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1 Introduction

In the absence of prior anatomical hypotheses regarding the physical location of a par-
ticular function, the statistical analysis of functional mapping experiments must proceed
by assessing the acquired data for evidence of an experimentally induced e�ect at every
intracerebral voxel individually and simultaneously.

After reconstruction, realignment, stereotactic normalisation and (possibly) smoothing,
the data are ready for statistical analysis. This involves two steps: Firstly, statistics
indicating evidence against a null hypothesis of no e�ect at each voxel are computed.
This results in an \image" of statistics. Secondly, this statistic image must be assessed,
reliably locating voxels where an e�ect is exhibited whilst limiting the possibility of
false positives. In this chapter we shall address the former topic, the formation of an
appropriate statistic image with known properties.

Current methods for assessing the data at each voxel are predominantly parametric: Spe-
ci�c forms of probability distribution are assumed for the data, and hypotheses speci�ed
in terms of models assumed for the (unknown) parameters of these distributions. The
parameters are estimated, and a statistic reecting evidence against the null hypothesis
formed. Statistics with known null distribution are used, such that the probability (under
the null hypothesis) of obtaining a statistic as or more extreme than that observed can
be computed. This is hypothesis testing in the classical parametric sense. The majority
of the statistical models used are special cases of the General Linear Model.

spm has become an acronym in common use for the theoretical framework of \Fristo-
nian" voxel based analysis of functional mapping experiments, for the software package
implementing these processes, and for a statistic image (Statistical Parametric Map).
Here we shall take spm to refer to the software package. Statistical parametric maps
are given the acronym spmftg, where the letter indicates the marginal null distribution,
in this case indicating that voxels have values distributed as a Student's t-distribution
under the null hypothesis. The long form Statistical Parametric Mapping will be used in
reference to the conceptual and theoretical framework. This chapter is solely concerned
with Statistical Parametric Mapping. A review of other approaches is beyond the scope
of these notes.

2 The General Linear Model

Before turning to the speci�cs of pet and fmri, consider the general linear model. In
what follows, an understanding of basic matrix algebra and the statistical concepts of
hypothesis testing are required. Healy (1986) presents a brief summary of matrix meth-
ods relevant to statistics. The statistically naive are directed towards Mould's excellent
\Introductory Medical Statistics" (Mould, 1989), while the more mathematically expe-
rienced will �nd Chat�eld's \Statistics for Technology" (Chat�eld, 1983) useful. Draper
& Smith (1981) give a good exposition of matrix methods for the general linear model,
and go on to describe regression analysis in general. The de�nitive tome for practical
statistical experimental design is Winer et al. (1991).
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2.1 The General Linear Model | Introduction

Suppose we are to conduct an experiment during which we will measure a response

variable (such as rcbf at a particular voxel) Yj, where j = 1; : : : ; J indexes the observa-
tion. In statistical parlance, Yj is a random variable, conventionally denoted by a capital
letter.1 Suppose also that for each observation we have a set of L (L < J) explanatory
variables (each measured without error) denoted by xjl, where l = 1; : : : ; L indexes
the explanatory variables. The explanatory variables may be continuous (or sometimes
discrete) covariates, functions of covariates, or they may be dummy variables indicating
the levels of an experimental factor.

A general linear model explains the variation in Yj in terms of a linear combination of
the explanatory variables, plus an error term:

Yj = xj1�1 + : : :+ xjl�l + : : :+ xjL�L + �j (1)

Here the �l are (unknown) parameters, corresponding to each of the L explanatory vari-
ables. The model is assumed to �t such that the errors �j are independent and iden-
tically distributed normal random variables with zero mean and variance �2, written

�j
iid� N (0; �2). Linear models with other error distributions are Generalised Linear Mod-

els, for which the acronym glm is usually reserved. The use of the general linear model
is also widely known as regression analysis.

2.1.1 Examples, dummy variables

Many classical parametric statistical procedures are special cases of the general linear
model.

Linear regression

The simplest example is linear regression, where only one continuous explanatory variable
xj is measured (without error) for each observation j = 1; : : : ; J . The model is usually
written as:

Yj = �+ xj� + �j (2)

where the unknown parameter �, the constant term in the model, is the Y \intercept", the

expected value of Y at x = 0. � is the (unknown) regression slope. Here, �j
iid� N (0; �2).

This can be re-written as a general linear model by the use of a dummy explanatory
variable, an indicator variable x1j whose values are all one:

Yj = x1j� + x2j�2 + �j (3)

which is of the form of Eqn.1 on replacing �1 with �.

1We talk of random variables, and of observations prior to their measurement, because classical (fre-
quentist) statistics is concerned with what could have occurred in an experiment. Once the observations
have been made, they are known, the residuals are known, and there is no randomness.
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Two-sample t-test

Similarly the the two-sample t-test is a special case of a general linear model: Suppose Y1j
and Y2j are two independent groups of random variables: The two-sample t-test assumes

Yqj
iid� N (�q; �2), for q = 1; 2, and assesses the null hypothesis H : �1 = �2. The

standard statistical way of writing the model is:

Yqj = �q + �qj (4)

The q subscript on the �q indicates that there are two levels to the group e�ect, �1 and

�2. Here, �qj
iid� N (0; �2). This can be re-written using two dummy variables x1qj and

x2qj as:
Yqj = x1qj�1 + x2qj�2 + �qj (5)

which is of the form of Eqn.1 on re-indexing for qj. Here the dummy variables indicate
group membership, x1qj indicates whether observation Yqj is from the �rst group, taking

the value 1 when q = 1, and 0 when q = 2. Similarly, x2qj =

(
0 if q = 1
1 if q = 2

2.2 Matrix formulation

The general linear model can be succinctly expressed using matrix notation. Consider
writing out Eqn.1 in full, for each observation j, giving a set of simultaneous equations:

Y1 = x11�1 + : : :+ x1l�l + : : :+ x1L�L + �1
... =

...

Yj = xj1�1 + : : :+ xjl�l + : : :+ xjL�L + �j
... =

...

YJ = xJ1�1 + : : :+ xJl�l + : : :+ xJL�L + �J

Which are equivalent to:0
BBBBBBB@

Y1
...
Yj
...
YJ

1
CCCCCCCA
=

0
BBBBBBB@

x11 � � � x1l � � � x1L
...

. . .
...

. . .
...

xj1 � � � xjl � � � xjL
...

. . .
...

. . .
...

xJ1 � � � xJl � � � xJL

1
CCCCCCCA

0
BBBBBBB@

�1
...
�l
...
�L

1
CCCCCCCA
+

0
BBBBBBB@

�1
...
�l
...
�L

1
CCCCCCCA

of the form Y = X� + � for Y the column vector of observations, � the column vector of
error terms, and � the column vector of parameters; � = [�1 � � ��l � � ��J ]>. The J � L

matrix X, with jlth element xjl is the design matrix. This has one row per observation,
and one column per model parameter.

2.3 Estimation

Once an experiment has been completed, we have observations of the random variables
Yj , which we denote by yj. Assuming that no two observations are equal and have
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identical explanatory variables, the number of parameters L is (usually) less than the
number of observations J , and the simultaneous equations implied by the general linear
model (with � = 0) cannot be solved. Therefore, some method of estimating parameters
that \best �t" the data is required. This is achieved by least squares.

Denote a set of parameter estimates by ~� = (~�1; : : : ; ~�L)>. These parameters lead to

�tted values ~Y = (~Y1; : : : ; ~YJ )> = X~�, giving residual errors e = (e1; : : : ; eJ)> = Y � ~Y =

Y � X~�. The residual sum-of-squares S =
PJ

j=1 e
2
j = e>e is the sum of the square

di�erences between the actual and �tted values, and thus measures the �t of the model
with these parameter estimates.2 The least squares estimates are the parameter estimates
which minimise the residual sum-of-squares. In full:

S =
JX
j=1

�
Yj � xj1 ~�1 � : : :� xjL ~�L

�2

This is minimised when:

@S

@ ~�l
= 2

JX
j=1

(�xjl)
�
Yj � xj1 ~�1 � : : :� xjL ~�L

�
= 0

This equation is simply the jth row of X>Y = (X>X)~�. Thus, the least squares esti-

mates, denoted by �̂, satisfy the normal equations:

X>Y = (X>X)�̂ (6)

The least squares estimates are the maximum likelihood estimates (if the model is correct
and the errors are normal), and are the Best Linear Unbiased Estimates3. That is, of all
linear parameter estimates consisting of linear combinations of the observed data whose
expectation is the true value of the parameters, the least squares estimates have the
minimum variance.

If (X>X) is invertible, which it is if and only if the design matrix X is of full rank, then
the least squares estimates are:

�̂ =
�
X>X

�
�1

X>Y (7)

2.4 Overdetermined models

If X has linearly dependent columns, it is rank de�cient, (X>X) is singular, and has no
inverse. In this case the model is overparameterised: There are in�nitely many parameter
sets describing the same model. Correspondingly, there are in�nitely many least squares
estimates �̂ satisfying the normal equations.

2.4.1 One way ANOVA Example

The simplest example of such a model is the classic Q group one way analysis of variance
(Anova) model:

Yqj = �+ �q + �qj (8)

2
e
>

e is the L2 norm of e
3Gauss-Markov theorem
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where Yqj is the jth observation in group q = 1; : : : ; Q. This model clearly doesn't
uniquely specify the parameters: For any given � and �q, the parameters �0 = � + d

and �0q = �q � d give an equivalent model for any constant d. That is, the model is
indeterminate up to the level of an additive constant between the constant term � and
the group e�ects �q. Similarly for any set of least squares estimates �̂; �̂q. Here there is
one degree of indeterminancy in the model, and the design matrix has rank Q, one less
than the number of parameters (the number of columns of X). If the data vector Y has
observations arranged by group, then for three groups (Q = 3), the design matrix and
parameter vectors are

X =

2
6666666666666666664

1 1 0 0
...

...
...

...
1 1 0 0
1 0 1 0
...

...
...

...
1 0 1 0
1 0 0 1
...

...
...

...
1 0 0 1

3
7777777777777777775

� =

2
6664

�

�1

�2

�3

3
7775

Clearly this matrix is rank de�cient: The �rst column, corresponding to the constant
term �, is the sum of the others, corresponding to the group e�ects �q.

2.4.2 Parameter estimates

A set of least squares estimates may be found by imposing constraints on the estimates,
or by using a pseudoinverse technique for (X>X), which essentially implies a constraint.
In either case it is important to remember that the actual estimates obtained depend
on the particular constraint or pseudoinverse method chosen. This has implications for
inference (x2.6): It is only meaningful to consider functions of the parameters that are
uninuenced by the particular constraint chosen.

