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I. Introduction

   This chapter is concerned with the characterization of imaging data from a multivariate perspective.
This means that the observations at each voxel are considered conjointly with explicit reference to the
interactions among brain regions.  The concept of functional connectivity is introduced and provides the
basis for understanding what eigenimages  represent and how they can be interpreted.  Having considered
the nature of eigenimages and variations on their applications we then turn to a related approach that,
unlike eigenimage analysis, is predicated on a statistical model.  This approach is called multivariate
analysis of variance (ManCova) and uses canonical variates analysis to create canonical images.  In
contradistinction to previous chapters this, and the next chapter are less concerned with functional
segregation but more with functional integration.  The integrated and distributed nature of
neurophysiological responses to sensorimotor or cognitive challenge makes a multivariate perspective
particularly appropriate and provides a complementary characterization of activation studies.
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II. Functional integration and connectivity

   A landmark meeting, that took place on the morning of August 4th 1881 highlighted the difficulties
of attributing function to a cortical area, given the dependence of cerebral activity on underlying
connections [1].  Goltz, although accepting the results of electrical stimulation in dog and monkey
cortex, considered the excitation method inconclusive in that the movements elicited might have
originated in related pathways, or current could have spread to distant centres.  Despite advances over the
past century, the question remains; are the physiological changes elicited by sensorimotor or cognitive
challenges explained by functional segregation, or by integrated and distributed changes mediated by
neuronal connections?  The question itself calls for a framework within which to address these issues.
Functional and effective connectivity are concepts critical to this framework.

II.A. Origins and definitions

   In the analysis of neuroimaging time-series functional connectivity is defined as the temporal
correlations between spatially remote neurophysiological events  [2].  This definition provides a
simple characterization of functional interactions.  The alternative is effective connectivity (i.e.the
influence one neuronal system exerts over another) [3].  These concepts originated in the analysis of
separable spike trains obtained from multiunit electrode recordings [4, 5].  Functional connectivity is
simply a statement about the observed correlations; it does not comment on how these correlations are
mediated.  For example, at the level of multiunit micro-electrode recordings, correlations can result
from stimulus-locked transients, evoked by a common afferent input, or reflect stimulus-induced
oscillations; phasic coupling of neural assemblies, mediated by synaptic connections [6].    Effective
connectivity is closer to the notion of a connection and can be defined as the influence one neural
system exerts over another, either at a synaptic (c.f. synaptic efficacy) or cortical level.   Although
functional and effective connectivity can be invoked at a conceptual level in both neuroimaging and
electrophysiology they differ fundamentally at a practical level.  This is because the time-scales and
nature of neurophysiological measurements are very different (seconds vs. milliseconds and
hemodynamic vs. spike trains).  In electrophysiology it is often necessary to remove the confounding
effects of stimulus-locked transients (that introduce correlations not causally mediated by direct neural
interactions) in order to reveal an underlying connectivity.  The confounding effect of stimulus-evoked
transients is less problematic in neuroimaging because promulgation of dynamics from primary sensory
areas onwards is mediated by neuronal connections (usually reciprocal and interconnecting).  However it
should be remembered that functional connectivity is not necessarily due to effective connectivity (e.g.
common neuromodulatory input from ascending aminergic neurotransmitter systems or thalamo-cortical
afferents) and, where it is, effective influences may be indirect (e.g polysynaptic relays through multiple
areas).

III. Eigenimages, multidimensional scaling and other devices

   In what follows we introduce a number of techniques (eigenimage analysis, multidimensional
scaling, partial least squares and generalized eigenimage analysis) using functional connectivity as a
reference.  Emphasis is placed on the relationships between these techniques.  For example, eigenimage
analysis is equivalent to principal component analysis and the variant of multidimensional scaling
considered here is equivalent to principal coordinates analysis.  Principal components and coordinates
analysis are predicated on exactly the same eigenvector solution and from a mathematical perspective are
essentially the same thing.  

III.A Measuring a pattern of correlated activity

   Here we introduce a simple way of measuring the amount a pattern of activity (representing a
connected brain system) contributes to the functional connectivity or variance-covariances observed in
the imaging data.  Functional connectivity is defined in terms of correlations or covariance (correlations
are normalized covariances).  The point to point functional connectivity between one voxel and another
is not usually of great interest.  The important aspect of a covariance structure is the pattern of
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correlated activity subtended by (an enormous number of) pairwise covariances.  In measuring such
patterns it is useful to introduce the concept of a norm.  Vector and matrix norms serve the same
purpose as absolute values for scalar quantities.  In other words they furnish a measure of distance.  One
frequently used norm is the 2-norm, which is the length of a vector.  The vector 2-norm can be used to
measure the degree to which a particular pattern of brain activity contributes to a covariance structure:
If a pattern is described by a column vector (p), with an element for each voxel, then the contribution
of that pattern to the covariance structure can be measured by the 2-norm of M.p  = |M.p|2. M is a
(mean corrected) matrix of data with one row for each successive scan and one column for each voxel
(T  denotes transposition):

|M.p|2 2 = pT.MT.M.p 1

Put simply the 2-norm is a number that reflects the amount of variance-covariance or functional
connectivity that can be accounted for by a particular distributed pattern:  If e time-dependent changes
occur predominantly in regions described by the pattern (p) then the correlation between the pattern of
activity and p over space will vary substantially over time.  The 2-norm measures this temporal
variance in the spatial correlation.  The pattern p can be used to define the functional connectivity of
interest.  For example, if one were interested in the functional connectivity between left dorsolateral
prefrontal cortex (DLPFC) and left superior temporal region one could test for this interaction using the
2-norm in Eq. (1) where p had large values in the frontal and temporal regions.  This approach has been
used to demonstrate abnormal prefronto-temporal integration in schizophrenia [7]; an example we shall
return to below.

