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1. Introduction
The validity of F statistics for classical inference on imaging data depends on the
sphericity assumption. This assumption states that the difference between two
measurement sets (e.g. those for two levels of a particular variable) has equal variance
for all pairs of such sets. In practice this assumption can be violated in several ways,
for example, by differences in variance induced by different experimental conditions,
and/or by serial correlations within imaging timeseries.

A considerable literature exists in applied statistics that describes and compares
various techniques for dealing with sphericity violation in the context of repeated
measurements (see e.g. Keselman et al 2001). The analysis techniques exploited by
the Statistical Parametrical Mapping (SPM) package also employ a range of strategies
for dealing with the variance structure of imaging data, but these have never been
explicitly compared with more conventional approaches.

Deductions about what is significant in imaging data depend on a detailed model of
what might arise by chance. If you do not know about the structure of random
fluctuations in your signal, you will not know what features you should find
‘surprising’. A key component of this structure is the covariance of the data. That is,
the extent to which different sets of observations within your experiment are
dependent upon one another. If this structure is wrongly identified, it can lead to
incorrect estimates of the variability of the parameters estimated from the data. This in
turn can lead to false inferences.

Classical inference requires the expected likelihood distribution of a test statistic
under the null hypothesis. Both the statistic and its distribution depend on
hyperparameters controlling different components of the error covariance (this can be
just the variance, 

2σ , in simple models). Estimates of variance components are used
to compute statistics and variability in these estimates determine the statistic’s degrees
of freedom. Sensitivity depends, in part, upon precise estimates of the
hyperparameters (i.e. high degrees of freedom).

In the early years of functional neuroimaging there was debate about whether one
could ‘pool’ (error variance) hyperparameter estimates over voxels. The motivation
for this was an enormous increase in the precision of the hyperparameter estimates
that rendered the ensuing T statistics normally distributed with very high degrees of
freedom (see Chapter 7). The disadvantage was that ‘pooling’ rested on the
assumption that the error variance was the same at all voxels. Although this
assumption was highly implausible, the small number of observations in PET renders
the voxel-specific hyperparameter estimates highly variable and it was not easy to
show significant regional differences in error variance. With the advent of fMRI and
more precise hyperparameter estimation this regional heteroscedasticity was
established and conventional pooling was precluded. Consequently, most analyses of
neuroimaging data now use voxel-specific hyperparameter estimation. This is quite
simple to implement, provided there is only one hyperparameter, because its ReML
estimate (see section 4 and Chapter 3, 4 and 17) can be obtained non-iteratively and
simultaneously through the sum of squared residuals at each voxel. However, there
are an increasing number of situations in which the errors have a number of variance
components (e.g. serial correlations in fMRI or inhomogeneity of variance in
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hierarchical models). The ensuing non-sphericity presents a potential problem for
mass univariate tests of the sort implemented by SPM.

Currently, several approaches are taken to this problem. Firstly, departures from a
simple distribution of the errors can be modelled using tricks borrowed from the
classical statistical literature. This correction procedure is somewhat crude, but can
protect to some extent against the tendency towards liberal conclusions. Secondly, a
correlation structure can be imposed on the data by smoothing. This runs the risk of
masking interesting features of the signal, but can coerce the noise into better
behaviour. Finally, the kinds of tests performed can be restricted. For example, tests
comparing several measures from each of several subjects from a larger population
can be ‘forbidden’ since they rely more heavily on unjustifiable assumptions about the
noise structure.

In this chapter we will describe how this problem has been addressed in various
versions of SPM. We first point to a mathematical equivalence between the classical
statistical literature and SPM99 in their treatment of violations of assumptions about
covariance structure. Classically, the assumed structure is the most liberal and allows
a model to be estimated without mathematical iteration. In SPM99, as described in
Worsley and Friston (1995), a temporal smoothing stage before the main analysis
‘swamps’ any intrinsic auto-correlation with an imposed temporal covariance
structure. While this structure does not correspond to the assumptions underlying the
classical analysis, the same approach is used to take account of this known violation.
While it would be possible to estimate and correct directly for the intrinsic covariation
structure rather than trying to swamp it, an error in this estimation has been shown to
be very costly in terms of the accuracy of the subsequent inference (Friston et al
2000).