2.4.3 Parameters for one way ANOVA example

(This section can be omitted without loss of continuity.)

Consider the one way Anova example. The simplest possible constraint is a corner point
constraint, setting a redundant parameter to zero. Here a suitable constraint is �̂ = 0,
e�ected by eliminating the �rst column of the design matrix, giving a design matrix of
full rank. Then the least squares estimates are �̂ = 0; �̂q = Y q�, the sample mean of
the group q observations.4 This constraint interprets the group e�ects �q as the group
means, and the model could be succinctly written Yqj � N (�q; �

2).

Another possible constraint is a \sum-to-zero" constraint on the �tted group e�ects:PQ
q=1 �̂q = 0. This constraint implies that any one group's �tted e�ect is minus the sum

of the others, so the constraint can be e�ected by expressing the e�ect for (say) the last

4The standard statistical \bar and bullet" notation denotes that the mean has been taken over the
values of the subscripts replaces by bullets.
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group in terms of the others, and eliminating it from the design. (After �tting the model,
the eliminated parameter can be obtained by substituting the parameter estimates into
the constraint.) For three groups this gives �̂3 = ��̂1� �̂2, resulting in design matrix X
and parameter vector � as:

X =

2
6666666666666666664

1 1 0
...

...
...

1 1 0
1 0 1
...

...
...

1 0 1
1 �1 �1
...

...
...

1 �1 �1

3
7777777777777777775

� =

2
64

�

�1

�2

3
75

In this case �̂ =
PQ

j=1(Y q�)=Q, the mean of the group sample means (equal to the overall

sample mean Y �� if all groups have equal size). The group e�ects are estimated by
�̂q = Y q� � �̂, the mean of the group q observations after the overall e�ect has been
subtracted, interpreted as the deviations for each group about the common response.

Alternatively a pseudoinverse method can be used, using pinv(X>X) in place of (X>X)�1

in Eqn.7: A set of least squares estimates are then given by �̂ = pinv(X>X)X>Y =
pinv(X)Y . The pseudoinverse function implemented in MatLab gives the Moore-
Penrose pseudoinverse.5 This results in the least squares parameter estimates with the
minimum sum-of-squares (minimum L2 norm jj�̂jj2). For the one way Anova model,

this can be shown to give parameter estimates �̂ =
PQ

j=1(Y q�)=(1+Q) and �̂q = Y q�� �̂,
a rather strange constraint!

By cunning construction of the design matrix, the Moore-Penrose pseudoinverse can be
utilised to impose particular constraints. For example, reparameterising the one way
Anova model (Eqn.8) by expressing the group e�ects relative to their mean results in
the imposition of a sum-to-zero constraint on the group e�ects. The model is then:

Yqj = � + (�q � �q) + �qj (9)

with design matrix (for three groups)

X =

2
6666666666666666664

1 1 � 1=3 �1=3 �1=3
...

...
...

...
1 1 � 1=3 �1=3 �1=3
1 �1=3 1 � 1=3 �1=3
...

...
...

...
1 �1=3 1 � 1=3 �1=3
1 �1=3 �1=3 1 � 1=3
...

...
...

...
1 �1=3 �1=3 1 � 1=3

3
7777777777777777775

� =

2
6664

�

�1

�2

�3

3
7775

5If X is of full rank, then pinv(X>X) is an ine�cient way of computing (X>X)�1.
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The least squares estimates using the Moore-Penrose pseudoinverse are then those of
the sum-to-zero constraints considered above. The point to note here is that the design
matrix still has a column for each e�ect, and has the same structure as the design matrix
for the \plain" model. Thus, this implicit constraining is useful if one wishes to impose a
particular constraint, for interpretation of the parameter estimates, but want to maintain
the form of the design matrix for computational and visualisation reasons. Implicit sum-
to-zero constraints are used in spm, to allow plotting of the parameter estimates, and to
give sensible adjusted values (x6.2).

2.5 Geometrical Perspective

For some, a geometrical perspective aids conceptualisation. (This section can be omitted

without loss of continuity.)

The vector of observed values Y de�nes a single point in <J , J -dimensional Euclidean
space. X~� is a linear combination of the columns of the design matrixX. The columns of

X are J -vectors, so X~� for given ~� de�nes a point in <J . This point lies in the subspace
of <J spanned by the columns of the design matrix, the X-space. The dimension of this
subspace is rank(X). (Recall that the space spanned by the columns of X is the set of
points Xc for all c 2 <L.) The residual sum-of-squares for parameter estimates ~� is the

distance from X ~Y to Y . Thus, the least squares estimates correspond to the point in the
space spanned by the columns of X that is nearest to the data Y . The perpendicular
from Y to the X-space meets the X-space at Ŷ = X�̂. It is now clear why there are no
unique least squares estimates if X is rank-de�cient; for then any point in the X-space
can be obtained by in�nitely many linear combinations of the columns of X.

If X is of full rank, then de�ne the hat matrix as H = X
�
X>X

�
�1

X>. Then Ŷ = HY ,
and geometrically H is a projection onto the X-space. Similarly, the residual forming
matrix is R = (I �H) for I the identity matrix. Thus RY = e, and R is a projection
onto the space orthogonal to the X-plane.

As a concrete example, consider a simple linear regression with three observations. The
observed data Y = (Y1; Y2; Y3)

> de�nes a point in three-dimensional Euclidean space

(<3). The model (Eqn.2) leads to a design matrix X =

2
64 1 x1
1 x2
1 x3

3
75 Provided the xj's

aren't all the same, the columns of X span a two dimensional subspace of <3, a plane.
(Fig.1).

2.6 Inference

2.6.1 Residual Sum of Squares

The residual variance �2 is estimated by the residual mean square, the residual sum-

of-squares divided by the appropriate degrees of freedom: �̂2 = e>e

J�p
� �2�

2
J�p

J�p
where

p = rank(X).
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O
(x1,x2,x3)

(1,1,1)

X-plane

Y
e = RY

Y = HY^

(Y1,Y2,Y3)

Figure 1: Geometrical perspective on 3 point linear regression

2.6.2 Linear Combinations of the Parameter Estimates

It is not too di�cult to show that the parameter estimates are normally distributed: For
X of full rank �̂ � N

�
�; �2(X>X)�1

�
. From this it follows that for c a column vector

of L weights:
c>�̂ � N

�
c>�; �2c>(X>X)�1c

�
(10)

Furthermore, �̂ and �̂2 are independent (Fisher's Law). Thus, prespeci�ed hypotheses
concerning linear compounds of the model parameters c>� can be assessed using

c>�̂ � c>�q
�̂2c>(X>X)�1c

� tJ�p (11)

That is, the hypothesis H : c>� = d can be assessed by comparing T =
c>�̂�dp

�̂2c>(X>X)�1c

with a Student's t-distribution with J � p degrees of freedom.

Example | Two-sample t-test

For example, consider the two-sample t-test (x2.1.1), The model (Eqn.4) leads to a de-
sign matrix X with two columns of dummy variables indicating group membership, and
parameter vector � = (�1; �2)>. Thus, the null hypothesis H : �1 = �2 is equivalent to
H : c>� = 0 with c = (1;�1)>. The �rst column of the design matrix contains n1 1's and
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n2 0's, indicating the group one measurements, the second column n1 0's and n2 1's. Thus

(X>X) =

 
n1 0
0 n2

!
, (X>X)�1 =

 
1=n1 0
0 1=n2

!
, and c>(X>X)�1c = 1=n1 + 1=n2,

giving t-statistic (by Eqn.11):

T =
�1 � �2q

�̂2 (1=n1 + 1=n2)

. . . the standard formula for the two-sample t-statistic, with a Student's t-distribution of
n1 + n2 � 2 degrees of freedom under the null hypothesis.

2.6.3 Estimable functions, contrasts

Recall (x2.4) that if the model is overparameterised (i.e. X is rank de�cient), then there
are in�nitely many parameter sets describing the same model. Constraints or the use
of a pseudoinverse technique pull out only one set of parameters from in�nitely many.
Therefore, when examining linear compounds c>� of the parameters it is imperative to
consider only compounds that are invariant over the space of possible parameters. Such
linear compounds are called contrasts.

In detail (Sche��e, 1959), a linear function c>� of the parameters is estimable if there
is a linear unbiased estimate c0>Y for some constant vector of weights c0. That is
c>� = E

h
c0>Y

i
, so for an estimable function the natural estimate c>�̂ is unique what-

ever solution �̂ of the normal equations is chosen (Gauss-Markov theorem). Further:

c>� = E

h
c0>Y

i
= c0>X� ) c = c0>X, so c is a linear combination of the rows of X.

A contrast is an estimable function with the additional property c>�̂ = c0>Ŷ = c0>Y .

Now c0>Ŷ = c0>Y , c0>HY = c0>Y , c0 = Hc0 (since H is symmetric), so c0 is
in the X-space. Thus a contrast is an estimable function whose c0 vector is a linear
combination of the columns of X. Thus for a contrast it can be shown that c>�̂ �
N
�
c>�; �2c0>c0

�
. Using a pseudoinverse technique, H = Xpinv(X>X)X>, so c0 =

Hc0 ) c0>c0 = c0>Xpinv(X>X)X>c0 = c>pinv(X>X)c since c = c0>X for an estimable
function.

The above shows that the distributional results given above for unique designs (Eqn.10
& Eqn.11), apply for contrasts of the parameters of non-unique designs, where (X>X)�1

is replaced by a pseudoinverse.

It remains to characterise which linear compounds of the parameters are contrasts. For
most designs, contrasts have weights that sum to zero over the levels of each factor. For
the one way Anova with parameter vector � = (�; �1; : : : ; �Q)>, the linear compound

c>� with weights vector c = (c0; c1; : : : ; cQ) is a contrast if c0 = 0 and
PQ

q=1 cq = 0. Given
that the indeterminacy in condition e�ects in this model is up to the level of an additive
constant, the form of the contrast is intuitively correct. Contrasts of this form include
no contribution from a constant added to all the condition e�ects. Other models and the
form of appropriate contrasts are discussed in the next section (x3).
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2.6.4 Extra Sum of Squares Principle

The Extra sum-of-squares principle provides a method of assessing general linear hy-
potheses, and for comparing models in a hierarchy.

Suppose we have a model with parameter vector � that can be partitioned into two,

� =
�
�>
1

...�>
2

�
, and suppose we wish to test H : �

1
= 0. The corresponding partitioning

of the design matrix X is X =
�
X1

...X2

�
, and the full model is:

Y =
�
X1

...X2

� 264
�
1

� � �
�
2

3
75+ �

which when H is true reduces to the reduced model : Y = X2�2
+ �. Denote the residual

sum-of-squares for the full and reduced models by S(�) and S(�2) respectively. The
extra sum-of-squares due to �

1
after �

2
is then de�ned as S(�

1
j�

2
) = S(�2) � S(�).