   It should be noted that the 2-norm only measures the pattern of interest.  There may be many other
important patterns of functional connectivity.  This fact begs the question "what are the most prevalent
patterns of coherent activity?"  To answer this question one turns to eigenimages or spatial modes.

III.B Eigenimages and spatial modes

   In this section the concept of eigenimages or spatial modes is introduced in terms of  patterns of
activity (p) defined in the previous section.  We show that spatial modes are simply those patterns that
account for the most variance-covariance (i.e. have the largest 2-norm).

   Eigenimages or spatial modes are most commonly obtained using singular value decomposition
(SVD).  SVD is an operation that decomposes an original time-series (M) into two sets of orthogonal
vectors (patterns in space and patterns in time) V and U where:

[U  S  V] = SVD{M}

such that: M = U.S.VT 2

U and V are unitary orthogonal matrices (the sum of squares of each column is unity and all the column
are uncorrelated) and S is a diagonal matrix (only the leading diagonal has non-zero values) of decreasing
singular values.  The singular value of each eigenimage is simply its 2-norm.  Because SVD
maximizes the largest singular value, the first eigenimage is the pattern that accounts for the greatest
amount of the variance-covariance structure.  In summary, SVD and equivalent devices are powerful
ways of decomposing an imaging time-series into a series of orthogonal patterns than embody, in a
stepdown fashion, the greatest amounts of functional connectivity.  Each eigenvector (column of V)
defines a distributed brain system that can be displayed as an image.  The distributed systems that ensue
are called eigenimages or spatial modes and have been used to characterize the spatiotemporal dynamics
of neurophysiological time-series from several modalities; including multiunit electrode recordings [8],
EEG [9], MEG [10], PET [2] and functional MRI [11].

   Many readers will notice that the eigenimages associated with the functional connectivity or
covariance matrix are simply principal components of the time-series.  In the EEG literature one
sometimes comes across the Karhunen-Loeve expansion which is employed to identify spatial modes.
If this expansion is in terms of  eigenvectors of covariances (and it usually is), then the analysis is
formally identical to the one presented above.
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   One might ask what the column vectors of U in Equ(2) correspond to.  These vectors are the time-
dependent profiles associated with each eigenimage.  They reflect the extent to which an eigenimage is
expressed in each experimental condition or over time.  These vectors play an important role in the
functional attribution of distributed systems defined by eigenimages.  This point and others will be
illustrated in the next  section.

III.C Mapping function into anatomical space  -  Eigenimage analysis

   To illustrate the approach, we will use a standard word generation study.  The data were obtained from
five subjects scanned 12 times whilst performing one of two verbal tasks in alternation.  One task
involved repeating a letter presented aurally at one per two seconds (word shadowing).  The other was a
paced verbal fluency task, where  subjects responded with a word that began with the letter presented
(intrinsic word generation).  To facilitate intersubject pooling, the data were realigned and spatially
normalized and smoothed with an isotropic Gaussian kernel (FWHM of 16mm).  The data were then
subject to an AnCova (with 12 conditions, subject effects and global activity as a confound).  Voxels
were selected using the omnibus F ratio to identify those significant at p < 0.05 (uncorrected).  The
adjusted time-series from each of these voxels formed a mean corrected data matrix M with 12 rows
(one for each condition) and one column for each voxel.
 
  The images data matrix M was subject to SVD as described in the previous section.  The distribution
of eigenvalues (Figure 1, lower left) suggests only two eigenimages are required to account for most of
the observed variance-covariance structure.  The first mode accounted for 64% and the second for 16% of
the variance.  The first eigenimage (the first column of V) is shown in Figure 1 (top) along with the
corresponding vector in time (the first column of U - lower right).  The first eigenimage has positive
loadings in the anterior cingulate, the left DLPFC, Broca's area, the thalamic nuclei and in the
cerebellum.  Negative loadings were seen bitemporally and in the posterior cingulate.   According to U
this eigenimage is prevalent in the verbal fluency tasks with negative scores in word shadowing.  The
second spatial mode (not shown) had its highest positive loadings in the anterior cingulate and
bitemporal regions (notably Wernicke's area on the left).  This mode appears to correspond to a highly
non-linear, monotonic time effect with greatest prominence in  earlier conditions.
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Figure 1
Eigenimage analysis the PET activation study of word generation Top: Positive and negative components of
the first eigenimage (i.e.  first column of V).  The maximum intensity projection display format is standard
and provides three views of the brain in the stereotactic space of Talairach and Tournoux (1988) (from the
back, from the right and from the top).  Lower Left:  Eigenvalues (singular values squared) of the functional
connectivity matrix reflecting the relative amounts of variance accounted for by the 11 eigenimages
associated with this data.  Only two eigenvalues are greater than unity and to all intents and purposes the
changes characterizing this time-series can be considered two-dimensional.  Lower right: The temporal
eigenvector reflecting the expression of this eigenimage over the 12 conditions (i.e.  the first column of U).