Defining sphericity as a quantitative measure of the departure from basic assumptions
about the null distribution, we will show how SPM '99 compensates only for
sphericity violations associated with serial correlations. It employs a correction to the
degrees of freedom that is mathematically identical to that employed by the
Greenhouse-Geisser univariate F-test. This correction is applied after a filtering stage
which swamps the intrinsic auto-correlation with an imposed structure. It is the
known non-sphericity of this imposed structure which is then used to approximate the
degrees of freedom.

In the second part of the chapter we will broadly describe a new approach to the
problem. Instead of assuming an arbitrarily restricted covariance structure, we will
show how new iterative techniques can be used to simultaneously estimate the actual
nature of the errors alongside the estimation of the model. While traditional
multivariate techniques also have estimated covariances, here we allow the
experimenter to ‘build in’ knowledge or assumptions about the data, reducing the
number of parameters which must be estimated, and restricting the solutions to
plausible forms. These techniques are being implemented in new versions of SPM.
We will describe briefly the types of previously ‘forbidden’ models which can be
estimated using the new techniques.

More recent approaches that we have developed use a Parametric Empirical Bayesian
(PEB) technique to estimate whichever variance components are of interest. This is
equivalent to iterative Restricted Maximum Likelihood (ReML). In functional
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magnetic resonance imaging (fMRI) time series, for example, these variance
components model the white noise component as well as the covariance induced by,
for example, an AR(1) component. In a mixed effects analysis the components
correspond to the within-subject variance (possibly different for each subject) and the
between-subject variance. More generally, when the population of subjects consists of
different groups, we may have different residual variance in each group. PEB
partitions the overall degrees of freedom (e.g. total number of fMRI scans) in such a
way as to ensure that the variance estimates are unbiased. This takes place using a
version of an Expectation-Maximisation (EM) procedure where the model
coefficients and variance estimates are re-estimated iteratively.

Finally, we will give a mathematical justification of the pooling of covariance
estimates underlying this approach.

2. Mathematical equivalences

2.1. Assumptions underlying repeated measures ANOVA
Inference in imaging data under the approach of SPM proceeds by the construction of
an F test based on the null distribution. Our inferences are vulnerable to violations of
assumptions about the variance structure of the data in just the same way as, for
example, in the behavioural sciences:

 “Specifically, the conventional univariate method of analysis assumes that the data
have been obtained from populations that have the well-known normal (multivariate)
form, that the degree of variability (covariance) among the levels of the variable
conforms to a spherical pattern, and that the data conform to independence
assumptions. Since the data obtained in many areas of psychological inquiry are not
likely to conform to these requirements … researchers using the conventional
procedure will erroneously claim treatment effects when none are present, thus filling
their literatures with false positive claims.” – Keselman et al. 2001

It could be argued that limits on the computational power available to researchers
have led to a concentration on the limits of models which can be estimated without
recourse to iterative algorithms. On this account, sphericity and its associated
literature can be considered a historically specific issue. Nevertheless, while the
development of methods such as those described in Worsley and Friston (1995) and
implemented in SPM99 do not explicitly refer to the repeated measures designs they
are in fact mathematically identical, as we will now show.

The assumptions required for both sorts of analysis can be most easily defined by
considering the variance-covariance matrix of the observations. Consider a population
variance-covariance matrix for a measurement x under k treatments with n subjects.
The measurements on each subject can be viewed as a k-element vector with
associated covariance matrix



5

�
�
�
�

�

�

�
�
�
�

�

�

=Σ

kkkk

k

k

x

σσσ

σσσ
σσσ

�

��

�

�

21

22221

11211

 (1)

This matrix can be estimated on the basis of the data by the sample variance-
covariance matrix
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What is the most liberal criterion which we can apply to this matrix without violating
the assumptions underlying repeated measures ANOVA? By definition, the following
equivalent properties are obeyed by the variance covariance matrix if the covariance
structure is spherical
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In words, these statements in (3) say that for any pair of levels, the sum of their
variances minus twice their covariance is equal to a constant. Equivalently, the
variance of the difference between a pair of levels is the same for all pairs. Intuitively
it is clear that this assumption is violated, for example, in the case of temporal
autocorrelation. In such a case, by definition, pairs of nearby levels (in this case time
points) are more highly correlated than those separated by longer times. Another
example might be an analysis which took three activations from each of a group
member of two groups of subjects. Consider, for example, activation while reading,
while writing, and while doing arithmetic. Imagine one wanted to test whether the
populations from which two groups were drawn were significantly different, but
considering the three types of task together. This would involve an F-test, but it would
assume that the covariation between the reading and writing activations was the same
as that between the writing and arithmetic. This may or may not be true. If it were not,
sphericity would be violated, and the test would be overly liberal.