Under H, S(�
1
j�

2
) � �2�2

p independently of S(�), where the degrees of freedom are
p = rank(X) � rank(X2). (If H is not true, then S(�

1
j�

2
) has a non-central chi-squared

distribution, still independent of S(�).) Therefore, the following F -statistic expresses
evidence against H:

F =

S(�2)�S(�)

p�p2
S(�)

J�p

� Fp�p2;J�p (12)

where p = rank(X) and p2 = rank(X2). Signi�cance can then be assessed by com-
paring this statistic with the appropriate F -distribution. Draper & Smith (1981) give
derivations.

Example | One way ANOVA

For example, consider a one way Anova (x2.4.1, Eqn.8), where we wish to assess the
omnibus null hypothesis that all the groups are identical: H : �1 = �2 = : : : = �Q. Under
H the model reduces to Yqj = �+ �qj. Since the Anovamodel contains a constant term,
�, mathcalH is equivalent to H : �1 = �2 = : : : = �Q = 0. Thus, let �

1
= (�1; : : : ; �Q)>,

and �
2
= �. Eqn.12 then gives an F -statistic which is precisely the standard F -statistic

for a one way Anova.
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3 Modelling for PET

With the details of the General linear model covered, we turn our attention to some actual
models used in functional brain mapping, discuss the practicalities of their application,
and introduce the terminology of spm. As the approach is massively univariate, we
must consider a model for each and every voxel. Bear in mind that in the massively
univariate approach of spm, the same model form is used at every voxel simultaneously,
with di�erent parameters for each voxel. This fact leads to the notion of image regression
and a multivariate perspective on the massively univariate approach, which is covered in
section 5. Model selection issues are raised in section 6.5.

In this section, we shall concentrate on pet, with its mature family of standard statis-
tical experimental designs. fmri requires extensions to the general linear model theory,
presented in the following section (x4), and special design considerations (discussed in a
separate chapter).

Although most pet functional mapping experiments are on multiple subjects, many
of the key concepts are readily demonstrated within the framework of a single subject
experiment. Hence, for simplicity of exposition, the initial emphasis is on single subject
experiments.

3.1 Global changes

Global cerebral blood ow (gcbf) varies, both between subjects, and over time in a
single individual. If qualitative \count" measurements of relative activity (ra) are being
used as an indicator of rcbf, then changes in the global activity ga reect changes in
the administered dose and head fraction, as well as changes in gcbf. Therefore, changes
in regional cerebral blood ow (or ra) measurements across experimental conditions
(measured at di�erent times, and possibly on di�erent subjects), are confounded by
global changes. In the remainder of this chapter, we shall refer to regional cerebral
blood ow (rcbf), regarding ra as an indicator of rcbf unless the discussion calls for a
distinction.

Consider a simple single subject activation experiment, where a single subject is scanned
repeatedly under both baseline (control) and activation (experimental) conditions. In-
spection of rcbf alone at a single voxel may not indicate an experimentally induced
e�ect, whereas the additional consideration of the gcbf for the respective scans may
clearly di�erentiate between the two conditions. (Fig.2)

3.1.1 Measurement of gCBF

For normal subjects, the global cerebral blood ow is adequately measured as the mean
rcbf over all intracerebral voxels. If Y k

j is the rcbf at voxel k = 1; : : : ;K of scan j, then

denote the gcbf by gj = Y
�

j =
PK

k=1 Y
k
j =K.
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Figure 2: Single subject activation experiment, illustrative plots of rcbf at a single voxel:
(a) Dot-plots of rcbf_(b) Plot of rcbf vs. gcbf. Both plots indexed by condition: � for
baseline, � for active.

3.1.2 Grand Mean Scaling

For qualitative counts data, it is common to scale the raw data into a physiological
range, exploiting the near linearity of the quanti�cation function to give parameters in
an interpretable scale. This is usually achieved by scaling all images in a data set so
that the grand mean, the mean global value, is a set value, usually chosen to be the
canonical normal gcbf of 50ml/min/dl. The scaling factor is thus 50

g
�

. Since the scaling

factor is a constant (for each data set), this scaling doesn't change the relative values of
the data, and therefore doesn't a�ect any subsequent statistical analysis. Henceforth, we
shall assume that counts data have been scaled into a physiologically meaningful scale.

3.1.3 Proportional scaling gCBF normalisation

Conceptually the simplest way to account for global changes is to adjust the data by
scaling all scans to have the some target gcbf, usually chosen to be the canonical normal
gcbf of 50ml/min/dl. This gives adjusted rcbf at voxel k of Y 0k

j = Y k
j =(gj=50). The

adjusted data are then used as raw data for analysis.6 On a graph of rcbf against gcbf,
the adjusted values are the point where the line joining the observed rcbf to the origin
intercepts gcbf = 50 (Fig.3a).

A simple two-condition single subject activation study would then be assessed using a

6Clearly grand mean scaling is redundant when followed by proportional scaling gcbf normalisation.
So, within SPM, the target global value used is speci�ed under \grand mean scaling", and defaults to 50.
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two-sample t-statistic on the adjusted rcbf at each voxel. Let Y k
qj denote the rcbf at

voxel k of scan j = 1; : : : ;M under condition q = 1; 2, and Y 0k
qj the adjusted rcbf. The

model is then (from Eqn.4): Y 0k
qj = �k

q + �kqj , where �
k
qj

iid� N (0; �2
k). Multiplying through

by gj=50 we arrive at:

Y k
qj =

gj

50
� �k

q + �0kqj (13)

This is a proportional regression (Fig.3b). Activation corresponds to a change in slope.
However, this is a weighted regression, since the residual variance is weighted by the

global ow: �0kqj
iid� N (0; (gj=50)2 � �2

k). Proportional scaling isn't as simple as it �rst
appears!

3.1.4 Modeling the e�ect of global changes

A more rigorous approach is to explicitly model the e�ect of global changes. Fris-
tonet al. (1990) proposed that for normal ranges of cerebral blood ow the relationship
between regional and global ow would be well approximated by a straight line. For
repeat scans of an individual under exactly the same conditions, the model is a simple
regression at each voxel:

Y k
j = �k + �k(gj � g

�
) + �kj (14)

where we assume normality of the errors, �kq
iid� N (0; �2

k).

The error variance �2
k is allowed to vary between voxels. There is substantial evidence

against an assumption of constant variance (homoscedasticity) at all points of the brain.
This fact is perhaps to be expected, considering the di�erent constituents and activities of
grey and white matter, which is unfortunate, as the small sample sizes leave few degrees of
freedom for variance estimation. If homoscedasticity can be assumed, variance estimates
can legitimately be pooled across all voxels. Provided the image is much greater in extent
than it's smoothness, this gives an estimate with su�ciently high (e�ective) degrees of
freedom that it's variability is negligible. (Since the images are smooth, neighbouring
voxels have correlated values, and hence the variance estimates at neighbouring voxels are
correlated.) t-Statistics based on such a variance estimate are approximately normally
distributed, the approximation failing only in the extreme tails of the distribution. This
approach was initially endorsed by Worsley et al. (1992), using low resolution pet images
which appeared homoscedastic, but is inappropriate for most applications.

If the (mean corrected) global values are considered as confounding covariates, adjusted
values at voxel k could be constructed as Y 0k

j = Y k
j � �̂k(gj � g

�
). However, analyses

on such adjusted values don't take into account the degrees of freedom lost due to the
adjustment, and the approach is not equivalent to the modeling approach which explicitly
includes gcbf as a covariate.

3.1.5 ANCOVA

Consider the simple single subject activation experiment, and suppose an activation
experimental condition induces a constant increase of rcbf over the baseline condition
regardless of gcbf. Then, the activation condition can be added to the model as a simple
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Figure 3: (a) Adjustment by proportional scaling (b) Simple single subject activation as
a t-test on adjusted rcbf: Weighted proportional regression
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Figure 4: Single subject activation experiment, illustrative plot of AnCova model
(Eqn.15) for rcbf vs gcbf.

additive e�ect, giving a classic Analysis of Covariance7 (AnCova) model at each voxel:

Y k
qj = �k

q + �k(gqj � g
�
) + �kqj (15)

where �kqj
iid� N (0; �2

k). Activation corresponds to a change in intercept, as depicted in
�gure 4. Note that the activation is assumed independent of the underlying gcbf; the
regression lines for each condition have the same slope �k. This is the AnCova parallel
lines assumption.

3.1.6 Scaling verses modeling

Clearly a choice must be made; scaling or AnCova. Many authors have debated this
issue, yet still no consensus exists.

Due to the weighting of the variance in the proportional regression model, the \extra
sum-of-squares" F -test is inappropriate for comparing a proportional regression with a
more general linear regression for repeat scans on a single individual under identical
conditions (i.e. comparing the model of Eqn.13 for one condition with that of Eqn.14).

For normal subjects under normal conditions the range of gcbf exhibited is small, and
located far from zero. Therefore for quantitative rcbf data on normal subjects under nor-
mal conditions, a simple regression model a�ords better modeling of the true relationship
between regional and global ows than a proportional regression.

7
AnCova is the standard way to account for an (independent) confounding covariate into a two

sample problem.
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If qualitative \count" measurements are being used as indicators of rcbf, then ga can
vary considerably even if the actual gcbf is fairly stable. Possible reasons for this are dif-
ferences in introduced dose, scanner sensitivity, subject head fraction, or similar. Clearly,
for constant gcbf the relationship between regional and global activity is proportional.
More importantly, the greater the introduced dose, the greater the variance in the re-
gional activity, since this is Poisson in nature, again suggesting the appropriateness of
the proportional model since in this case proportional scaling also stabilises the vari-
ance. The variance stabilising properties of the proportional scaling approach is the only
substantial reason for not using AnCova type modeling approaches.

For a single subject activation study, provided the introduced dose is constant, the An-
Cova model is preferred over proportional scaling and two sample t-test, even for qual-
itative counts data. There is little evidence against the parallel lines assumption of an
additive activation e�ect for cognitive paradigms within the normal range of gcbf. For
multi-subject experiments on the same scanner using the same protocol and dosage, cur-
rent experience is that the AnCova style approach is adequate. Recent authors have
found little empirical di�erence between parallel analyses using proportional scaling and
AnCova on the same data.

Special considerations apply if there are condition dependent changes in gcbf.