   The post hoc functional attribution of these eigenimages is usually based on their time-dependent
profiles (U).  The first mode may represent an intentional system critical for the intrinsic generation of
words in the sense that the key cognitive difference between verbal fluency and word shadowing is the
intrinsic generation as opposed to extrinsic specification of word representations and implicit mnemonic
processing.  The second system, that includes the anterior cingulate, seems to be involved in
habituation, possibly of attentional or perceptual set.

   The is nothing 'biologically' important about the particular spatial modes obtained in this fashion, in
the sense that one could 'rotate' the eigenvectors such that they were still orthogonal and yet gave
different eigenimages.  The uniqueness of the particular solution given by SVD is that the first
eigenimage accounts for the largest amount of variance-covariance and the second for the greatest
amount that remains and so on.  The reason that the eigenimages in the example above lend themselves
to such a simple interpretation is that the variance introduced by experimental design (intentional) was
substantially greater than that due to time (attentional) and both these sources were greater than any
other effect.  Other factors that ensure a parsimonious characterization of a time-series, with small
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numbers of well defined modes include (i) smoothness in the data and (ii) using only voxels that
showed a non-trivial amount of change during the scanning session.

III.D. Mapping anatomy into functional space  -  multidimensional scaling

    In the previous section the functional connectivity matrix was used to define  associated eigenimages
or spatial modes.  In this section functional connectivity is used in a different way, namely, to
constrain the proximity of two cortical areas in some functional space.  The objective here is to
transform anatomical space so that the distance between cortical areas is directly related to their
functional connectivity.  This transformation defines a new space whose topography is purely
functional in nature.  This space is constructed using multidimensional scaling or principal coordinates
analysis[12].

   Multidimensional scaling (MDS) is a descriptive method for representing the structure of a system.
Based on pairwise measures of similarity or confusability [13, 14].  The resulting multidimensional
spatial configuration of a system's elements embody, in their proximity relationships, comparative
similarities.  The technique was developed primarily for the analysis of perceptual spaces.  The proposal
that stimuli be modeled by points in space, so that perceived similarity is represented by spatial
distances, goes back to the days of Isaac Newton[15].  The implementation of this idea is however
relatively new [14].

   Imagine K measures from n voxels plotted as n points in a K-dimensional space (K-space).  If they
have been normalized to zero mean and unit sum of squares, these points will fall on an K-1
dimensional sphere.  The closer any two points are to each other, the greater their correlation or
functional connectivity (in fact the correlation is a cosine of the angle subtended at the origin).  The
distribution of these points embodies the functional topography.  A view of this distribution, that
reveals the greatest structure, is simply obtained by rotating the points to maximize their apparent
dispersion (variance).  In other words one looks at the subspace with the largest 'volume' spanned by
the principal axes of the n points in K-space.  These principal axes are given by the eigenvectors of
M.MT.  i.e. the column vectors of U. From Equ(2):

M.MT = U.S2.UT

Let Q be the matrix of desired coordinates derived by simply projecting the original data (MT) onto
axes defined by U: 

Q = MT.U 3

Voxels that have a correlation of unity will occupy the same point in MDS space.  Voxels that have
independent dynamics (correlation = 0) will be √2 apart.  Voxels that are negatively but totally
correlated (correlation = -1) will be maximally separated (by a distance of 2).  Profound negative
correlations denote a functional association that is modeled in MDS functional space as diametrically
opposed locations on the hypersphere.  In other words two regions with profound negative correlations
will form two 'poles' in functional space.

   Following normalization  to unit sum of squares over each column M (the adjusted data matrix from
the word generation study above) the data were subjected to singular value decomposition according to
Equ(2) and the coordinates Q of the voxels in MDS functional space were computed as in Equ(3).
Recall that only two eigenvalues exceed unity (Figure 1 right) suggesting a functional space that is
essentially two dimensional.   The locations of voxels in this two-dimensional subspace are shown in
Figure 2 (lower row) by rendering voxels from different regions in different colours. The anatomical
regions corresponding to the different colours are shown in the upper row.  Anatomical regions were
selected to include those parts of the brain that showed the greatest variance during the 12 conditions.
Anterior regions (Figure 2, right) included the mediodorsal thalamus (blue), the dorsolateral prefrontal
cortex (DLPFC), Broca's area (red) and the anterior cingulate (green).  Posterior regions (Figure 2, left)
included the superior temporal regions (red), the posterior superior temporal regions (blue) and the
posterior cingulate (green).   The corresponding functional spaces (Figure 2, lower rows) reveal a
number of things about the functional topography elicited by this set of activation tasks.  First, each
anatomical region maps into a relatively localized portion of functional space.  This preservation of
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local contiguity reflects the high correlations within anatomical regions, due in part to smoothness of
the original data and to high degrees of intra-regional functional connectivity.  Secondly, the anterior
regions are almost in juxtaposition as are posterior regions, however the confluence of anterior and
posterior regions forms two diametrically opposing poles (or one axis).  This configuration suggests an
anterior-posterior axis with prefronto-temporal and cingulo-cingulate components.  One might have
predicted this configuration by noting that the anterior regions had high positive loadings on the first
eigenimage (see Figure 1) while the posterior regions had high negative loadings.  Thirdly, within the
anterior and posterior sets of regions certain generic features are evident.  The most striking is the
particular ordering of functional interactions.  For example, the functional connectivity between
posterior cingulate (green) and superior temporal regions (red) is high and similarly for the superior
temporal (red) and posterior temporal regions (blue), yet the posterior cingulate and posterior temporal
regions show very little functional connectivity (they are √2 apart or equivalently subtend 90 degrees at
the origin).