To illuminate the derivation of the term sphericity, we state without proof an
equivalent condition to that in (3). This condition is that there can be found an
orthonormal projection matrix *M which can be used to transform the variables X of
the original distribution to a new set of variables Y. This new set of variables has a
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covariance matrix YΣ  which is spherical (ie. is a scalar multiple of the identity
matrix). This relation will be exploited in the next section.
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It is worth mentioning for completeness that while the sphericity condition is
necessary it is not necessarily that intuitive nor is it clear by inspection whether a
dataset conforms. Historically therefore a more restricted sufficient condition has
been adopted, namely compound symmetry. A matrix has compound symmetry if it
has the following form:
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To describe the relation in (5) in words, all the within group variances are assumed
equal, and separately all the covariances are assumed equal and this can be assessed
directly from the data. There do exist statistical approaches to assess whether a dataset
deviates from sphericity such as Mauchly’s test (see eg. Winer et al. 1991), but these
have very low power.

2.2. A measure of departure from sphericity
Using the notation of the variance-covariance matrix in (1), we can define a measure
of departure from sphericity after Box (1954)
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where =jjσ mean for diagonal entries, =..σ mean of all entries, =.jσ mean for row j,

=j.σ mean for column j. We can rephrase (6) in terms of iλ , the characteristic roots

of the transformed matrix yΣ  from (4)
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We now informally derive upper and lower bounds for our new measure. If yΣ is
spherical i.e. of form Iλ then the roots are equal and since yΣ is of size )1()1( −×− kk
then
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At the opposite extreme, it can be shown that for a maximum departure from
sphericity,

�
�
�
�

�

�

�
�
�
�

�

�

=Σ

ccc

ccc
ccc

y

�

���

�

 (9)

for some constant c . Then the first characteristic root ck )1(1 −=λ and the rest are
zeros. From this we see that
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Thus we have the following bounds:
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We have seen that the measure ε can be well defined using basic matrix algebra and
expresses the degree to which the standard assumptions underlying the distribution
are violated. In the following section we employ this measure to systematically
protect ourselves against falsely positive inferences by correcting the parameters of
the F distribution.

2.3. Correcting degrees of freedom using ε: The Satterthwaite
approximation

Box’s motivation for using this measure for the departure from sphericity was in order
to harness an approximation due to Satterthwaite. This deals with the fact that the
actual distribution of the variance estimator is not 2χ if the data is not spherical, and
thus the F statistic used for hypothesis testing is inaccurate. The solution adopted is to
approximate the true distribution with a moment matched scaled 2χ distribution
matching the first and second moments. Using this approximation in the context of
repeated measures ANOVA with k measures and n subjects, the overall F statistic will
be distributed as ])1)(1(,)1[( εε −−− knkF . To understand the elegance of this
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approach note that, as shown above, when the sphericity assumptions underlying the
model are met, 1=ε  and the F distribution is then just )]1)(1(),1[( −−− knkF ,
the standard degrees of freedom for this model. The correction ‘vanishes’ when it is
not needed.

Finally we note that this approximation has been adopted for neuroimaging data in
SPM. Consider the expression for the effective degrees of freedom from Worsley and
Friston (1995) and applied in SPM99. There

)(trace
)(trace 2

RVRV
RV=ν  (12)

Compare (7)  above, and see Chapter 7 for a derivation. If we remember that the
conventional degrees of freedom for the t statistic is k-1 and consider ε  as a
correction for the degrees of freedom, then
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Thus SPM applies the Satterthwaite approximation to correct the F statistic, implicitly
using a measure of sphericity violation. In the next section we will see that this
approach is similar to that employed in conventional statistical packages.
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2.4. But which covariance matrix is used for the estimation of
corrected degrees of freedom?

Returning to the classical approach, in practice of course we do not know xΣ and so it
will be estimated by xS the sample covariance matrix (2). From this we can generate
an ε̂  by substituting jjs ′ for the jj ′σ  in (6). This correction using the sample
covariance is often referred to as ‘Greenhouse-Geisser’ (e.g. Winer et al 1991). An
extensive literature treats the further steps in harnessing this correction and some
variants on it in practice. For example, correction can be made more conservative by
taking the lower bound on ε̂  as derived in (10). This highly conservative test is
(confusingly) also referred to as the ‘Greenhouse-Geisser conservative correction’.

