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I. INTRODUCTION 
 

This chapter previews the ideas and procedures used in the analysis of brain imaging data.  It 

serves to introduce the main themes covered, in depth, by the following chapters.  The 

material presented in this chapter also provides a sufficient background to understand the 

principles of experimental design and data analysis referred to by the empirical chapters in 

the first part of this book.  The following chapters on theory and analysis have been 

partitioned into four sections.  The first three sections conform to the key stages of analyzing 

imaging data sequences; computational neuroanatomy, modeling and inference.  These 

sections focus on identifying, and making inferences about, regionally specific effects in the 

brain.  The final section addresses the integration and interactions among these regions 

through analyses of functional and effective connectivity. 

   Characterizing a regionally specific effect rests on estimation and inference.  Inferences in 

neuroimaging may be about differences expressed when comparing one group of subjects to 

another or, within subjects, changes over a sequence of observations.  They may pertain to 

structural differences (e.g. in voxel-based morphometry - Ashburner and Friston 2000) or 

neurophysiological indices of brain functions (e.g. fMRI).  The principles of data analysis are 

very similar for all of these applications and constitute the subject of this and subsequent 

chapters.  We will focus on the analysis of fMRI time-series because this covers most of the 

issues that are likely to be encountered in other modalities.  Generally, the analysis of 

structural images and PET scans is simpler because they do not have to deal with correlated 

errors, from one scan to the next. 

 

A About this chapter 

A general issue, in data analysis, is the relationship between the neurobiological hypothesis 

one posits and the statistical models adopted to test that hypothesis.  This chapter begins by 

reviewing the distinction between functional specialization and integration and how these 

principles serve as the motivation for most analyses of neuroimaging data. We will address 

the design and analysis of neuroimaging studies from these distinct perspectives but note that 

they have to be combined for a full understanding of brain mapping results. 

   Statistical parametric mapping is generally used to identify functionally specialized brain 

responses and is the most prevalent approach to characterizing functional anatomy and 

disease-related changes.  The alternative perspective, namely that provided by functional 



integration, requires a different set of [multivariate] approaches that examine the relationship 

among changes in activity in one brain area others.  Statistical parametric mapping is a voxel-

based approach, employing classical inference, to make some comment about regionally 

specific responses to experimental factors.  In order to assign an observed response to a 

particular brain structure, or cortical area, the data must conform to a known anatomical 

space.  Before considering statistical modeling, this chapter deals briefly with how a time-

series of images are realigned and mapped into some standard anatomical space (e.g. a 

stereotactic space).  The general ideas behind statistical parametric mapping are then 

described and illustrated with attention to the different sorts of inferences that can be made 

with different experimental designs. 

   fMRI is special, in the sense that the data lend themselves to a signal processing 

perspective.  This can be exploited to ensure that both the design and analysis are as efficient 

as possible.  Linear time invariant models provide the bridge between inferential models 

employed by statistical mapping and conventional signal processing approaches.  Temporal 

autocorrelations in noise processes represent another important issue, specific to fMRI, and 

approaches to maximizing efficiency in the context of serially correlated errors will be 

discussed.  Nonlinear models of evoked hemodynamics are considered here because they can 

be used to indicate when the assumptions behind linear models are violated.  fMRI can 

capture data very fast (in relation to other imaging techniques), affording the opportunity to 

measure event-related responses.  The distinction between event and epoch-related designs 

will be discussed and considered in relation to efficiency and the constraints provided by 

nonlinear characterizations. 

   Before considering multivariate analyses we will close the discussion of inferences, about 

regionally specific effects, by looking at the distinction between fixed and random-effect 

analyses and how this relates to inferences about the subjects studied or the population from 

which these subjects came.  The final section will deal with functional integration using 

models of effective connectivity and other multivariate approaches. 

 

 

II.  FUNCTIONAL SPECIALIZATION AND INTERGATION 
 

The brain appears to adhere to two fundamental principles of functional organization, 

functional integration and functional specialization, where the integration within and among 

specialized areas is mediated by effective connectivity.  The distinction relates to that 



between localisationism and [dis]connectionism that dominated thinking about cortical 

function in the nineteenth century.  Since the early anatomic theories of Gall, the 

identification of a particular brain region with a specific function has become a central theme 

in neuroscience.  However functional localization per se was not easy to demonstrate: For 

example, a meeting that took place on August 4th 1881 addressed the difficulties of 

attributing function to a cortical area, given the dependence of cerebral activity on underlying 

connections (Phillips et al 1984).  This meeting was entitled "Localization of function in the 

cortex cerebri".  Goltz (1881), although accepting the results of electrical stimulation in dog 

and monkey cortex, considered that the excitation method was inconclusive, in that 

movements elicited might have originated in related pathways, or current could have spread 

to distant centers.  In short, the excitation method could not be used to infer functional 

localization because localisationism discounted interactions, or functional integration among 

different brain areas.  It was proposed that lesion studies could supplement excitation 

experiments.  Ironically, it was observations on patients with brain lesions some years later 

(see Absher and Benson 1993) that led to the concept of disconnection syndromes and the 

refutation of localisationism as a complete or sufficient explanation of cortical organization.  