Figure 2
Classical or metric scaling analysis of the functional topography of intrinsic word generation in normal
subjects.  Top:  Anatomical regions categorized according to their colour.  The designation was by reference
to the atlas of Talairach and Tournoux (1988).  Bottom: Regions plotted in a functional space following the
scaling transformation.  In this space the proximity relationships reflect the functional connectivity between
regions.  The colour of each voxel corresponds to the anatomical region it belongs to. The brightness reflects
the local density of points corresponding to voxels in anatomical space.  This density was estimated by
binning the number of voxels in 0.02 'boxes' and smoothing with a Gaussian kernel of full width at half
maximum of 3 boxes.  Each colour was scaled to its maximum brightness.
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   These results are consistent with known anatomical connections.  For example DLPFC - anterior
cingulate connections, DLPFC - temporal connections, bitemporal commissural connections and
mediodorsal thalamic - DLPFC projections have all been demonstrated in non-human primates [16].
The mediodorsal thalamic region and DLPFC are so correlated that one is embedded within the other
(purple area).  This is pleasing given the known thalamo-cortical projections to DLPFC.

III.E. Functional connectivity between systems  -  Partial least squares

   Hitherto we have been dealing with functional connectivity between two voxels.  The same notion
can be extended to functional connectivity between two systems by noting that there is no fundamental
difference between the dynamics of one voxel and the dynamics of a distributed system or pattern.  The
functional connectivity between two systems is simply the correlation or covariance between their
time-dependent activity.  The time-dependent activity of a system or pattern p is given by:

mp = M.p

therefore: ρpq = mqT.mp = qT.MT.M.p 4

where ρpq is the functional connectivity between the systems described by vectors p and q.  Consider
next functional connectivity between two systems in separate parts of the brain, for example the right
and left hemispheres.  Here the data matrices (Mp and Mq) derive from different sets of voxels and
Equ(4) becomes:

ρpq = mqT.mp = qT.MqT.Mp.p 5

    If one wanted to identify the intra-hemispheric systems that showed the greatest inter-hemispheric
functional connectivity (i.e. covariance) one would need to identify the set of vectors p and q that
maximize ρpq in Equ(5).  SVD finds yet another powerful application in doing just this where:

[U S V ] = SVD{MqT.Mp}

such that: MqT.Mp = U.S.VT

and UT.MqT.Mp.V = S 6

   The first columns of U and V represent the singular images that correspond to the two systems with
the greatest amount of functional connectivity (the singular values in the diagonal matrix S).  In other
words SVD of the (generally asymmetric) covariance matrix, based on time-series from two
anatomically separate parts of the brain, yields a series of paired vectors (paired columns of U and V)
that, in a stepdown fashion, define pairs of brain systems that show the greatest functional
connectivity.  See Friston [7] for further details.  This particular application of SVD is also know as
partial least squares and has been proposed for analysis of designed activation experiments where the
two data matrices comprise (i) an imaging time-series and (ii) a set of behavioural or task parameters
[17].  In this application the paired singular vectors correspond to (i) a singular image and (ii) a set of
weights that give the linear combination of task parameters that show the maximal covariance with the
corresponding singular image.  

III.F. Differences in functional connectivity  -  Generalised eigenimages

   In this section we introduce an extension of eigenimage analysis using the solution to the generalized
eigenvalue problem.  This problem involves finding the eigenvector solution that involves two
functional connectivity or covariance matrices and can be used to find the eigenimage that is maximally
expressed in one time-series relative to another.  In other words it can find a pattern of distributed
activity that is most prevalent in one data set and least expressed in another.  The example used to
illustrate this idea is fronto-temporal functional disconnection in schizophrenia.
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   The notion that schizophrenia represents a disintegration or fractionation of the psyche is as old as its
name, introduced by Bleuler [18] to convey a 'splitting' of mental faculties.  Many of Bleuler's primary
processes, such as 'loosening of associations' emphasize a fragmentation and loss of coherent
integration.  In what follows we assume that this mentalistic 'splitting' has a physiological basis, and
furthermore that both the mentalistic and physiological disintegration have precise and specific
characteristics that can be understood in terms of functional connectivity

Figure 3
Generalized eigenimage analysis of the schizophrenic and control subjects.  Top left and right: Positive and
negative loadings of the first eigenimage that is maximally expressed in the normal group and minimally
expressed in the schizophrenic group.   This analysis used 15O PET activation studies of word generations
with six scans per subject and six subjects per group.  The activation study involved three word generation
conditions (word shadowing, semantic categorisation and verbal fluency) each of which was presented twice.
The grey scale is arbitrary and each image has been normalised to the image maximum.  The display format is
standard and represents a maximum intensity projection.  This eigenimage is relatively less expressed in the
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schizophrenic data.  This point is made by expressing the amount of functional connectivity attributable to
the eigenimage in (each subject in) both groups, using the appropriate 2-norm (lower panel).