The important point to note however, is that the construction of the F statistic is
predicated upon a model covariance structure which satisfies the assumptions of
sphericity as outlined above, but the degrees of freedom are adjusted based on the
sample covariance structure. This contrasts with the approach taken in, for example,
SPM99 which assumed either IID errors (a covariance matrix which is a scalar
multiple of the identity matrix) or a simple autocorrelation structure, but corrected the
degrees of freedom only on the basis of the modelled covariance structure. In the IID
case, no correction was made no matter what the data looked like. In the
autocorrelation case, an appropriate correction was made, but ignoring the sample
covariance matrix and assuming that the data structure was as modelled. These
strategic differences are summarised in a table at the end of the section.

2.5. Estimating the covariance components.
In SPM2, a refinement is made in that the covariance structure can be estimated from
the data. This is accomplished by defining a basis set for the covariance matrix and
then using an iterative Restricted Maximum Likelihood (ReML) algorithm to estimate
parameters controlling these bases. In this way a wide range of sphericity violations
can be modelled explicitly. Examples include temporal autocorrelation and more
subtle effects of correlations induced by taking several measures on each of several
subjects. In all cases however, the modelled covariance structure is used to calculate
the appropriate degrees of freedom using the moment-matching procedure described
above in Chapter 7. We do not discuss estimation in detail since this is covered in
Chapters 13 & 17. We simply state the form of the  parameterisation of the variance
components, and give illustrations of their typical form. We model the covariance
matrix as

jjX Q�=Σ λ  (13)

where jλ are some hyperparameters and jQ  represent some basis set for the
covariance matrices. jQ  embodies the form of the covariance components at any level
and could model different variances for different blocks of data or different forms of
correlations within blocks. Estimation takes place using a ReML procedure where the
model coefficients and variance estimates are re-estimated iteratively.
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As will be discussed in the final section, what we in fact estimate is an intercorrelation
matrix or normalised covariance for many voxels at once. This can be multiplied by a
scalar variance estimate calculated for each voxel separately. Since this scalar does
not affect the correlation structure the corrected degrees of freedom are the same for
all voxels.

2.6. Schematic form of covariance constraints.
These can be thought of as 'design matrices' for the second-order behaviour of the
response variable and form a basis set for estimating the error covariance, and the
hyperparameters scale the contribution of each constraint.

Figure 1 illustrates two possible applications of this technique. One for first level
analysis and one for random effects.

(FIGURE 1 ABOUT HERE)

There are three independent choices to be made in dealing with data that may not be
distributed according to ones model. We can consider the issues described above
separately and could in principle choose any combination of them for an analysis
strategy. The following table illustrates the actual combination used in the approaches
described in this chapter.

(TABLE 1 ABOUT HERE)
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3. Pooling
So far we have discussed the variance structure of our data drawing from a univariate
or mass univariate approach. In this section we ask whether we can harness the fact
that our voxels come from the same brain. Firstly we will motivate the question by
demonstrating that sphericity estimation derives a noisy measure, and that it might
therefore be beneficial to pool over voxels. We will then show that under certain
assumptions this strategy can be justified, and illustrate an implementation.

3.1. Simulating noise in sphericity measures
To assess the practicality of voxel-wise estimation of the covariance structure we
simulated 10000 voxels drawn from a known population with 8 measures of 3 levels
of a repeated measure. For each voxel we estimated the variance-covariance matrix
using a ReML procedure with a basis set corresponding to the true distribution. We
then calculated the ε correction factor and plotted a histogram for the distribution of
this over the 10000 voxels (See figure 2). Note the wide distribution even for a
uniform underlying variance structure, emphasising the utility of pooling the estimate
over many voxels or even the whole brain to generate an intercorrelation matrix. The
voxel-wide estimate was 0.65, which is higher (more spherical) than the average of
the voxel-wise estimates illustrated below which is 0.56. In this case the ε for the
generating distribution was indeed 0.65.