Functional localization implies that a function can be localized in a cortical area, whereas 

specialization suggests that a cortical area is specialized for some aspects of perceptual or 

motor processing, and that this specialization is anatomically segregated within the cortex.  

The cortical infrastructure supporting a single function may then involve many specialized 

areas whose union is mediated by the functional integration among them.  In this view 

functional specialization is only meaningful in the context of functional integration and vice 

versa.   

 

A Functional specialization and segregation 

The functional role played by any component (e.g. cortical area, subarea or neuronal 

population) of the brain is largely defined by its connections.  Certain patterns of cortical 

projections are so common that they could amount to rules of cortical connectivity.  "These 

rules revolve around one, apparently, overriding strategy that the cerebral cortex uses - that 

of functional segregation" (Zeki 1990).  Functional segregation demands that cells with 

common functional properties be grouped together.  This architectural constraint necessitates 

both convergence and divergence of cortical connections.  Extrinsic connections among 

cortical regions are not continuous but occur in patches or clusters.  This patchiness has, in 



some instances, a clear relationship to functional segregation.  For example, V2 has a 

distinctive cytochrome oxidase architecture, consisting of thick stripes, thin stripes and inter-

stripes.  When recordings are made in V2, directionally selective (but not wavelength or 

color selective) cells are found exclusively in the thick stripes.  Retrograde (i.e. backward) 

labeling of cells in V5 is limited to these thick stripes.  All the available physiological 

evidence suggests that V5 is a functionally homogeneous area that is specialized for visual 

motion.  Evidence of this nature supports the notion that patchy connectivity is the 

anatomical infrastructure that mediates functional segregation and specialization.  If it is the 

case that neurons in a given cortical area share a common responsiveness (by virtue of their 

extrinsic connectivity) to some sensorimotor or cognitive attribute, then this functional 

segregation is also an anatomical one.  Challenging a subject with the appropriate 

sensorimotor attribute or cognitive process should lead to activity changes in, and only in, the 

area of interest.  This is the anatomical and physiological model upon which the search for 

regionally specific effects is based. 

   The analysis of functional neuroimaging data involves many steps that can be broadly 

divided into; (i) spatial processing, (ii) estimating the parameters of a statistical model and 

(iii) making inferences about those parameter estimates with appropriate statistics (see Figure 

1).  We will deal first with spatial transformations: In order to combine data from different 

scans from the same subject, or data from different subjects it is necessary that they conform 

to the same anatomical frame of reference.  The spatial transformations and morphological 

operations required are dealt with in depth in Section I (Part II). 

 

 

III. SPATIAL REALIGNMENT AND NORMALISATION 

(SECTION I: COMPUTATIONAL NEUROANATOMY) 

 

The analysis of neuroimaging data generally starts with a series of spatial transformations.  

These transformations aim to reduce unwanted variance components in the voxel time-series 

that are induced by movement or shape differences among a series of scans. Voxel-based 

analyses assume that the data from a particular voxel all derive from the same part of the 

brain.  Violations of this assumption will introduce artifactual changes in the voxel values 

that may obscure changes, or differences, of interest.  Even single-subject analyses proceed 



in a standard anatomical space, simply to enable reporting of regionally-specific effects in a 

frame of reference that can be related to other studies. 

   The first step is to realign the data to 'undo' the effects of subject movement during the 

scanning session.  After realignment the data are then transformed using linear or nonlinear 

warps into a standard anatomical space.  Finally, the data are usually spatially smoothed 

before entering the analysis proper. 

 

A  Realignment (Chapter 2: Rigid body registration) 

Changes in signal intensity over time, from any one voxel, can arise from head motion and 

this represents a serious confound, particularly in fMRI studies.  Despite restraints on head 

movement, co-operative subjects still show displacements of up several millimeters.  