  The idea is that although localized pathophysiology in cortical areas may be a sufficient explanation
for some signs of schizophrenia it does not suffice as a rich or compelling explanation for the
symptoms of schizophrenia. The conjecture is that symptoms such as hallucinations and delusions are
better understood in terms of abnormal interactions or impaired integration between different cortical
areas.  This dysfunctional integration,  expressed at a physiological level as abnormal functional
connectivity, is measurable with neuroimaging and observable at a cognitive level as a failure to
integrate perception and action that manifests as clinical symptoms.  The distinction between a
regionally specific pathology and a pathology of interaction can be seen in terms of a first order effect
(e.g. hypofrontality) and a second order effect that only exists in the relationship between activity in the
prefrontal cortex and some other (e.g. temporal) region.  In a similar way psychological abnormalities
can be regarded as first order (e.g. a poverty of intrinsically cued behaviour in psychomotor poverty) or
second order (e.g. a failure to integrate intrinsically cued behaviour and perception in reality distortion).

III.F.1 The generalized eigenvalue solution

  Suppose that we want to find a pattern embodying the greatest amount of functional connectivity in
normal subjects that, relatively speaking, was not evident in schizophrenia (eg. fronto-temporal
covariance).   To achieve this result we identify an eigenimage that reflects the most functional
connectivity in normal subjects relative to a schizophrenic group (d).  This eigenimage is obtained by
using a generalized eigenvector solution:

C1-1.C2.d1 = d.λ
or C2.d1 = C1d.λ

where C1 and C2 are the two functional connectivity matrices.  The generalized eigenimage (d) is
essentially a single pattern that maximizes the ratio of the 2-norm measure [Equ(1)] when applied to
C1 and C2.  Generally speaking these matrices could represent data from two [groups of] subjects or
from the same subject[s] scanned under different conditions.  In the present example we use connectivity
matrices from normal subjects and people with schizophrenia showing pronounced psychomotor
poverty.

  The data were acquired from two groups of six subjects.  Each subject was scanned six times during
the performance of three word generation tasks  (A B C C B A).  Task A was a verbal fluency task,
requiring subjects to respond with a word that began with a heard letter.  Task B was a semantic
categorisation task in which subjects responded "man made" or "natural",  depending on a heard noun.
Task C was a word shadowing task in which subjects simply repeated what was heard.  In the current
context the detailed nature of the tasks is not very important.  They were used to introduce variance and
covariance in activity that could support an analysis of functional connectivity. 

    The groups comprised six normal subjects and six schizophrenic patients.  The schizophrenic
subjects produced less than 24 words on a standard (one minute) FAS verbal fluency task (generating
words beginning with the letters 'F', 'A' and 'S').  The results of a generalized eigenimage analysis are
presented in Figure 3. As expected the pattern that best captures differences between the two groups
involves prefrontal and temporal cortices.  Negative correlations between left DLPFC and bilateral
superior temporal regions are found (Figure 3, upper panels).  The amount to which this pattern was
expressed in each individual group is shown in the lower panel of Figure 5 using the appropriate 2-
norm  || d.C.d ||.  It is seen that this eigenimage, whilst prevalent in normal subjects, is uniformly
reduced in schizophrenic subjects.

III.G. Summary

   In the preceding sections we have seen how eigenimages can be framed in relation to functional
connectivity and the relationship between eigenimage analysis, multidimensional scaling, partial least
squares and generalized eigenimage analysis.  All these techniques are essentially descriptive, in that



11

they do not allow one to make any statistical inferences about the characterizations that obtain.  In the
second half of this chapter we turn to multivariate techniques that do embody statistical inference and
explicit hypothesis testing.  We will introduce canonical images, that can be thought of as statistically
informed eigenimages pertaining to a particular effect introduced by experimental design.  We have seen
that patterns can be identified using the generalised eigenvalue solution that are maximally expressed in
one covariance structure relative to another.  Consider the advantage of using this approach where the
first covariance matrix reflected the effects we were interested in, and the second embodied covariances
due to error.  This application generates canonical images, and is considered in the following sections.

IV. ManCova and canonical image analysis

IV.A  Introduction

      In the following sections we review a general multivariate approach to the analysis of functional
imaging studies.  This analysis uses standard multivariate techniques to make statistical inferences
about activation effects and to describe important features of these effects.  Specifically we introduce
multivariate analysis of covariance (ManCova) and canonical variates analysis (CVA) to characterize
activation effects and address special issues that ensue.  This approach characterises the brain's response
in terms of functionally connected and distributed systems in a similar fashion to eigenimage analysis.
Eigenimages figure in the current analysis in the following way.  A problematic issue in multivariate
analysis of functional imaging data is that the number of samples (i.e. scans) is usually very small in
relation to the number of components (i.e. voxels) of the observations.  This issue is resolved by
analyzing the data, not in terms of voxels, but in terms of eigenimages, because the number of
eigenimages is much smaller than the number of voxels.  The importance of multivariate analysis that
ensues can be summarised as follows:  (i) Unlike eigenimage analysis it provides for statistical
inferences (based on a p value) about the significance of the brain's response in terms of some
hypothesis. (ii) The approach implicitly takes account of spatial correlations in the data without
making any assumptions.  (iii) The canonical variates analysis produces generalized eigenimages
(canonical images) that capture the activation effects, while suppressing the effects of noise or error.
(iv) The theoretical basis is well established and can be found in most introductory texts on multivariate
analysis.