(FIGURE 2 ABOUT HERE)

3.2. Degrees of freedom reprised
As this simulation shows, to make the estimate of effective degrees of freedom valid
we require very precise estimates of non-sphericity. However, as mentioned at the
start of this chapter ‘pooling’ is problematic because the true error variance may
change from voxel to voxel. We will now expand upon the form described in (13) to
describe in detail the strategy used by current fMRI analysis packages like SPM and
multistat (Worsley et al 2002). As stated we hyper-parameterize the error covariance
in terms of a single-hyperparameter that is voxel-specific and a series of voxel-
independent hyperparameters, that can be estimated with high precision over a large
number of voxels. For the ith voxel we are then assuming

)},,(,0{~ 11
2

nnii QQN λλσε �+ . This allows one to use the reduced single-
hyperparameter model and the effective degrees of freedom as in (1) while still
allowing error variance to vary from voxel to voxel. Here the pooling is over ‘similar’
voxels (e.g. those that activate are spatially close) and that are assumed to express
various error variance components in the same proportion but not in the same
amounts. In summary, we factorize the error covariance into voxel-specific variance
and temporal covariance that is the same for all voxels in the subset. This effectively
factorizes the spatiotemporal covariance into non-stationary spatial covariance and
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stationary temporal non-sphericity. This enables pooling for, and only for, estimates
of temporal covariances.

The problem is that estimating multiple hyperparameters (i) usually requires an
iterative procedure that is computationally prohibitive for massive numbers of voxels
and (ii) gives imprecise estimates that render the inference less sensitive. The
solution, most commonly adopted is to retain the simplicity of the conventional single
hyperparameter approach and use a generalized linear model with known non-
sphericity (Worsley and Friston 1995). In this approach the different variance
components are estimated a priori and combined to give the non-sphericity structure
in terms of a single error covariance matrix V. This reduces a problem with multiple
variance components i.e. },,,0{~ 11 nnQQN λλε �+  into a single component model

},0{~ 2VN σε  with a single hyperparameter 2σ . Inference can then proceed using
OLS and the appropriate adjustments for the non-sphericity. As described in the
previous secion, the hyperparameter is estimated using the sum of squared residuals
and the Satterthwaite approximation is used to give the effective degrees of freedom.

The effective degrees of freedom can be thought of as adjusted for known non-
sphericity. Here nnQQV λλ ,,11 �+∝  where the constant of proportionality is chosen
[arbitrarily] to render }{Vtr equal to its size, c.f. a correlation matrix. As stated above,
the Satterthwaite approximation is exactly the same as that employed in the
Greenhouse-Geisser (G-G) correlation for non-sphericity in commercial packages.
However, there is a fundamental distinction between the SPM adjustment and the G-
G correction. This is because the non-sphericity V enters as a known constant (or as
an estimate with very high precision). In contradistinction, the non-sphericity in G-G
uses the sample covariance matrix or multiple hyperparameter estimates, usually
ReML, based on the data themselves to give nnQQV λλ ˆ,,ˆˆ

11 �+∝ . This gives corrected
degrees of freedom that are generally too high, leading to mildly capricious
inferences*. Compare the following with (12)

}ˆˆ{
}ˆ{}{

2

VRVRtr
VRtrRtrv GGGG == ε (14)

The reason the degrees of freedom are too high is that G-G fails to take into account
the variability in the ReML hyperparameter estimates and ensuing variability in V̂ .
There are simple solutions to this that involve abandoning the single variance
component model and forming statistics using multiple hyperparameters directly
(Kiebel et al. 2003).

The critical difference between conventional G-G corrections and the SPM-
adjustment lies in the fact that SPM is a mass univariate approach that can pool non-
sphericity estimates V̂  over subsets of voxels to give a highly precise estimate V .
Conventional univariate packages cannot do this because there is only one data
sequence.

                                                          
* This is only a problem if the variance components interact (e.g. as with serial correlations in fMRI).
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3.3. Separable errors
The final issue addressed in this chapter is how relative values of the voxel-
independent hyperparameters are estimated and how precise these estimates are.
There are many situations in which the hyperparameters of mass-univariate
observations factorize. In the present context we can regard fMRI time-series as
having both spatial and temporal correlations among the errors that factorize in a
Kronecker tensor product. Consider the data matrix ],,[ ni yyY �=  with one column,
over time, for each of n voxels. The spatio-temporal correlations can be expressed as
the error covariance matrix in a vectored GLM
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Note that (15) assumes a separable form for the errors. This is the key assumption
underlying the pooling procedure. Here V embodies the temporal non-sphericity and
Σ  the spatial non-sphericity. Notice that the elements of Σ  are voxel specific whereas
the elements of V are the same for all voxels. We could now enter the vectored data
into a ReML scheme, directly, to estimate the spatial and temporal hyperparameters.
However, we can capitalize on the assumed separable form of the non-sphericity over
time and space by only estimating the hyperparameters of V and then use the usual
estimator (Worsley et al. 1995) to compute a single hyperparameter iΣ̂  for each voxel
according to (15).