Realignment involves (i) estimating the 6 parameters of an affine 'rigid-body' transformation 

that minimizes the [sum of squared] differences between each successive scan and a 

reference scan (usually the first or the average of all scans in the time series) and (ii) 

applying the transformation by re-sampling the data using tri-linear, sinc or spline 

interpolation.  Estimation of the affine transformation is usually effected with a first order 

approximation of the Taylor expansion of the effect of movement on signal intensity using 

the spatial derivatives of the images (see below).  This allows for a simple iterative least 

square solution that corresponds to a Gauss-Newton search (Friston et al 1995a).  For most 

imaging modalities this procedure is sufficient to realign scans to, in some instances, a 

hundred microns or so (Friston et al 1996a).  However, in fMRI, even after perfect 

realignment, movement-related signals can still persist.  This calls for a further step in which 

the data are adjusted for residual movement-related effects. 

 

B Adjusting for movement related effects in fMRI 

In extreme cases as much as 90% of the variance, in fMRI time-series, can be accounted for 

by the effects of movement after realignment (Friston et al 1996a).  Causes of these 

movement-related components are due to movement effects that cannot be modeled using a 

linear affine model.  These nonlinear effects include; (i) subject movement between slice 

acquisition,  (ii) interpolation artifacts (Grootoonk et al 2000),  (iii) nonlinear distortion due 

to magnetic field inhomogeneities (Andersson et al 2001) and (iv) spin-excitation history 

effects (Friston et al 1996a).  The latter can be pronounced if the TR (repetition time) 

approaches T
1
 making the current signal a function of movement history.  These multiple 



effects render the movement-related signal (y) a nonlinear function of displacement (x) in the 

nth and previous scans ),,( 1 K−= nnn xxfy .  By assuming a sensible form for this function, its 

parameters can be estimated using the observed time-series and the estimated movement 

parameters x from the realignment procedure.  The estimated movement-related signal is then 

simply subtracted from the original data.  This adjustment can be carried out as a pre-

processing step or embodied in model estimation during the analysis proper.  The form for 

ƒ(x), proposed in Friston et al (1996a), was a nonlinear auto-regression model that used 

polynomial expansions to second order.  This model was motivated by spin-excitation history 

effects and allowed displacement in previous scans to explain the current movement-related 

signal.  However, it is also a reasonable model for many other sources of movement-related 

confounds.  Generally, for TRs of several seconds, interpolation artifacts supersede 

(Grootoonk et al 2000) and first order terms, comprising an expansion of the current 

displacement in terms of periodic basis functions, are sufficient. 

   This subsection has considered spatial realignment.  In multislice acquisition different 

slices are acquired at slightly different times.  This raises the possibility of temporal 

realignment to ensure that the data from any given volume were sampled at the same time.  

This is usually performed using sinc interpolation over time and only when (i) the temporal 

dynamics of evoked responses are important and (ii) the TR is sufficiently small to permit 

interpolation.  Generally timing effects of this sort are not considered problematic because 

they manifest as artifactual latency differences in evoked responses from region to region.  

Given that biophysical latency differences may be in the order of a few seconds, inferences 

about these differences are only made when comparing different trial types at the same voxel.  

Provided the effects of latency differences are modelled, this renders temporal realignment 

unnecessary in most instances. 

 

C Spatial Normalization 

(Chapter 3: Spatial Normalization using basis functions) 

After realigning the data, a mean image of the series, or some other co-registered (e.g. a T1-

weighted) image, is used to estimate some warping parameters that map it onto a template 

that already conforms to some standard anatomical space (e.g. Talairach and Tournoux 

1988).  This estimation can use a variety of models for the mapping, including: (i) a 12-

parameter affine transformation, where the parameters constitute a spatial transformation 

matrix, (ii) low frequency basis spatial functions (usually a discrete cosine set or 



polynomials), where the parameters are the coefficients of the basis functions employed and 

(ii) a vector field specifying the mapping for each control point (e.g. voxel).  In the latter 

case, the parameters are vast in number and constitute a vector field that is bigger than the 

image itself.  Estimation of the parameters of all these models can be accommodated in a 

simple Bayesian framework, in which one is trying to find the deformation parameters θ  that 

have the maximum posterior probability )|( yp θ  given the data y, where  

)()|()()|( θθθ pypypyp = . Put simply, one wants to find the deformation that is most 

likely given the data.  This deformation can be found by maximizing the probability of 

getting the data, assuming the current estimate of the deformation is true, times the 

probability of that estimate being true.  In practice the deformation is updated iteratively 

using a Gauss-Newton scheme to maximize )|( yp θ .  This involves jointly minimizing the 

likelihood and prior potentials )|(ln)|( θθ ypyH = and )(ln)( θθ pH = .  The likelihood 

potential is generally taken to be the sum of squared differences between the template and 

deformed image and reflects the probability of actually getting that image if the 

transformation was correct.  The prior potential can be used to incorporate prior information 

about the likelihood of a given warp. Priors can be determined empirically or motivated by 

constraints on the mappings.  Priors play a more essential role as the number of parameters 

specifying the mapping increases and are central to high dimensional warping schemes 

(Ashburner et al 1997 and Chapter 4: High-dimensional image warping). 