   Although useful, in a descriptive sense, eigenimage analysis and related approaches are not generally
considered as 'statistical' methods that can be used to make statistical inferences; they are mathematical
devices that simply identify prominent patterns of correlations or functional connectivity.  It must be
said, however, that large sample, asymptotic, multivariate normal theory could be used to make some
inferences about the relative contributions of each eigenimage (e.g. tests for non-sphericity) if a
sufficient number of scans were available.  In what follows we observe that multivariate analysis of
covariance (ManCova) with canonical variates analysis, combines many of the attractive features of
statistical parametric mapping and eigenimage analysis.  Unlike statistical parametric mapping,
ManCova is multivariate.  In other words it considers as one observation all voxels in a single scan.
The importance of this multivariate approach is that effects due to activations, confounding effects and
error effects are assessed both in terms of effects at each voxel and interactions among voxels.  This
feature means one does not have to assume anything about spatial correlations (c.f. stationariness with
Gaussian field models) to assess the significance of an activation effect.  Unlike statistical parametric
mapping these correlations are explicitly included in an analysis.  The price one pays for adopting a
multivariate approach is that inferences cannot be made about regionally specific changes (c.f. statistical
parametric mapping).  This is because the inference pertains to all the components (voxels) of a
multivariate variable (not a particular voxel or set of voxels).

   In general, multivariate analyses are implemented in two steps.  First, the significance of a
hypothesised effect is assessed in terms of a p-value and secondly, if justified, the exact nature of the
effect is determined.  The analysis here conforms to this two stage procedure.  Then the brain's response
is assessed to be significant using ManCova, the nature of this response remains to be characterised.
We propose that canonical variate analysis (CVA) is an appropriate way to do this.  The canonical
images obtained with CVA are similar to eigenimages but are based on both the activation and error
effects.   CVA is closely related to de-noising techniques in EEG and MEG time-series analyses that
use a generalised eigenvalue solution.   Another way of looking at canonical images is to think of them
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as eigenimages that reflect functional connectivity due to activations, when spurious correlations due to
error discounting.

IV.B. Dimension reduction and eigenimages

   The first step in multivariate analysis is to ensure that the dimensionality (number of components or
voxels) of the data is smaller than the number of observations.  Clearly for images this is not the case,
because there are more voxels than scans;  therefore the data have to be transformed.  The dimension
reduction proposed here is straightforward and uses the scan-dependent expression X of eigenimages as a
reduced set of components for each multivariate observation (scan).  Where:

[U S V ] = SVD{M}

and X = U.S 7

As above M is a large matrix of corrected voxel values with one column for each voxel and one row for
each scan.  Here 'corrected' implies mean correction and removal of any confounds using linear
regression.  The eigenimages constitute the columns of U, another unitary orthonormal matrix, and
their expression over scans corresponds to the columns of the matrix X.  X has one column for each
eigenimage and one row for each scan.  In our work we use only the J columns of X and U associated
with eigenvalues greater than unity (after normalising each eigenvalue by the average eigenvalue).   

IV.C The general linear model revisited

   Recall the general linear model from  previous chapters:

X = Gß + e 8

where the errors e are assumed to be independent and identically normally distributed.  The design
matrix G has one column for every effect (factor or covariate) in the model.  The design matrix can
contain both covariates and indicator variables reflecting an experimental design.  ß is the parameter
matrix with one column vector of parameters for each mode.   Each column of G has an associated
unknown parameter.  Some of these parameters will be of interest, the remaining parameters will not.
As before we will split  G (and ß) into two partitions  G  = [H D]  and similarly ß  = [αT γ T]T  with
estimators  b = [aT gT]T.   Here effects of interest are denoted by H and confounding effects of no
interest by D.  Equ(8) can be expanded:

X = H.α      +      D γ      +       e 9

where H represents a matrix of 0s or 1s depending on the level or presence of some interesting
condition or treatment effect (e.g. the presence of a particular cognitive component) or the columns of
H might contain covariates of interest that could explain the observed variance in X (e.g. dose of
apomorphine or 'time on target').  D  corresponds to a matrix of indicator variables denoting effects that
are not of any interest (e.g. of being a particular subject or block effect) or covariates of no interest
(i.e. 'nuisance variables' such as global activity or confounding time effects).  