3.1.7 Global di�erences

Implicit in allowing for changes in gcbf (either by proportional scaling orAnCova) when
assessing condition speci�c changes in rcbf, is the assumption that gcbf represents the
underlying background ow, above which regional di�erences are assessed. That is, gcbf
is independent of condition. Clearly, since gcbf is calculated as the mean intracerebral
rcbf, an increase of rcbf in a particular brain region must cause an increase of gcbf
unless there is a corresponding decrease of rcbf elsewhere in the brain. Similar problems
can arise when comparing a group of subjects with a group of patients with brain atrophy,
or when comparing pre and post-operative rcbf.

If gcbf actually varies considerably between conditions, as in pharmacological activation
studies, then testing for a condition e�ect after allowing for global changes involves
extrapolating the relationship between regional and global ow outside the range of the
data. This extrapolation might not be valid, as illustrated in �gure 5a.

If gcbf is increased by a large activation that is not associated with a corresponding
deactivation, then comparison at a common gcbf will make non-activated regions (whose
rcbf remained constant) appear falsely de-activated, and the magnitude of the activation
will be similarly decreased. (Figure 5b illustrates the scenario for a simple single subject
activation experiment using AnCova.) In such circumstances a better measure of the
underlying background ow should be sought, for instance by examining the ow in brain
regions known to be una�ected by the stimulus.
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Figure 5: Single subject activation experiment, illustrative (AnCova) plots of rcbf vs.
gcbf at a single voxel showing potential problems with global changes: (a) Large change
in gcbf between conditions. The apparent activation relies on linear extrapolation of
the baseline and active condition regressions (assumed to have the same slope) beyond
the range of the data. The actual relationship between regional and global for no acti-
vation may be given by the curve, in which case there is no activation e�ect. (b) Large
activation inducing increase in gcbf measured as brain mean rcbf. Symbol � denotes
rest, � denotes active condition values if this is a truly activated voxel (in which case the
activation is underestimated), while + denotes active condition values were this voxel
not activated (in which case an apparent deactivation is seen).
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3.2 Models

In the following subsections, the exibility of the general linear model is demonstrated
using models for various pet functional mapping experiments. For generality, AnCova
style models are used, with gcbf included as a confounding covariate. The corresponding
Anovamodels for data adjusted by proportional scaling can be obtained by omitting the
global terms. Voxel level models are presented in the usual statistical notation, alongside
the spm description and \images"of example design matrices. The form of contrasts for
each design are indicated, and some practicalities of the spm interface are discussed.

Single subject models

3.2.1 Single subject activation design

The simplest experimental paradigm is the simple single subject activation experiment.
The AnCova model for this design was discussed in the previous section on global
normalisation. This model extends to more than two conditions in the obvious way.
Suppose there are Q conditions, with Mq scans under condition Q. Let Y k

qj denote the
rcbf at voxel k in scan j = 1; : : : ;Mq under condition q = 1; : : : ; Q. The model is:

Y k
qj = �k

q + �k + �k(gqj � g
��
) + �kjq (16)

There are Q + 2 parameters for the model at each voxel: The Q condition e�ects,
the constant term �k, and the global regression e�ect, giving parameter vector �k =
(�k

1; : : : ; �
k
Q; �

k; �k)> at each voxel. In this model, replications of the same condition are
modelled with a single e�ect. The model is overparameterised, having only Q�1 degrees
of freedom, leaving N �Q� 1 residual degrees of freedom, where N =

P
Mq is the total

number of scans.

Allowable contrasts are linear compounds c>�k for which the weights sum to zero over

the condition e�ects, and give zero weight to the constant term, i.e.
PQ

q=1 cq = 0. For

example, to test Hk : �k
1 = (�k

2 + �k
3)=2 against the one sided alternative Hk

: �k
1 >

(�k
2 + �k

3)=2, appropriate contrast weights would be c = (1;�1
2
;�1

2
; 0; : : : ; 0)>. Large

positive values of the t-statistic express evidence against the null hypothesis, in favour
of the alternative hypothesis.8 The global regression parameter is uniquely determined,
and its value could be assessed (against a one-sided alternative) using contrast weights
c = (0; : : : ; 0; 1)>. However, the global confound is usually of no interest.

spm partitions the model parameters (at each voxel) into e�ects of interest (�k
1
), and

confounding e�ects, �k
2
, with corresponding partitioning of the contrast weights vector

c> = (c>1 jc>2 ). Since the confounding e�ects are deemed of no interest, the weights for the
confounding e�ects are assumed to be zero, and only the contrast weights for the e�ects
of interest (c1) are prompted for. In this case only the Q condition e�ects are designated
of interest, so spm requests a Q-vector of contrast weights. Henceforth, we shall give
example contrast weights only for the e�ects of interest.

8In spm all t-tests are one sided.
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The constant term is of no interest, hence it's position with the confounding e�ects in
the model (Eqn.16). The explicit inclusion of the constant term amongst the confounds
enables the reduced model, with �k

1
= 0, to �t the overall level. Thus the omnibus null

hypothesis assessed by the extra sum-of-squares F -test for Hk : �k

1
= 0, assesses the

omnibus hypothesis that there is no condition e�ect of any sort at voxel k, large values of
the statistic expressing evidence against the null hypothesis in favour of the alternative

hypothesis Hk
: �k

1
6= 0

Design matrix \images"

Throughout spm, linear models are represented by grayscale \images" of the design
matrix used. Together with the list of scans, this \image" speci�es the model at a
glance. (Clearly the ordering of the scans is important, since each row of the design
matrix corresponds to a particular scan. Reordering the rows gives the same model
provided the scans are similarly reordered.)

A grey-scale \image" of an example design matrix for a single subject activation study
with four scans under each of three conditions is shown in �gure 6. The �rst three columns
contain indicator variables (with values zero and one) indicating the condition. The last
column contains the respective (mean corrected) gcbf values. The scans corresponding
to this design matrix have been ordered such that all the scans for each condition ap-
pear together. Obviously the actual experiment would be carried out with a suitably
randomised condition presentation order.

In the grey-scale design matrix images, �1 is black, 0 mid-gray, and +1 white. Columns
containing covariates are scaled by subtracting the mean (zero for centered covariates),
and dividing the resulting values by their absolute maximum, giving values in [0,1].
(Design matrix blocks containing factor by covariate interactions (x3.2.5) are scaled such
that the covariate values lie in (0,1], thus preserving representation of the \padding"
zeros as mid-grey.)

3.2.2 Single subject parametric design

Consider the single subject parametric experiment where a single covariate of interest,
or \score", is measured. For instance, the covariate may be a physiological variable, a
task di�culty rating, or a performance score. It is desired to �nd regions where the rcbf
values are highly correlated with the covariate, taking into account the e�ect of global
changes. Figure 7a depicts the situation. If Y k

j is the rcbf at voxel k of scan j = 1; : : : ; J
and sj is the independent covariate, then a simple AnCova style model is a multiple
regression with two covariates:

Y k
j = %k(sj � s�) + �k + �k(gj � g

�
) + �kj (17)

Here, % is the slope of the regression plane in the direction of increasing score, �tted
separately for each voxel.

There are three model parameters, leaving J �3 residual degrees of freedom. The design
matrix (Fig.7b) has three columns, a column containing the (centered) score covariate,
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Figure 6: Single subject activation experiment, AnCova design )x3.2.1). Illustrations
for a three-condition experiment with four scans in each of three conditions, AnCova
design. (a) Illustrative plot of rcbf vs. gcbf. (b) Design matrix \image", with columns
labelled by their respective parameters. The scans are ordered by condition.
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a column of dummy 1's corresponding to �k, and a column containing the (centered)
global values.

In spm this is a \Single subject: Covariates only" design. The design is uniquely speci�ed,
so any linear combination of the three parameters is a contrast. spm designates % as the
only e�ect of interest, so only a single contrast weight is requested. The null hypothesis
of no score e�ect at voxel k, Hk : %k = 0, can be assessed against against the one sided

alternative hypotheses Hk
: %k > 0 (rcbf increasing with score) with contrast weights

for the e�ects of interest c1 = +1, and against Hk
: %k < 0 (rcbf decreasing as score

increases) with contrast weights c1 = �1.

This simple model assumes a linear relationship between rcbf and the covariate (and
other explanatory variables). More general relationships may be modeled by including
other functions of the covariate. These functions of the covariate are essentially new
explanatory variables, which if linearly combined still �t in the framework of the general
linear model. For instance, if an exponential relationship is expected, ln(sj) would be
used in place of sj. Fitting powers of covariate as additional explanatory variables leads
to polynomial regression. More generally, sets of basis functions can be added as a suite
of functions of a covariate to allow exible modelling. This theme will be developed later
in this chapter (for fmri), and in other chapters.

3.2.3 Simple single subject activation revisited

As discussed in the General Linear Modeling section (x2), it is often possible to repa-
rameterise the same model in many ways. As an example, consider again a simple two
condition (Q = 2) single subject activation experiment, discussed above (x3.2.1). The
model (Eqn.16) is:

Y k
qj = �k

q + �k + �k(gqj � g
��
) + �kjq

The model is over-determined, so consider a sum-to-zero constraint on the condition
e�ects. For two conditions this implies�k

1 = ��k
2. Substituting for �

k
2 the resulting design

matrix has a column containing +1's and �1's indicating the condition q = 1 or q = 2
respectively, a column of 1's for the overall mean, and a column containing the (centered)
gcbf (Fig.8). The corresponding parameter vector is �k = (�k

1; �
k; �k)>. Clearly this

is the same design matrix as that for a parametric design with (non-centered) \score"
covariate indicating the condition as active or baseline with +1 or �1 respectively.9 The
hypothesis of no activation at voxel k, Hk : �k

1 = 0 can be tested against the one sided

alternatives Hk
: �k

1 > 0 (activation) and Hk
: �k

1 < 0 with contrast weights for the
e�ects of interest c1 = 1 and c1 = �1 respectively. This example illustrates how the
spm interface may be used to enter \hand-built" blocks of design matrix as non-centered
covariates.

3.2.4 Single subject: conditions and covariates

Frequently there are other confounding covariates in addition to gcbf that can be added
into the model. For example, a linear time component could be modeled simply by

9In spm94 this was how simple single subject activation studies were routinely entered.
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Figure 7: Single subject parametric experiment (x3.2.2): (a) Plot of rcbf vs. score and
gcbf. (b) Design matrix \image" for Eqn.17, illustrated for a 12 scan experiment. Scans
are ordered in the order of acquisition.
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Figure 8: Example design matrix \image" for single subject simple activation experiment,
with six scans in each of two conditions, formulated as a parametric design (x3.2.3). The
twelve scans are ordered alternating between baseline and activation conditions, as might
have been the order of acquisition.

entering the scan number as covariate. In spm these appear in the design matrix as
additional covariate columns adjacent to the global ow column. Care must be taken to
enter the covariates in the same order that the scans were speci�ed, since spm asks for
scans ordered by condition in many instances!

