waves, in terms of the underlying mechanisms and associated mortality due to SARS-CoV-
2. Here, secondary waves are taken to reflect a spread of the virus through the population, reaching 
previously unexposed communities after the first wave has peaked. Conversely, second waves refer to 
the reinfection of a previously exposed population, due to a loss of effective (population) immunity. 
Our quantitative modelling suggests that the fatality rates that accompany both secondary and second 
waves are substantially less than the first wave—and an order of magnitude less than predictions based 
upon prevalent epidemiological models that ignore heterogeneity in viral exposure, susceptibility and 
transmission. 

 

Introduction 
 

There has been recent concern about what increases in new cases across Europe portend in terms of a 
second wave of SARS-CoV-2 infections. This brief report tries to clarify the mechanisms that might 
underwrite second waves and provide a quantitative estimate of their fatality. Although new cases have 
been increasing over the past weeks in several countries (at the time of writing: 3-Aug-20), hospital 
admissions and fatality rates have continued to declinea. This is a remarkable observation that has a 
number of potential explanations. It could reflect an increase in the rate of testing—or its selectivity for 
infected cases—with no underlying increase in the prevalence of infection. Alternatively, it could reflect 
an increase in prevalence due to a relaxation of lockdown and travel restrictions; particularly among 
younger cohorts who have a lower infection fatality ratio1. Another important distinction is between the 
spread of the epidemic into previously unexposed communities versus reinfection or resurgence in 
communities who have already been infected but have lost effective immunity (effective immunity here 
can be read in terms of host factors such as a decline in antibody levels2,3 or dilution of population 
immunity through population fluxes). In what follows, we operationalise this distinction by 
distinguishing between secondary waves involving a surge of infections—when the virus spreads to 
new communities—and second waves proper that represent a resurgence in a previously infected 
community. See Figure 1 for a famous example of second[ary] waves early last century. 

We used dynamic causal modelling to disambiguate between these explanations using empirical 
timeseries of daily cases and deaths in several (largely European) countries. The dynamic causal model 
was equipped with heterogeneity of exposure, in that it distinguishes between people who constitute an 
exposed population and people who have yet to be exposed. This allows one to model the spread of the 
virus through the total population (e.g., country) in terms of movement from a nonexposed compartment 
                                                
a Note that hospital admissions and fatality rates do not cover all morbidity associated with COVID-19. 
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to an exposed compartment. Crucially, this is a nonlinear process that depends upon the prevalence of 
infection in the exposed population and the degree of mixing of the exposed and unexposed populations 
due to travel (e.g., commuting, tourism, and international flights). This means that the spread of the 
virus from the exposed to unexposed populations depends upon travel restrictions in exactly the same 
way that the spread of the virus within the exposed population depends upon lockdown measures.  

Effectively, this dynamic causal model is a generalisation of previous models in which the effective 
population size varies over time, to model the spread of the virus from an initial to a final population 
size. The initial and final size are estimated proportions of the total (census) population size. This 
generalisation enables one to capture the epidemiological dynamics within an exposed population that 
grows in a self-assembling, autopoietic fashion, as it encroaches upon the nonexposed population. 
Furthermore, it allows one to model slow changes in model parameters as the effective population 
growsb. 

In dynamic causal modelling, lockdown and travel restrictions are treated as part of the epidemiological 
process. In other words, they become functions of various latent states, such as the prevalence of 
infection (as reflected in daily reports of new cases). Lockdown and travel restriction refer to behaviours 
rather than to regulations or guidance. The agenda is therefore to characterise how lockdown and travel 
restrictions are caused by viral transmission—and how viral transmission is caused by population 
behaviour. Once this circular causality has been parameterised, one can make predictions about what 
will happen in the future, using the best parameter estimates based upon past observations. 