IV.D. Statistical inference 

   Significance is assessed by testing the null hypothesis that the effects of interest do not significantly
reduce the error variance when compared to the remaining effects alone (or alternatively the null
hypothesis that α is zero).   The null hypothesis can be tested in the following way.  The sum of
squares and products matrix (SSPM) due to error R(Ω ) is obtained from the difference between actual
and estimated values of X:

R = R(Ω ) = (X - G.b)T(X - G.b) 10

where the sums of squares and products due to effects of interest is given by:
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T = (H.a)T.(H.a) 11

   The error sum of squares and products under the null hypothesis R(Ω0)  i.e.  after discounting the
effects of interest  (H) are given by:

R(Ω0)      = (X - D.g)T.(X - D.g) 12

   Clearly if D does not exist this simply reduces to the sum of squares and products of the response
variable (XTX).    The significance can now be tested with:

Λ = | R(Ω ) | / | R(Ω0) | 13

where Λ is Wilk's statistic (known as Wilk's Lambda).  A special case of this test is Hotelling's T2 test
and applies when H simply compares one condition with another [19].   Under the null hypothesis,
after transformation, Λ has a χ2 distribution with degrees of freedom J.h.  The transformation is given
by:

 -(r - ((J - h + 1)/2)).log(Λ) ~ χ2(J.h)

where r are the degrees of freedom associated with error terms, equal to the number of scans (I) minus
the number of effects modelled = I - rank(G).  J is the number of eigenimages in the J-variate response
variable X and h are the degrees of freedom associated with effects of interest = rank(H).

IV.E. Characterising the effect

   Having established that the effects of interest are significant (e.g. differences among two or more
activation conditions) the final step is to characterize these effects in terms of their spatial topography.
This characterization uses canonical variates analysis or CVA.  The objective is to find a linear
combination (compound or contrast) of the components of X, in this case the eigenimages, that best
express the activation effects when compared to error effects.  More exactly we want to find c1 such that
the variance ratio:

(c1T.H.c1) / (c1T.R. c1)

is maximised [19].  Let Z1 = X.c1 where Z1 is the first canonical variate and c1 is a canonical image
(defined in the space of the spatial modes) that maximises this ratio.  c2 is the second canonical image
that maximises the ratio subject to the constraints of Cov{c1  c2} = 0 (and so on).  The matrix of
canonical images c = [c1 c2 ...cJ] is given by solution of the generalised eigenvalue problem:

T.c = R.c.Θ 14

where Θ is a diagonal matrix of eigenvalues.  Voxel-space canonical images C are obtained by rotating
the canonical image in the columns of c back into voxel-space with the original eigenimages V:

C = V.c 15

The columns of C now contain the voxel values of the canonical images.  The kth column of C (the
kth canonical image) has an associated canonical value equal to the kth leading diagonal element of Θ
times r/h.  Note that the 'activation' effect is a multivariate one, with J components or canonical
images.  Normally only a few of these components have large canonical values and only these need be
reported.  There are procedures based on distributional approximations of Θ that allow inferences about
the dimensionality of a response (number of canonical images).  We refer the interested reader to
Chatfield and Collins [19] for further details.
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IV.F. Relationship to Eigenimage Analysis

   When applied to adjusted data eigenimages [2] correspond to the eigenvectors of T.  These have an
interesting relationship to the canonical images:  On rearranging Equ(14):

R-1.T.c = c.Θ

we note that the canonical images are eigenvectors of  R-1.T.   In other words an eigenimage analysis
of an activation study returns the eigenvectors that express the most variance due to the effects of
interest  -  eig(T).  A canonical image, on the other hand, expresses the greatest amount of variance due
to the effects of interest relative to error  -  eig(R-1.T).   In this sense a CVA can be considered an
eigenimage analysis that is 'informed' by the estimates of error  effects.

IV.G. An illustrative application

   In this section we consider an application of the above theory to the word generation study in normal
subjects used in previous sections.  We assessed the significance of condition-dependent effects by
treating each of the 12 scans as a different condition.  Note that we do not consider the 6 word
generation (or word shadowing) conditions as replications of the same condition.  In other words the
first time one performs a word generation task is a different condition from the second time and so on.
The (alternative) hypothesis adopted here states that there is a significant difference among the 12
conditions, but does not constrain the nature of this difference to a particular form.  The most important
differences will emerge from the CVA.  Clearly one might hope that these differences will be due to
word generation, but they might not be. This hypothesis should be compared with a more constrained
hypothesis that considers the conditions as six replications of word shadowing and word generation.
This latter hypothesis is more directed and explicitly compares word shadowing with word generation.
This comparison could be tested in a single subject.  The point is that the generality afforded by the
current framework allows one to test very constrained (i.e. specific) hypotheses or rather general
hypotheses about some unspecified activation effect.  We choose the latter case here because it places
more emphasis on canonical images as descriptions of what has actually occurred during the
experiment.

  The design matrix partition for effects of interest H has 12 columns representing the 12 different
conditions.  We designated subject effects, time and global activity as uninteresting confounds D.  The
corrected data were reduced to 60 eigenvectors as described above.  The first 14 eigenvectors had
(normalized) eigenvalues greater than unity and were used in the subsequent analysis.  The resulting
matrix X, with 60 rows (one for each scan) and 14 columns (one for each eigenimage) was subject to
ManCova.  The significance of the condition effects was assessed with Wilk's Lambda.  The threshold
for condition or activation effects was set at p = 0.02.  In other words the probability of there being no
differences among the 12 conditions was 2%.