3.2.5 Factor by covariate interactions

A more interesting experimental scenario is when a parametric design is repeated under
multiple conditions in the same subject(s). A speci�c example would be a pet language
experiment in which, during each of twelve scans, lists of words are presented. Two
types of word list (the two conditions) are presented at each of six rates (the parametric
component). Interest may lie in locating regions where there is a di�erence in rcbf
between conditions (accounting for changes in presentation rate), the main e�ect of
condition; locating regions where rcbf increases with rate (accounting for condition),
the main e�ect of rate; and possibly assessing evidence for condition speci�c responses
in rcbf to changes in rate, an interaction e�ect.10 Let Y k

qrj denote the rcbf at voxel k
for the j-th measurement under rate r = 1; : : : ; R and condition q = 1; : : : ; Q, with sr
the rate covariate (some function of the rates). A suitable model is:

Y k
qrj = �k

q + %kq(sqr � s��) + �k + �k(gqrj � g
���

) + �kqrj (18)

Note the q subscript on the voxel covariate e�ect parameter %kq , indicating di�erent
slopes for each condition. Ignoring for the moment the global ow, the model de-
scribes two simple regressions with common error variance (Fig.9a). The spm interface

10Two experimental factors interact if the level of one a�ects the expression of the other.
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describes such factor by covariate interactions as \factor speci�c covariate �ts". The
interaction between condition and covariate e�ects is manifest as di�erent regression
slopes for each condition. There are 2Q + 2 parameters for the model at each voxel,
�k = (�k

1; : : : ; �
k
Q; %

k
1; : : : ; %

k
Q; �

k; �k), with 2Q + 1 degrees of freedom. A design matrix
\image" for the two condition example is shown in �gure 9b. The factor by covariate in-
teraction takes up the third and fourth columns, corresponding to the parameters %k1 and
%k2, the covariate being split between the columns according to condition, the remaining
cells �lled with zeros.

Only the constant term and global slope are designated confounding, giving 2Q e�ects
of interest to specify contrast weights for, �k

1
= (�k

1; : : : ; �
k
Q; %

k
1; : : : ; %

k
Q). As with the

activation study model, contrasts have weights which sum to zero over the condition
e�ects. For the 2 condition word presentation example, contrast weights c>1 = (0; 0; 1; 0)
for the e�ects of interest express evidence against the null hypothesis that there is is
no covariate e�ect in condition one, with large values indicating evidence of a positive
covariate e�ect. Weights c>1 = (0; 0; 1

2
; 1
2
) address the hypothesis that there is no average

covariate e�ect across conditions, against the one sided alternative that the average
covariate e�ect is positive. Weights c>1 = (0; 0;�1;+1) address the hypothesis that there
is no condition by covariate interaction, that is, that the regression slopes are the same,
against the alternative that the condition 2 regression is steeper.

Conceptually, contrast weights c>1 = (�1;+1; 0; 0) and c>1 = (+1;�1; 0; 0) for the e�ects
of interest assess the hypothesis of no condition e�ect against appropriate one-sided
alternatives. However, the comparison of main e�ects is confounded in the presence of
an interaction: In the above model, both gcbf and the rate covariate were centered, so
the condition e�ects �k

q are the relative heights of the respective regression lines (relative
to �k) at the mean gcbf and mean rate covariate. Clearly if there is an interaction, then
di�erence in the condition e�ects (the separation of the two regression lines) depends on
where you look at them. Were the rate covariate not centered, the comparison would be
at mean gcbf and zero rate, possibly yielding a di�erent result.

Thus main e�ects of condition in such a design must be interpreted with caution. If there
is little evidence for a condition dependent covariate e�ect then there is no problem.
Otherwise, the relationship between rcbf and other design factors should be examined
graphically to assess whether the perceived condition e�ect is sensitive to the level of the
covariate.

Multi-subject designs

Frequently, experimentally induced changes of rcbf are subtle, such that analyses must
be pooled across subjects to �nd statistically signi�cant evidence of an experimentally
induced e�ect. Further, (for appropriate models) the use of samples of subjects allows
inference to be extended to the population from which they were sampled.

The simple single subject designs presented above must be extended to account for subject
to subject di�erences. The simplest type of subject e�ect is an additive e�ect, a block

e�ect in the parlance of experimental design. This implies that all subjects respond in
the same way, save for an overall shift in rcbf (at each voxel). We extend our notation
by adding subscript i for subjects, so Y k

iqj is the rcbf at voxel k of scan j under condition
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Figure 9: Single subject experimentwith conditions, covariate, and condition by covariate
interaction. (x3.2.5): (a) Illustrative plot of rcbf vs. rate. (b) Design matrix \image"
for Eqn.18. Both illustrated for the two condition 12 scan experiment described in the
text. The scans have been ordered by condition.
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q on subject i = 1; : : : ; N .

3.2.6 Multi subject activation (replications)

For instance, the single subject activation model (Eqn.16) is extended by adding subject
e�ects ki giving model:

Y k
iqj = �k

q + ki + �k(giqj � g
���

) + �kiqj (19)

A schematic plot of rcbf vs. gcbf for this model is shown in �gure 10a. In spm

terminology, this is a \multi-subject: replication of conditions" design. The parameter
vector at voxel k is �k = (�k

1; : : : ; �
k
Q; 

k
1 ; : : : ; 

k
N ; �

k)>. The design matrix (Fig.10b)
has N columns of dummy variables corresponding to the subject e�ects. (Similarly a
multi-subject parametric design could be derived from the single subject case (x3.2.2) by
including appropriate additive subject e�ects.)

Again, the model is overparameterised, though this time we have omitted the explicit
constant term from the confounds, since the subject e�ects can model an overall level.
Adding a constant to each of the condition e�ects and subtracting it from each of the
subject e�ects gives the same model. Bearing this in mind, it is clear that contrasts must
have weights that sum to zero over both the subject e�ects and the condition e�ects.
Subject e�ects are designated as confounding and not of interest, so spm prompts only
for contrast weights for the Q condition e�ects, and the same rules apply for these as
with the single subject models.

3.2.7 Condition by replication interactions

The above model assumes that (accounting for global and subject e�ects) replications of
the same condition give the same (expected) response. There are many reasons why this
assumption may be inappropriate, such as time e�ects or learning e�ects. Time e�ects
can be modeled by including appropriate functions of the scan number as confounding
covariates. With multi-subject designs we have su�cient degrees of freedom available to
enable the consideration of replication by condition interactions. Such interactions imply
that the (expected) response to each condition is di�erent between replications (having
accounted for other e�ects in the model). Usually in statistical models, interaction terms
are added to a model containing main e�ects. However, such a model is so overparam-
eterised that the main e�ects may be omitted, leaving just the interaction terms. The
model is:

Y k
iqj = �#k(qj) + ki + �k(giqj � g

���
) + �kiqj (20)

where �#k(qj) is the interaction e�ect for replication j of condition q, the condition-by-
replication e�ect. As with the previous model, this model is overparameterised (by one
degree of freedom), and contrasts must have weights which sum to zero over the condition-
by-replication e�ects. There are as many of these condition-by-replication terms as there
are scans per subject. (An identical model is arrived at by considering each replication of
each experimental condition as a separate condition.) If the scans are reordered such that
the j-th scan corresponds to the same replication of the same condition in each subject,
then the condition-by-replication corresponds to the scan number. With this feature in
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Figure 10: Multi-subject activation experiment, replication of conditions (x3.2.6), model
Eqn.19. Illustrations for a 5 subject study, with six replications of each of two conditions
per subject: (a) Illustrative plot of rcbf vs. gcbf. (b) Design matrix \image": The �rst
two columns correspond to the condition e�ects, the next �ve to the subject e�ects, the
last to the gcbf regression parameter. The design matrix corresponds to scans ordered
by subject, and by condition within subjects.
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Figure 11: Multi-subject activation experiment, \classic" spm design, where each repli-
cation of each experimental condition is considered as a separate condition (Eqn.20).
Illustrative design matrix \image" for �ve subjects, each having 12 scans, the scans
having been ordered by subject, and by condition and replication within subject. The
columns are labelled with the corresponding parameter. The �rst twelve columns corre-
spond to the \condition" e�ects, the next �ve to the subject e�ects, the last to the gcbf
regression parameter.

mind it is usually simplest to reorder scans when using such a model. An example design
matrix for 5 subjects scanned twelve times is shown in �gure 11a, where the scans have
been reordered. In spm this is termed a \Multi-subject: conditions only" design.

This is the \classic" spm AnCova described by Friston et al. (1990), and implemented
in the original spm software.11 It o�ers great latitude for speci�cation of contrasts.
Appropriate contrasts can be used to assess main e�ects, speci�c forms of interaction,
and even parametric e�ects. For instance, consider the verbal uency data-set described
by Friston et al. (1995b): Five subjects were scanned twelve times, six times under
each of two conditions, word shadowing (condition a) and intrinsic word generation
(condition b). The scans were reordered to abababababab for all subjects. (The
actual condition presentation order was randomly allocated for each subject in blocks
of two scans. That is, successive pairs of scans were chosen as ab or ba on the toss of
a coin.) Then a contrast with weights (for the condition-by-replication e�ects) of c>1 =
(�1; 1;�1; 1;�1; 1;�1; 1;�1; 1;�1; 1) assesses the hypothesis of no main e�ect of word
generation (against the one-sided alternative of activation). A contrast with weights of
c>1 = (51

2
; 41

2
; 31

2
; 21

2
; 11

2
; 1
2
;�1

2
;�11

2
;�21

2
;�31

2
;�41

2
;�51

2
) is sensitive to linear decreases

in rcbf over time, independent of condition, and accounting for subject e�ects and
changes in gcbf. A contrast with weights of c>1 = (1;�1; 1;�1; 1;�1;�1; 1;�1; 1;�1; 1)
assesses the interaction of time and condition, subtracting the activation in the �rst half
of the experiment from that in the latter half.

11The original spm software is now fondly remembered as spmclassic.
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3.2.8 Interactions with subject

While it is (usually) reasonable to use AnCova style models to account for global ow,
with regression parameter constant across conditions, the multi-subject models consid-
ered thus far assume additionally that this regression parameter is constant across sub-
jects. It is quite possible that rcbf at the same location for di�erent subjects will respond
di�erentially to changes in gcbf { a subject by gcbf covariate interaction. The gcbf
regression parameter can be allowed to vary from subject to subject. Extending the
multi-subject activation (replication) model (Eqn.19) in this way gives:

Y k
iqj = �k

q + ki + �ki (giqj � g
���

) + �kiqj (21)

Note the i subscript on the global slope term, �ki , indicating a separate parameter for
each subject. A schematic plot of rcbf vs. gcbf for this model and an example design
matrix \image" are shown in �gure 12. In the terminology of the spm interface, this is
an \AnCova by subject". The additional parameters are of no interest, and contrasts
are as before.