 

 
 

Figure 1: historical graphical data detailing mortality in America and Europe during the 1918/1919 Spanish flu 
epidemic. The fatality rates in London (dashed line) are highlighted with two arrows depicting a putative 
secondary and second wave, respectively. In this example, the second wave is about half the size of the first wave 
and ensues with the latency of about six months 

 

 

                                                
b In this model, the number of contacts in a high-risk setting was allowed to change with the size of the exposed 
or effective population to model spread from regions with high population density (e.g.,  megacities) to regions 
with a low population density (e.g., rural communities). In addition, the probability of dying given severe 
symptoms (c.f., the infection fatality ratio) was allowed to change, to model improvements in therapeutic 
management and any changing demographics of the exposed population. 
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Methods 
 

We compared dynamic causal models in which lockdown was modelled in terms of the probability of 
leaving a low contact-risk location (e.g., home) for a high contact-risk location (e.g., work or the pub)4. 
Similarly, we modelled containment in terms of the spread of the virus through the total (census) 
population as the probability of leaving the unexposed population to enter the exposed population. These 
probabilities were (soft) threshold functions of the prevalence of infection. Crucially, the thresholds 
were allowed to differ for lockdown and containment (i.e., travel restrictions), respectively.  

This threshold differential leads to a progression of the outbreak that has a fluctuating nature. Intuitively, 
as infection levels rise in an epicentre, travel restrictions contain the regional outbreak until a prevalence 
is reached that induces lockdown. At this point, the infection peaks, producing a first wave. As the 
prevalence of the virus declines, the exposed population unlocks, followed by a relaxation of travel 
restrictions. At this point, the infection ceases to be contained and spreads to other communities—and 
the process starts again. This leads to a fluctuating spread of the virus throughout the total population 
with secondary waves as new communities encounter the virus. When modelled, this process can repeat 
for several cycles until the virus has reached every corner of the population that it can access. Please 
see Figure 2 for a schematic describing this kind of model. 
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Figure 2: LIST model. This schematic summarises a LIST (location, infection, symptom, and testing) model used 
for the quantitative modelling. This model is formally equivalent to the model in 5. It includes a state (isolated) to 
model people who are shielded or self-isolating because they think they may be infectious. It also includes a 
(seronegative) state to model individuals with pre-existing immunity, e.g., via cross-reactivity 3,6 or other 
protective host factors 7,8. This absorbing state plays the role of the recovered state of SEIR models—once entered, 
people stay in this state for the duration of the outbreak (e.g., long-lasting T-cell mediated immunity). The removed 
location state contains people who are not currently exposed to the epidemic. They slowly move to the home state 
in proportion to the prevalence of infection in the exposed population (i.e., home and work) and a containment 
(threshold) function of prevalence. The discs represent the four factors of the model, and the segments correspond 
to their states (i.e., compartments). The green disc is the closest to a conventional (i.e., SEIR) model that is 
augmented within three other factors. The states within any factor are mutually exclusive. In other words, every 
individual has to be in one state associated with each of four factors. The orange boxes represent the observable 
outputs generated by this model, in this instance, daily reports of positive tests and deaths. The rate of transition 
between states—or the dwell time within any state—rests upon the model parameters that, in many instances, can 
be specified with fairly precise prior densities—see Software and Data Note. 

 

To build such a model, it is necessary to specify the precise functional form, not only of the way in 
which lockdown and containment depends upon the prevalence of infection, but how antigen testing 
generates new case data. This requires a careful treatment because the total number of tests is seldom 
available. This means that we have to model how new cases are generated without knowing the total 
number of tests or how selective these tests are for people who are infected. We tested a series of models 
in which the probability of being tested, when exposed, was a function of various factors (e.g., the 
proportion of people with symptoms, the proportion of the population exposed, seroprevalence, etc.). 
These models were fit to the eight countries that showed the most pronounced first wave using data 
from Johns Hopkins University (see Software and Data Note). The ensuing models were then optimised 
using Bayesian model reduction to remove redundant parameters: i.e., to identify the models with the 
greatest evidence that provide an accurate account of the data in the simplest way possible 9. Bayesian 
model reduction (a.k.a. structure learning) and Bayesian parameter averaging are completely automated 
(end-to-end) procedures, used routinely in dynamic causal modelling 10,11. 

 

Results 
 

The resulting model had 34 parameters, which are listed with their prior means and covariances in 
spm_SARS_priors.mc See Figure 3 for the resulting data fits and accompanying predictions. The 
Bayesian parameter averages over the optimised models were then used as empirical priors for fitting 
data from the United Kingdom.  