 The hyperparameters of V can be estimated with the algorithm presented in Friston et
al (2003, Appendix 1). This uses a Fisher scoring scheme to maximize the log
likelihood ),|(ln ΣλYp  (i.e. the ReML objective function) to find the ReML
estimates. In the current context this scheme is
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where E{} is the expectation operator. Notice that the Kronecker tensor products and
vectorized forms disappear. Critically W, the precision of the hyperparameter
estimates, increases linearly with the number of voxels. With sufficient voxels this
allows us to enter the resulting estimates, through V, into (15) as known variables,
because they are so precise. The nice thing about (16) is that the data enter only as

TYY 1−Σ  whose size is determined by the number of scans as opposed to the massive
number of voxels. TYY 1−Σ  is effectively the sample temporal covariance matrix,
sampling over voxels (after spatial whitening) and can be assembled voxel by voxel in
a memory efficient fashion. (16) assumes that we know the spatial covariances. In
practice, TYY 1−Σ  is approximated by selecting voxels that are spatially dispersed (so
that 0=Σij ) and scaling the data by a ReML estimate of 1−Σi  obtained non-iteratively
assuming temporal sphericity. This is the approach used in SPM and is described
further in chapter 17.

4. Conclusions
We have shown that classical and recent approaches did not explicitly estimate the
covariance structure of the noise in their data but instead assumed it had a tractable
form, and then corrected for any deviations from the assumptions by an
approximation. This approximation could be based on the actual data, or on a defined
structure which was imposed on the data. More modern approaches explicitly model
those types of covariation which the experimenter expects to find in the data. This
estimation can be noisy, and is therefore best conducted over pooled collections of
voxels.

The use of this technique will allow the experimenter to perform types of analysis
which were previously ‘forbidden’ under the less sophisticated approaches. These are
of real interest to many researchers and include: better estimation of autocorrelation
structure for fMRI data; the ability to take more than one scan per subject to the
second level and thus conduct F-tests to draw conclusions about populations. In
event-related studies where the exact form of the haemodynamic response can be
critical, more than one aspect of this response can be analysed in a random effects
context. For example a canonical form and a measure of latency or spread in time can
jointly express a wide range of real responses. Alternatively, a more general basis set
(e.g. Fourier or finite impulse response) can be used. There is of course a trade-off
between better detectability by making assumptions about the form of the
haemodynamic response, or greater robustness to variable forms. Finally,
comparisons can be made between fMRI and PET data at the second level.
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Table 1

Classical approach

Greenhouse-Geisser

SPM99 SPM 2

Choice of model Assume sphericity Assume IID or
AR(1)

Use ReML to
estimate covariance
structure
parameterised with
a basis set

Corrected degrees
of freedom based
on covariance
structure of …

Actual data Model Model

Estimation of
degrees of freedom
is voxel-wise or for
whole brain

Whole brain Whole brain
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Figure 2

Histogram illustrating voxel-wise sphericity measure, ε, for 10000 simulated voxels
drawn from a known population with 8 measures of 3 levels of a repeated measure.
Average of the illustrated voxel-wise estimates is 0.56. The voxel-wide estimate was
0.65, and the ε for the generating distribution was indeed 0.65.

ε

N pixels
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Figure 1

Two examples:

Top row: Here we imagine that we have a number of observations over time and a
number of subjects. We decide to model the autocorrelation structure by a sum of a
simple autocorrelation AR(1) component and a white noise component. A separately
scaled combination of these two can approximate a wide range of actual structures,
since the white noise component affects the ‘peakiness’ of the overall autocorrelation.
For this purpose we generate two bases for each subject, and here we illustrate the
first three overall. The first is an identity matrix (no correlation) restricted to the
observations from the first subject, the second is the same but blurred in time and with
the diagonal removed. The third illustrated component is the white noise for the
second subject and so on.

Second row: In this case we imagine that we have three measures for each of several
subjects. For example, as suggested above, consider a second level analysis in which
we have a scan while reading, while writing and while doing arithmetic for several
members of a population. We would like to make an inference about the population
from which the subjects are drawn. We want to estimate what the covariation
structure of the three measures is, but we assume that this structure is the same for
each of the individuals. Here we generate three bases in total, one for all the reading
scores, one for all the writing, and one for all the arithmetic. We then iteratively
estimate the hyperparameters controlling each basis, and hence the covariance
structure.
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