Similarly, the spm interface allows subject by covariate interactions, termed \subject
speci�c �ts". Currently spm doesn't allow subject by condition interactions. If the
parameters of interest are allowed to interact with subject e�ects, then account must be
taken of variation between subjects. Essentially, the subject e�ects are random e�ects,
since subjects are sampled from some population about which we wish to infer. In all the
models considered thus far, the relevant variation is within subjects, and the variation
of the subject e�ects can be ignored. A rigorous discussion of such mixed e�ects models
is beyond the scope of this chapter. For details, see any intermediate level statistical
treatment of the design of experiments.

3.3 Multi-study designs

The last class of spm models for pet we consider are the \multi-study" models. In these
models, subjects are grouped into two or more studies. The \multi-study" designs �t
separate condition e�ects for each study. In statistical terms this is a split plot design.
As an example consider two multi-subject activation studies, the �rst with �ve subjects
scanned twelve times under two conditions (as described above in section 3.2.6), the
second with three subjects scanned six times under three conditions. An example design
matrix \image" for a model containing study speci�c condition e�ects, subject e�ects and
study speci�c global regression (termed \AnCova by study" in spm) is shown in �gure
13. The �rst two columns of the design matrix correspond to the condition e�ects for the
�rst study, the next two to the condition e�ects for the second study, the next eight to
the subject e�ects, and the last to the gcbf regression parameter. (The corresponding
scans are assumed to be ordered by study, by subject within study, and by condition
within subject.)

Such multi-study designs are overparameterised by numerous degrees. An additional
consideration for split-plot designs is the variation between subjects in each study. spm
only assesses the residual variability, the intra-subject variability, and therefore cannot
be used to appropriately assess main e�ects of study, since these are di�erences between
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Figure 12: Multi-subject activation experiment, replication of conditions, AnCova by
subject. Model Eqn.21. Illustrations for a 5 subject study, with six replications of each
of two conditions per subject: (a) Illustrative plot of rcbf vs. gcbf. (b) Design matrix
\image": The �rst two columns correspond to the condition e�ects, the next �ve to the
subject e�ects, the last �ve the gcbf regression parameters for each subject. The design
matrix corresponds to scans ordered by subject, and by condition within subjects.
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Figure 13: Design matrix \image" for the example multi-study activation experiment
described in section 3.3.

subjects for which a measure of inter-subject variability is required. The only exception
to this is the degenerate case when there is only one scan per subject, since in this case
the residual variability is inter-subject. In this case the model reduces to that of a single
subject activation experiment where groups are interpreted as conditions and subjects as
replicate observations within the groups.

Valid contrasts for multi-study designs in spm are contrasts whose weights, when con-
sidered for each of the studies individually, would de�ne a contrast for the study. Thus,
contrasts must have weights which sum to zero over the condition e�ects within each
study. There remain three types of useful comparison available. The �rst is a compari-
son of condition e�ects within a single study, carried out in the context of a multi-study
design; the contrast weights appropriate for the condition e�ects of the study of interest
is entered, padded with zeros for the other study, e.g. c>1 = (1;�1; 0; 0; 0) for the �rst
study in our example. This will have additional power when compared to an analysis
of this study in isolation, since the second study observations contribute to the variance
estimates. The second is an average e�ect across studies; contrasts for a particular e�ect
in each of the studies are concatenated, the combined contrast assessing a mean e�ect
across studies. For example, if the second study in our example has the same conditions
as the �rst, plus an additional condition, then such a contrast would have weights for the
e�ects of interest c>1 = (�1; 1;�1; 1; 0). Lastly, di�erences of contrasts across studies can
be assessed, such as di�erences in activation. The contrasts weights for the appropriate
main e�ect in each study are concatenated, with some studies contrasts negated. In our
example, c>1 = (�1; 1; 1;�1; 0) would be appropriate for locating regions where the �rst
study activated more than the second, or where the second deactivated more than the
�rst.

Assumption of model �t in this case includes the assumption that the error terms have
equal variance (at each voxel) across studies. For very di�erent study populations, or
studies from di�erent scanners or protocols (possibly showing large di�erences in the
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measured ga between studies), this assumption may only be tenable after scaling the
data for each study to have the same grand mean activity (grand mean scaling by study).
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4 f unctional MRI

The analysis of functional Magnetic Resonance time series (fmri) presents additional
statistical problems. In this section some extensions to the basic general linear model
theory for the analysis of fmri time series are presented. A detailed discussion of de-
sign issues for fmri is presented in another chapter, so only the simplest model will be
considered here.

4.1 A time series linear model

Again, a linear model is used to model the fmri time series of observations at each
voxel, with the same model form for all voxels. Suppose we have a time series of N
observations Y1; : : : ; Ys; : : : ; YN , acquired at times ts, where s = 1; : : : ; N is the scan

number. The approach is to model the observed time series as a linear combination of
explanatory functions, plus a residual error or \noise" term:

Y k
s = �k

1f
1(ts) + : : :+ �k

l f
l(ts) + : : :+ �k

Lf
L(ts) + �ks (22)

Here the L functions f1(:); : : : ; fL(:) are a suitable set of basis functions, designed such
that linear combinations of them span the space of possible fmri responses for this
experiment, up to the level of residual noise. Clearly this is a general linear model, since
the explanatory variables being the basis functions are evaluated at the time points of
the fmri time series. To emphasise this point, consider writing out the above (Eqn.22)
for all time points ts, to give the a set of simultaneous equations:

Y k
1 = f1(t1)�

k
1 + : : :+ �k

l f
l(t1) + : : :+ fL(t1)�

k
L + �k1

... =
...

Y k
s = f1(ts)�

k
1 + : : :+ �k

l f
l(ts) + : : :+ fL(ts)�

k
L + �ks

... =
...

Y k
N = f1(tN )�

k
1 + : : :+ �k

l f
l(tN) + : : :+ fL(tN)�

k
L + �kN

which in matrix form is:

0
BBBBBBB@

Y k
1
...
Y k
s
...
Y k
N

1
CCCCCCCA
=

0
BBBBBBB@

f1(t1) : : : f l(t1) : : : fL(t1)
...

. . .
...

. . .
...

f1(ts) : : : f l(ts) : : : fL(ts)
...

. . .
...

. . .
...

f1(tN ) : : : f l(tN) : : : fL(tN)

1
CCCCCCCA

0
BBBBBBB@

�k
1
...
�k
s
...
�k
N

1
CCCCCCCA
+

0
BBBBBBB@

�k1
...
�ks
...
�kN

1
CCCCCCCA

of the form of the general linear model in matrix form Y k = X�k+ �k. Here each column
of the design matrix X contains the values of one of the basis functions evaluated each
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time point of the fmri time series. That is, the columns of the design matrix are the
discretised basis functions.

The basis functions must be chosen to span the space of all possible fmri responses
for the experiment in question, such that the residual \noise" terms �ks are identically
distributed with zero mean. Additionally, we assume that they are normally distributed
with constant variance (at each voxel), �ks � N (0; �2

k), a reasonable assumption given the
explicit and implicit smoothing of the required pre-processing steps.

Simplisticly, the fmri time series can be regarded as the underlying neuronal activity
expressed through the h�modynamic response, with added noise. These noise sources
include measurement noise, which is white, and physiological e�ects such cardiac and
respiratory e�ects, aliased to low frequencies, and drifts. Noise sources and their impact
on modelling and experimental design are discussed in detail in chapter 9. Experimental
and low frequency confounding e�ects must be modelled, but for inter-scan intervals less
than the length of the h�modynamic response (TR < 7s), the residual \noise" time series
will exhibit short term serial correlation. This temporal autocorrelation of the residual
errors requires extensions to the standard theory of the General Linear Model developed
earlier (x2).

4.2 Serially correlated regression | Temporal smoothing

The model should account for most of the temporal autocorrelation in an fmri time series,
leaving the residuals with temporal autocorrelation somewhat less than implied by the
h�modynamic response, and negligible for large inter-scan intervals. Were the form of
the residual temporal autocorrelation known, results from the Statistical literature on
serially correlated regression could be utilised. Further, by the matched �lter theorem,
since the fmri signal for a point response has the form of the h�modynamic response
function, the signal is optimally recovered if the fmri time series (and the basis functions
of the design) are smoothed by convolution with the h�modynamic response function.
In the smoothed residual time series, the temporal autocorrelation of the raw residuals is
swamped by that imposed by the temporal smoothing, which is known. Thus, temporal
smoothing with an appropriate �lter provides optimal parameter estimation, and swamps
the residual autocorrelation of the raw residuals such that the temporal autocorrelation
of the smoothed residual time series can be regarded as known.

4.2.1 A temporally smoothed model

Formally, the model at each voxel is convolved with an approximate h�modynamic re-
sponse function, leading to:

KY = KX� +K� (23)

at each voxel. (For clarity, we shall drop the superscripting with the voxel index k.)
Note that the parameter estimates remain una�ected by the temporal smoothing. Here
the convolution is expressed by the Toeplitz matrix K, with the discretised smooth-
ing kernel on the leading diagonal. Only a kernel approximating the h�modynamic
response is required, since the basis functions of the model �t the actual form of the
h�modynamic response to neuronal events. A Gaussian kernel would do, with standard
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Figure 14: Illustrative toeplitz temporal smoothing matrix.

deviation parameter suitably chosen, say � =
p
8s.12 In this case K would have elements

Kij / exp (�(i� j)2=2� 2), as illustrated in �gure 14.

The components of the error vector are then assumed independent �j
iid� N (0; �2), such

that the autocovariance of the smoothed errors is completely speci�ed by K and �.
Although the raw errors are slightly correlated, this autocorrelation is swamped by the
smoothing making the assumption tenable.

4.2.2 Parameter estimates and distributional results

There is a large literature on the topic of serial correlation in regression, for example
Watson (Watson, 1955) and Seber (Seber, 1977). We brought the approach to functional
imaging and review it here (Friston et al., 1995a; Worsley & Friston, 1995). Assuming
X is of full-rank, the least-squares estimates of � are

�̂ = (X�>X�)�1X�>KY (24)

where X� = KX. Although not fully optimal, �̂ is unbiased, with variance

var
h
�̂
i
= �2(X�>X�)�1X�>V X�(X�>X�)�1 (25)

for V = KK>. This implies the following test statistic for a linear compound c>�̂ of the
parameters at voxel k:

T = c>�̂=(c>�̂2(X�>X�)�1X�>V X�(X�>X�)�1c)1=2 (26)

with �2 estimated in the usual way by dividing the residual sum-of-squares by its expec-
tation:

�̂2 = e>e=trace(RV ) (27)

where e = RKX is the vector of residuals and R the residual forming matrix. Here

E [�̂2] = �2, and var [�̂2] = 2�4 trace(RVRV )

trace(RV )2
, so the e�ective degrees of freedom are then:

� =
2E [�̂2]

2

var [�̂2]
=

trace(RV )2

trace(RV RV )
(28)

By analogy with the �2 approximation for quadratic forms (Satterthwaite, 1946), the null
distribution of T may be approximated by a t-distribution with � degrees of freedom.
Similarly, F -statistics for the extra sum-of-squares can be derived. Thus, hypotheses
regarding contrasts of the parameter estimates, and general linear hypotheses can be
assessed.