 

                                                
c https://www.fil.ion.ucl.ac.uk/spm/covid-19/ 
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Figure 3: this figure illustrates the accuracy of model inversion by plotting the empirical data for cumulative 
deaths (upper panel) and cumulative new cases (lower panel) for several countries. The trajectories have been 
shifted in time such that zero weeks corresponds to the time point at which the prevalence of the infection was 
first estimated to be 0.1%. Note that these graphics include both empirical data (dots) and predictions (coloured 
lines) based upon the parameter estimates of the dynamic causal modelling (credible intervals have been omitted 
for clarity). 
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Figure 4: Latent causes.  This figure illustrates posterior predictions of the most likely latent states for the United 
Kingdom with zero weeks corresponding to the time point at which the prevalence of infection was first estimated 
to be 0.1%. Proportions are given with respect to the total (census) population. Here, the outcomes in the upper 
two panels (dots) are supplemented with the underlying latent causes or expected states in the lower four panels 
(the first state in each factor has been omitted for clarity: i.e., home, susceptible, healthy, and untested). These 
latent or expected states generate the observable outcomes in the upper two panels. The solid lines are colour-
coded and correspond to the states of the four factors in Figure 2. For example, under the location factor, the 
probability of being found at work (a high-risk setting—blue line) rises slightly as the virus spreads and then 
declines during lockdown. At this time, the probability of isolating oneself rises to about 2% during the peak of 
the pandemic. After about 20 weeks, containment is relaxed, and the unexposed populations becomes exposed 
with a fall in the proportion of removed people. At this time, the number of new cases starts to rise again with a 
slight increase in fatality rates, slowing down the unlocking process (reflected in the blue location line). Note that 
seroprevalence (yellow line in the infection panel) saturates at about 16 weeks (to roughly 10%) and is then further 
inflated by a few percent with a secondary wave. The seronegative state (Ab -ve: purple infection line) scores 
those people with pre-existing or humoral immunity (e.g. T-cell memory, induced by cross immunity with other 
coronaviruses or exposure to SARS-CoV-2) that does not entail seroconversion to Ab +ve. Please see Software 
and Data Note for details concerning the model inversion and data used to prepare this figure. 
 

 

Figure 4 shows the data and most likely latent states for the United Kingdom.  The equivalent posterior 
predictions for the reproduction ratio and fatality rates are shown as blue lines and Bayesian credible 
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intervals in Figure 5. Note that the secondary wave of new cases is not accompanied by a subsequent 
increase in fatality rates to the same extent as in the first wave. Please see figure legend for details. 

 

 
 

Figure 5: This figure reports the expected reproduction ratio (upper panel) death rates (lower panel) as a function 
of time for the United Kingdom, over an 18-month period. The three trajectories (lines) and accompanying 90% 
Bayesian credible intervals (shaded areas) correspond to posterior predictions. Note that the reproduction ratio is 
estimated to be about one at the present time but is predicted to fall to below one by October. The lower panel 
shows the equivalent fatality rates under three scenarios: a (prior) loss of immunity over 32 (blue) and four 
(orange) months, respectively and under an enhanced testing and tracing protocol (green) for enduring immunity 
over 32 months. The green line reproduces the predictions based upon the posterior parameter estimates for the 
United Kingdom but increasing the efficacy of find, test, trace, isolate and support to 25% (from its posterior 
estimate of about 1%). It can be seen that even with this relatively low efficacy, elimination is possible by 
November, with convergence to zero fatality rates. 

 

The above modelling assumed a period of enduring (effective) immunity with the prior expectation of 
32 monthsd, specific to seropositive cases who seroconvert following infection. If we now reduce this 
period to 4 months but retain the remaining parameter estimates, we can generate second waves of the 
sort previously considered, in the absence of secondary waves 12-14. The orange line and credible 
intervals in Figure 5 report the equivalent predictions under a relatively rapid loss of immunity—that 
renders people who have seroconverted susceptible to re-infection. The result is a protracted second 
wave, accounting for several thousand extra fatalities.  