IV.H. Canonical Variates Analysis

   The first canonical image and its expression in each condition is shown in Figure 4.  The upper
panels show this system to include anterior cingulate and Broca's area, with more moderate expression
in the left posterior inferotemporal regions (right).  The positive components of this canonical image
(left) implicate ventro-medial prefrontal cortex and bitemporal regions (right greater than left).  One
important aspect of these canonical images is their highly distributed yet structured nature, reflecting
the distributed integration of many brain areas.   The canonical variate expressed in terms of mean
condition effects is seen in the lower panel of Figure 4.  This variate is simply a.c1.  It is pleasing to
note that the first canonical variate corresponds to the difference between word shadowing and verbal
fluency.  
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Figure 4
Top: The first canonical image displayed as maximum intensity projections of the positive and negative
components.  The display format is standard and provides three views of the brain from the front, the back and
the right hand side.  The grey scale is arbitrary and the space conforms to that described in the atlas of
Talairach and Tournoux (1988).  Bottom:  The expression of the first canonical image (i.e. the canonical
variate) averaged over conditions. The odd conditions correspond to word shadowing and the even conditions
correspond to word generation.  This canonical variate is clearly sensitive to the differences evoked by these
two tasks.

    Recall that the eigenimage in Figure 1 reflects the main pattern of correlations evoked by the mean
condition effects and should be compared with the first canonical image in Figure 4.  The differences
between these characterisations of activation effects are informative:  The eigenimage is totally
insensitive to the reliability or error attributable to differential activation from subject to subject
whereas the canonical image does reflect these variations.  For example the absence of the posterior
cingulate in the canonical image and its relative prominence in the eigenimage suggests that this region
is implicated in some subjects but not in others.  The subjects that engage the posterior cingulate must
do so to some considerable degree because the average effects (represented by the eigenimage) are quite
substantial.  Conversely the medial prefrontal cortical deactivations are a much more generic feature of
activation effects than would have been inferred on the basis of the eigenimage analysis.  These
observations beg the question 'which is the best characterization of functional anatomy?  Obviously
there is no simple answer but the question speaks to an important point.  A canonical image
characterises a response relative to error, by partitioning the observed variance (in the J larger spatial
modes) into effects of interest and a residual variation about these effects (error).  This partitioning is
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determined by experimental design, a hypothesis, and the inferences that are sought.  An eigenimage
does not embody any concept of error and is not constrained by any hypothesis.   

IV.I. Summary

   These sections have described a multivariate approach to the analysis of functional imaging studies.
This analysis uses standard multivariate techniques to make statistical inferences about activation effects
and to describe the important features of these effects.  More specifically the proposed analysis uses
multivariate analysis of covariance ManCova with Wilk's Lambda to test for specific effects of interest
(e.g. differences among activation conditions) and canonical variates analysis (CVA) to characterize
these distributed responses.  The generality of this approach is assured by the generality of the linear
model used.  The design and inferences sought are embodied in the design matrix and can, in principle,
accommodate most parametric statistical analyses.  This multivariate approach differs fundamentally
from statistical parametric mapping, because the concept of a separate voxel or region of interest ceases
to have meaning.  One scan represents one observation (not 105 voxels).  In this sense the statistical
inference is about the whole image volume not any component of it.  This feature precludes statistical
inferences about regional effects made without reference to changes elsewhere in the brain.  This
fundamental difference ensures that SPM and multivariate approaches are likely to be regarded as distinct
and complementary approaches to functional imaging data.

   At the time of writing the extension of the ManCova/CVA approach described above to serially
correlated fMRI time-series remains problematic.  Recent work by Keith Worsley and Jean-Baptiste
Poline (personal communication) has focussed on the sum of F ratios in an SPM{F} as an omnibus
test and a characterization, of multivariate effects, based on an extensions of orthogonalized partial least
squares that accommodates the serial or temporal correlations extant in fMRI data.
   There are many potential applications of the analysis presented above.  One particularly interesting
application concerns the ability to test various models in a comprehensive and direct fashion.  Hitherto
there has been no 'omnibus' test for a particular neurophysiological response or model of this response
that did not rely on some assumptions about the multivariate structure of the data (e.g. Gaussian
Fields).  Wilk's statistic could provide this test.  For example the controversy over the appropriate
model for removing confounding effects of global activity on regional effects has been dogged by the
lack of any compelling comparative assessment of different models.  Wilk's statistic could, in principle,
be used to resolve this issue by explicitly testing hierarchies of models (a succession of extra effects
modelled in the design matrix).

   An attractive neuroscience application of the multivariate approach considered here pertains to the
significance of interaction terms in a design matrix.  Cognitive subtraction is based on the assumption
that extra components of a task can be inserted without affecting pre-exiting components.  In order to
verify the assumptions behind cognitive subtraction one needs to demonstrate that these interactions can
be ignored when modelling the brain's response.  This can be effected simply and rigorously using
Wilk's statistic to show that interaction terms in the design matrix are not significant (here one would
treat the interaction terms as effects of interest and the remaining effects of no interest).  Of course if
the interactions were significant this leads to a richer understanding of functional anatomy and provides
a basis for more sophisticated experimental designs.  We take up this theme again in a subsequent
chapter.
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