12A more elaborate approximation is utilised in the spm software.
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Figure 15: The \high-pass �lter". Discrete cosine basis functions.

4.2.3 Smoothing fMRI data | Sacrilege?

Thus, temporal smoothing is the device permitting the use of standard parametric statis-
tical methods. For short inter-scan intervals, less than about 7s say, temporal smoothing
is necessary for the veracity of the statistical analysis. Many researchers, usually those
with backgrounds in mri physics, are strongly opposed to any form of smoothing for
data which they have gone to great lengths to acquire at high spatial and temporal res-
olutions. However, such protestations against temporal smoothing are specious, since
the temporal response to an experimental stimulus is governed by the h�modynamic
response. Nothing can be observed above this temporal resolution, and these responses
are optimally recovered after convolution with a matched �lter.

4.3 Low-frequency confounds | The \High pass" �lter

As indicated above, the basis functions of the model must account for all components
of the fmri time series up to the level of residual noise with a small degree of temporal
autocorrelation. In particular, in addition to the experimentally induced e�ects, low
frequency confounds such as baseline drifts and aliased cardiac and respiratory e�ects
must be modelled.

A suitable set of basis functions are discrete cosine functions: for a contiguous series
of N scans acquired at times t1; : : : ; tN , the basis functions are of the form fr(t) =

cos
�
r� t�t1

tN�t1

�
. The integer index r ranges from 1 (giving half a cosine cycle), to a user

speci�ed maximum, R, usually chosen such that the period of fr(t) is below that of the
experimental paradigm. This basis set is similar to a Fourier basis set, but is superior
for very low frequencies, such as long term drifts. The �rst seven such basis functions
are illustrated in �gure 15.

37



This proposed approach to modelling low-frequency confounds augments the design ma-
trix with R columns, containing the discretised basis functions fr(t). Since the discrete
cosine basis functions are designed to model low frequency e�ects, it has become known
as the \high-pass �lter". However, the other e�ects in the design matrix are and the
basis functions for low frequency confounds are �tted simultaneously, rather than the
low frequency e�ects being removed from the data prior to �tting the other e�ects, as
the name \high-pass �lter" might imply.

If the R columns of the high-pass �lter are not orthogonal to the remainder of the
design matrix, then some of the other e�ects can be modelled by the �lter. For periodic
designs, the respective partitions are (almost) orthogonal for a cut-o� period of twice
the experimental period.The extra sum-of-squares F -test assesses the additional variance
modelled by the e�ects of interest beyond that modelled by the confounds, which includes
the high-pass �lter. Thus, as far as the F -test goes, the �lter takes precedent over the
e�ects of interest where there is non-orthogonality.

4.3.1 Example model

Experimental design and modelling issues for fmri are dealt with in chapter 9, but
it is useful to illustrate the concepts introduced above on a simple blocked activation
experiment. 64-slice 3�3�3 mm bold/epi acquisitions were made every seven seconds
on a single subject in a single session. 16 blocks of 6 scans (42s blocks) were used, the
condition for successive blocks alternating between rest and auditory stimuli, starting
with rest. During the auditory condition, the subject was presented binaurally with
bi-syllabic words at a rate of 60 per minute. For various physical and psychological
reasons the �rst few scans are atypical. Here we consider 7 blocks from the middle of the
experiment, starting with a rest block.

For a single subject activation experiment of alternating epochs of baseline and activation
conditions, the simplest model for the experimentally induced e�ects would be a mean for
each condition, with conditions associated to scans reecting the h�modynamic lag. This
would require 2 basis functions, a constant function, modelling the baseline measurement,
and a box-car function of 0's (for rest epoch scans), and 1's (for active epoch scans),
lagged 8s, modelling the additional signal due to the stimulus.13 This minimalist model
for the e�ects of interest must be augmented with appropriate basis functions for the
low-frequency confounds and other confounds to give a suitable model for the fmri time
series.

For the example at hand, an example design matrix is shown in �gure 16. The �rst
column contains the lagged box car, padded at the top with a 1, indicating that the scan
prior to the �rst rest scan considered came from a stimulus condition. The second column
contains a vector of 1's, dummy variables for the baseline level. A high-pass �lter cut-o�
of 168 s was chosen, this being twice the experimental period, giving a set of K = 7
discrete cosine basis functions with value fr(s) = cos

�
r� s�1

N�1

�
for scan s = 1; : : : ; 84,

r = 1; : : : ;K;K = 7. These are columns 3 to 9 of the design matrix.

13A lagged box-car is an extremely crude approximation of the h�modynamic response to a neuronal
activation. Convolving a box-car with an estimated h�modynamic response function would produce a
better approximation. However, its simplicity and success have ensured its use, and it represents the
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Figure 16: Design matrix X, for the example fmri experiment described in x4.3.1.

The null hypothesis of no activation corresponds to zero amplitude of the box-car wave-
form. The amplitude of the box-car reference waveform is the only parameter of interest,
so spm prompts for contrast weight vectors of length one. Appropriate contrast weights
are then c1 = (+1) and c1 = (�1) for alternative hypotheses of activation and deactiva-
tion respectively.

Voxels where the high-pass �lter explains a signi�cant amount of variation (F -test,
p < 0:001, uncorrected, (7, 72.87) d.f.) are shown in �gure 17a. 8% of voxels exceed
this threshold (0.1% expected), indicating signi�cant evidence against the omnibus null
hypothesis that the �lter is redundant at all voxels. 0.1% of voxels are signi�cant at
p = 0:05 (corrected). Figure 17b shows the model �t for the voxel at (30;�36;�14),
where the F -statistic for the �lter e�ects is highly signi�cant (p < 10�4 corrected). The
upper plot shows the time series adjusted for global e�ects (dots), and the �tted condi-
tion e�ect (solid line). The lower plot shows the residuals remaining after �tting global
and condition e�ects (dots), and the �tted low-pass �lter (solid line).

5 A Multivariate perspective

The massively univariate approach outlined above involves �tting univariate linear models
to the data at each voxel. Crucially, the same model form is used at each voxel, only the
parameters are di�erent. The model at voxel k is of the form:

Y k = X�k + �

The values of the explanatory variables relate to each scan, the same explanatory variables
are used for each voxel. Thus, the design matrix is the same for every voxel. Therefore,

minimalist model.
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Figure 17: Illustration of the \high-pass �lter". (a) Maximum intensity projection (p <
0:001, uncorrected) of the extra sum-of-squares F -statistic for the null hypothesis that
the �lter explains no additional variance beyond the box-car �t. (b) Timecourse plots for
the voxel at Talairach co-ordinates (30;�36;�14), illustrating the high-pass �lter. See
text (x4.3.1) for details.
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the models for all intracerebral voxels k = 1; : : : ;K can be expressed in a single matrix
equation as:

Y = X� + �

where Y = (Y 1 j : : : jY k j : : : jY K) is the data matrix, arranged with scans in rows, one
column per voxel. � = (�1 j : : : j�k j : : : j�K) is the matrix of parameters, each column
containing the parameters for a single voxel. Similarly the error matrix � has �k as its
k-th column. This equation therefore constitutes an image regression.

The least squares estimates for all the voxels may be simultaneously obtained as �̂ =
(X>X)�1X> Y .

This is the form of a multivariate regression. In multivariate regression it is usually
assumed that the vectors �j of errors associated with the j-th observation (the j-th row
of the error matrix �) have a k-variate multivariate normal distribution with zero mean
and variance-covariance matrix � (Chat�eld & Collins, 1980). The massively univariate

approach of spm only assumes that the marginal distributions are normal: �kj
iid� N (0; �2

k).
Therefore we di�erentiate image regression from multivariate regression.

However, the random �eld approaches to assessing the signi�cance of statistic images
implicitly assume that the statistic images are discrete random �elds. This in turn
implies that the images of residual errors are Gaussian random �elds, which in turn
implies that the error vectors are multivariate normal.

Standard multivariate analyses of (raw) neuroimaging data are not possible. This is
due to the fact that the number of variates (voxels) observed is much greater than the
number of observations (scans). This fact results in a singular estimate of �, precluding
most multivariate procedures, which utilise the determinant of the variance-covariance
estimate. However, multivariate analyses are possible if the dimensionality of the data-set
is reduced, a topic pursued in a separate chapter.

6 Miscellaneous Issues

6.1 Partitioning of the design, contrast speci�cation

In general, spm orders e�ects as (i) condition e�ects (pet); (ii) Other covariates of
interest, either manually entered or constructed as basis functions for the e�ects of interest
(fmri); (iii) confounding subject/session (block) e�ects, or an explicit constant term �;
and (iv) other confounding covariates of no interest, including the global values if an
AnCova style global normalisation is chosen, and (fmri) the \high-pass �lter". E�ects
in categories (i) & (ii) are classed as of interest, e�ects in categories (iii) & (iv) as of no
interest.

Contrast weights are requested only for the parameters of interest, weights for other
parameters are set to zero. For the designs implemented in spm, the contrast weights
corresponding to the condition e�ects must sum to zero within study. The package
therefore ensures these weights specify a contrast by removing the mean (within study),
dropping any contrasts whose weights are subsequently all zero. The exact design matrix
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and contrasts used are printed by the package for inspection, and \bar charts" of contrasts
are appended to design matrix \images" when presented with statistic images.

6.2 Adjusted data

Adjusted data are useful for illustrative plots of the nature of an e�ect, confounding
e�ects having been removed. The partitioning of the model parameters (at each voxel)
into e�ects of interest (�k

1
) and e�ects of no interest (�k

2
), corresponds to a partitioning

of the design matrix X = (X1jX2). Adjusted data are then computed for each voxel as
~Y k = Y k �X2�̂

k
2 . In pet, the gcbf is entered mean corrected (a centered covariate), the

adjustment is to the mean gcbf of g
�
. For non-centered covariates, the adjustment is

to a covariate value of zero, possibly implying an extrapolation of the �tted relationship
way beyond the range of the covariate.