                                                
d Strictly speaking, the two months is a time constant or inverse rate constant. 
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Notably, this kind of second wave arises slightly earlier than can be explained just in terms of loss of 
immunity14 (models without a slowly increasing effective population, show a second wave peaking  
early in January). This speaks to the interaction between viral spread and loss of immunity, in conspiring 
to accelerate the emergence of a second wave. 

Another notable aspect of these posterior predictions is that, quantitatively speaking, the second wave 
entails a smaller mortality than the first. This should be contrasted with predictions based upon agent-
based simulation models that ignore heterogeneity. Most of these models suggest that the number of 
people dying in the second wave will exceed the fatalities of the first 15,16. The Academy of Medical 
Science in their 14-July-20  reporti ‘Preparing for a challenging winter 2020/21’ suggest a peak in 
hospital admissions and deaths in January/February 2021 with estimates of 119,900 (95% credible 
interval 24,500-251,000) hospital deaths between September 2020 and June 2021—double the number 
that occurred during the first wave in the spring of 2020. This is an almost impossible scenario under 
models that consider heterogeneity of variation in the exposure to the virus, the susceptibility to 
infection and the capacity to transmit the virus when infectede. Having said this, the particular model of 
heterogeneity adopted above is somewhat minimal, in the sense that it does not model variations over 
stratified age ranges. Furthermore, we have not considered seasonal variations in transmission or 
interaction with things like seasonal influenza 12,19. 

The third and final prediction (green) in Figure 5 is the equivalent posterior prediction if an effective 
find, test, trace, isolate, and support (FTTIS) scheme is put in place from this point onwards in the 
United Kingdom. Here, an effective FTTIS scheme was taken to render the probability of somebody 
self-isolating—when infected but before they became infectious—25%. In principle, this level of 
efficacy is practical 20-22 and, according to the above quantitative modelling, capable of suppressing 
community transmission by autumn. 

 

Conclusion 
 

The current increases in daily cases in many European countries probably reflects a relaxation of travel 
restrictions (i.e., containment strategies) both within and between countries and the denouement of viral 
spread into hitherto unaffected communities. In the context of enduring immunity, it is likely that these 
secondary fluctuations will disappear over the next month or two—and will not be accompanied by a 
secondary increase in mortality rates. However, if people who have been infected lose their immunity 
in the short term (e.g., over four months) then these secondary fluctuations will merge into a second 
wave in November, with the potential loss of several thousand (but not tens of thousands) of lives in 
the United Kingdom. This loss could, in principle, be mitigated by testing and tracing, if implemented 
efficiently at the present time (August 2020). As can be seen from the quantitative modelling in Figure 
5, there is every possibility of suppressing community transmission (i.e., attaining Zero-COVID) with 
suitably enhanced testing and tracing by the end of the calendar year. 

                                                
e The discrepancy between conventional (agent-based) models and dynamic causal models is possibly a reflection 
of the fact that conventional models have to commit to rather simplistic assumptions, because it is difficult to 
compare competing models – and therefore improve the model with accumulating data or hypotheses. Stochastic 
transmission models are notoriously difficult to evaluate in terms of their evidence 17. Greenland S. Bayesian 
perspectives for epidemiological research: I. Foundations and basic methods. International journal of 
epidemiology 2006; 35(3): 765-75, 18. Chatzilena A, van Leeuwen E, Ratmann O, Baguelin M, Demiris N. 
Contemporary statistical inference for infectious disease models using Stan. Epidemics 2019; 29: 100367. In 
contrast, the variational approaches used in dynamic causal modelling furnish a variational bound on model 
evidence that allows competing models to be assessed quickly and efficiently. 
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Software and data note 
The analyses in this article can be reproduced using annotated (MATLAB) code available as part of the 
open source academic software SPM (https://www.fil.ion.ucl.ac.uk/spm/), released under the terms of 
the GNU General Public License version 2 or later. The routines are called by a demonstration script: 
DEM_SARS.m. Please visit https://www.fil.ion.ucl.ac.uk/spm/covid-19/. The data used in this article 
are available for academic research purposes from the COVID-19 Data Repository by the Center for 
Systems Science and Engineering (CSSE) at Johns Hopkins University, hosted on GitHub at 
https://github.com/CSSEGISandData/COVID-19. 
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