For overparameterised designs with indeterminancy between e�ects in both partitions,
the exact form of the adjustment will depend on the constraints used (or implied) in
obtaining parameter estimates. For instance, in the single subject pet activation model
presented above (x3.2.1), the indeterminancy in the model corresponds to the addition /
subtraction of a constant between the condition e�ects, designated of interest, and the
overall level �, designated as confounding. Various tactics have been employed in di�erent
versions of spm. In spm96, the overall mean is included in the adjusted data, alleviating

the problem. This is achieved by explicitly removing the mean Y
k

�
from the data prior to

model �tting, and subsequently adding it back to the adjusted data. In spm97, the overall
level, which isn't really interesting as has no meaning for qualitative data, is regarded as
a confound. To ensure that the e�ects of interest do not absorb some of the overall level,
the condition e�ects in pet are constrained to sum to zero, and the e�ects of interest
in fmri similarly carefully constructed. Rather than explicitly constrain the pet design
matrix, leading to design matrix \images" that are potentially confusing, the condition
e�ects are expressed relative to their mean (x2.4.3), and the Moore-Penrose pseudoinverse
used to implicitly apply the constraint. This implicit constraining is exhibited in design
matrix images, the e�ects of interest partition, X1, having a darker background and grey
patches where the indicator 1's would be.

6.3 Alternative hypotheses

Since the methods of assessing statistic images (described in the following chapter) only
examine large values, the alternative hypotheses in spm are implicitly one sided. A two-
sided test can be obtained by specifying contrasts for increases and decreases (one is
the negative of the other), and assessing the two resulting statistic images at half the
signi�cance level, easily carried out by doubling any p-values obtained.

6.4 Omnibus F -statistic | Any e�ects of interest?

An F -statistic using the \extra sum-of-squares" principle for the omnibus hypothesis
that there are no e�ects of interest (Hk : �k

1
= 0) is computed by spm for each voxel.
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The resulting F -statistic image shows regions where there is evidence of some e�ect of
interest. By careful partitioning of the design matrix, this F -statistic can be used to
asses interesting hypotheses, particularly useful in fmri for assessing the signi�cance of
subsets of basis functions. However, in spm, the F -statistic for e�ects of interest is also
used as a data reduction device.

F -statistic threshold �ltering

In spm, this F -statistic is thresholded (corresponding to a voxel level (i.e. uncorrected)
upper tail probability of UFp under Hk) to identify voxels for which adjusted data, model
parameters and statistics are saved for subsequent display and inspection. This is purely
a data reduction device. Smoothness estimators and the volume, parameters required for
assessing the statistic image for signi�cance, are computed over all intracerebral voxels.

The upper tail p-value threshold UFp is a user de�nable default, initially set to UFp =
0:05 for pet, UFp = 0:001 for fmri. The implicit assumption in utilising this threshold
as a data-reduction device is that there are no speci�c e�ects in voxels where there is no
evidence of an overall e�ect. That is, for any voxel where a speci�c contrast is signi�cantly
di�erent from zero at the chosen level, the extra sum-of-squares F -statistic exceeds the
100(1�UFp) percentile of the appropriate F -distribution. Logically, a non-zero contrast
of the actual parameters at voxel k implies Hk : �k

1
= 0 is false. However, signi�cance

tests only give \evidence against" null hypotheses at given levels. It is quite possible
that a speci�c contrast will have t-statistic signi�cant at p = 0:05 while the omnibus
F -statistic is not quite signi�cant at the same level, since the omnibus F -test attempts
to account for all possible contrasts whilst maintaining test level. The more e�ects of
interest, the more likely this will be true for some contrast.

Given that the speci�c contrasts are assessed at extremely high (uncorrected) signi�cance
levels, to account for the multiplicity of simultaneously assessing all voxels, it is highly
unlikely that any voxels where the contrast is signi�cant (corrected) has omnibus F -
statistic failing to exceed the relatively low UFp threshold. However, low (uncorrected)
signi�cance levels may be appropriate if interest lies in speci�c regional hypotheses, if
assessing the contrasts at a lenient level to generate hypotheses for future data-sets, or
for identi�cation of suprathreshold clusters of voxels. In these cases it is possible that the
F -threshold will remove some relevant voxels, giving increased Type II errors, and a less
stringent F -threshold (larger UFp) would be appropriate. UFp = 1 retains all voxels.

6.5 Model selection

In �tting a general linear model to a data set and then assessing questions in terms of
hypotheses on the parameters of the model, it is implicitly assumed that the model �ts.
That is, that errors are independent and identically normally distributed with zero mean.
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6.5.1 Problems of assessing model adequacy

The usual tools for assessing the adequacy of model �t for univariate linear models are
predominantly graphical, for instance plots of residuals against �tted values to illustrate
unmodelled structure or non-homogeneous residual variance; or, plots of residuals against
the expected order statistics from a standard normal distribution (normal scores) to
assess the validity of the normality assumption (sometimes called Q-Q plots). It is
impractical to apply these methods routinely, given that they would have to be employed
for each voxel separately. Although various diagnostic statistics can be used to summarise
the information in such plots (for instance the Shapiro-Wilks test for normality, using
the correlation of residuals and normal scores), the small number of observations (in
pet) means such tests have extremely low power, particularly considering the multiple
comparisons problem of testing at each voxel simultaneously.

6.5.2 Ill �tting models

If the model doesn't �t, for whatever reason, then the model assumptions do not hold and
subsequent inference may not be valid. Consider an appropriate model, one that �ts. If
a reduced model is �tted (with some e�ects omitted), then the omitted e�ects contribute
to the residual error, introducing structure into the residuals in de�ance of their assumed
independence. Usually, this results in increases in residual variance. However, the model
has fewer parameters than the appropriate one, so the residual degrees of freedom are
greater, implying increased con�dence in the variance estimate. So, the variance (usually)
goes up according to the omitted e�ects, but so do the degrees of freedom. Increasing
variance and increasing degrees of freedom a�ect signi�cance in opposite directions (for
the same e�ect size), so in general all that can be concluded is that ensuing tests are
invalid. However, the e�ect of increasing degrees of freedom is more pronounced for small
degrees of freedom. For very low degrees of freedom the omission of terms may lead to
more lenient tests despite an increase in residual variance.

If additional parameters are added to a model that is already adequate, then the (re-
dundant) extra parameters reduce the degrees of freedom available for the estimation of
residual variance. The reduced residual degrees of freedom result in reduced con�dence
in the variance estimates, manifest as larger p-values.

Further, it is quite possible that di�erent models will be appropriate for data at di�erent
voxels. Thus, the pertinent approach is to chose a model for all voxels which includes all
the e�ects relevant at any voxel.

6.5.3 Model selection

For a limited set of explanatory variables, (factors and covariates), the set of possible
models for each voxel can be arranged into a hierarchy. Pairs of models at successive
levels of the hierarchy di�er by the inclusion/omission of a single term (factor, covariate,
interaction e�ect, etc.). Related models in such a hierarchy can be compared using an
extra sum-of-squares F -test (x2.6.4). Using this procedure various schemes for model
selection can be developed. See Draper & Smith (1981) for details. The simplest are
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forward selection, and backward selection. In the latter, the saturated model at the top
of the hierarchy is chosen as a starting point. This model contains all plausible e�ects.
This full model is then compared in turn with each of those in the next lower level of
the model hierarchy (models derived from the current model by the omission of a single
term), giving an F -statistic for the successive null hypotheses that the omitted e�ects are
redundant in the model. If any of these comparisons is non-signi�cant, then the terms
corresponding to the lowest signi�cance are dropped from the model. This continues until
no non-signi�cant terms are found, or until a minimal model is reached. The forward
selection method is analogous.

In applying this (univariate) procedure to the problem of �nding a simultaneous model
for all voxels in a functional mapping experiment, there remains the problem of multiple
comparisons. For each pair of models an F -statistic is obtained for each voxel, giving
an F -statistic image that must be assessed. In this application, interest lies in assessing
whether there is any evidence for any voxel that the larger model is required. It is not
necessary to locate the particular voxels involved. Therefore, an omnibus test proce-
dure with only weak control over experiment-wise Type I error is required, such as the
\Sum-of-squares" or \exceedance proportion" tests described by Worsley et al. (1995).
A backwards selection procedure using the latter test was proposed by Holmes (1994).
Alternatively, the dimensionality of the data may be reduced by taking the �rst few
principle components, and multivariate models selected on the reduced data using mul-
tivariate techniques.

6.5.4 Practical model selection

Currently, spm has no features for formal model comparison. By careful construction of
the design matrix, the default extra sum-of-squares F -statistic for the e�ects of interest
can be used to produce an F -statistic image expressing evidence against the hypothesis
that the parameters labelled of interest are superuous. In the absence of a formal
omnibus test for the whole statistic image, the F -statistic image should be interpreted
leniently, using a low threshold, since it is Type II errors (false negatives) that are most
important, not Type I errors (false positives).

Alternatively, a more pragmatic approach could be taken. An alternate heuristic per-
spective on a forwards selection procedure is this: Adding e�ects to a model improves
the modeling of the data, removing components of the error at the expense of residual
degrees of freedom. The best model provides an optimal trade o� between modeling and
\spending" degrees of freedom. A pragmatic approach from an investigators point of
view is to start with a basic model, and successively add terms in a sensible order, while
assessing the signi�cance of a contrast of interest at each step. The \optimal" model will
be the one that gives the most signi�cant results, although the optimality is clearly from
the investigators point of view! Clearly this approach is less than ideal, both statistically
and practically. In particular, di�erent models might indicate signi�cant e�ects in di�er-
ent regions, a multiplicity which might lead to models being selected for their favourable
results!
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6.6 Experimental design

The most important consideration in statistical experimental design is the actual design
of the experiment. This may seem circular, but frequently experiments are designed
with little thought for what statistical analyses will be carried out. Statistical modelling
is a component of experimental design, not a post-hoc panacea for badly thought out
experiments!

A related but distinct topic is randomisation: In conducting designed experiments we
wish to be able to attribute any observed e�ects to experimentally manipulated con-
ditions. Usually this attribution can only be guaranteed if conditions are randomly
allocated to a presentation order for each subject in a sensible manner (equivalently,
experimental conditions are allocated to scan slots randomly). Further, this randomi-
sation should be appropriately balanced, both across and within subjects. With such
random allocation of conditions, any unexpected e�ects are randomly scattered between
the conditions, and therefore only contribute to error.

6.7 Concluding remarks

The �xed e�ects general linear model provides a single framework for many statistical
tests and models, giving great exibility for experimental design and analysis. The spm
software package uses \image regression" to compute statistic images for pre-speci�ed
hypotheses regarding contrasts of the parameters of a general linear model �tted at each
voxel. This facility presents a useful tool for functional neuroimage analysis.
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