   In practice most people use an affine or spatial basis function warps and iterative least 

squares to minimize the posterior potential. A nice extension of this approach is that the 

likelihood potential can be refined and taken as difference between the index image and the 

best [linear] combination of templates (e.g. depicting gray, white, CSF and skull tissue 

partitions).  This models intensity differences that are unrelated to registration differences 

and allows different modalities to be co-registered (see Figure 2). 

   A special consideration is the spatial normalization of brains that have gross anatomical 

pathology.  This pathology can be of two sorts (i) quantitative changes in the amount of a 

particular tissue compartment (e.g. cortical atrophy) or (ii) qualitative changes in anatomy 

involving the insertion or deletion of normal tissue compartments (e.g. ischemic tissue in 

stroke or cortical dysplasia).  The former case is, generally, not problematic in the sense that 

changes in the amount of cortical tissue will not affect its optimum spatial location in 

reference to some template (and, even if it does, a disease-specific template is easily 

constructed).  The second sort of pathology can introduce substantial 'errors' in the 



normalization unless special precautions are taken.  These usually involve imposing 

constraints on the warping to ensure that the pathology does not bias the deformation of 

undamaged tissue.  This involves 'hard' constraints implicit in using a small number of basis 

functions or 'soft' constraints implemented by increasing the role of priors in Bayesian 

estimation.  An alternative strategy is to use another modality that is less sensitive to the 

pathology as the basis of the spatial normalization procedure or to simply remove the 

damaged region from the estimation by masking it out. 

 

D Co-registration of functional and anatomical data 

It is sometimes useful to co-register functional and anatomical images.  However, with echo-

planar imaging, geometric distortions of T2* images, relative to anatomical T1-weighted data, 

are a particularly serious problem because of the very low frequency per point in the phase 

encoding direction.  Typically for echo-planar fMRI magnetic field inhomogeneity, sufficient 

to cause dephasing of 2π through the slice, corresponds to an in-plane distortion of a voxel.  

'Unwarping' schemes have been proposed to correct for the distortion effects (Jezzard and 

Balaban 1995).  However, this distortion is not an issue if one spatially normalizes the 

functional data.   

 

E  Spatial smoothing 

The motivations for smoothing the data are fourfold.  (i) By the matched filter theorem, the 

optimum smoothing kernel corresponds to the size of the effect that one anticipates.  The 

spatial scale of hemodynamic responses is, according to high-resolution optical imaging 

experiments, about 2 to 5mm.  Despite the potentially high resolution afforded by fMRI an 

equivalent smoothing is suggested for most applications.  (ii) By the central limit theorem, 

smoothing the data will render the errors more normal in their distribution and ensure the 

validity of inferences based on parametric tests.  (iii) When making inferences about regional 

effects using Gaussian random field theory (see below) the assumption is that the error terms 

are a reasonable lattice representation of an underlying and smooth Gaussian field.  This 

necessitates smoothness to be substantially greater than voxel size.  If the voxels are large, 

then they can be reduced by sub-sampling the data and smoothing (with the original point 

spread function) with little loss of intrinsic resolution.  (iv) In the context of inter-subject 

averaging it is often necessary to smooth more (e.g. 8 mm in fMRI or 16mm in PET) to 



project the data onto a spatial scale where homologies in functional anatomy are expressed 

among subjects. 

 

F  Summary 

Spatial registration and normalization can proceed at a number of spatial scales depending on 

how one parameterizes variations in anatomy.  We have focussed on the role of 

normalization to remove unwanted differences to enable subsequent analysis of the data.  

However, it is important to note that the products of spatial normalization are bifold; a 

spatially normalized image and a deformation field (see Figure 3).  This deformation field 

contains important information about anatomy, in relation to the template used in the 

normalization procedure.  The analysis of this information forms a key part of computational 

neuroanatomy.  The tensor fields can be analyzed directly (deformation-based morphometry) 

or used to create maps of specific anatomical attributes (e.g. compression, shears etc.).  These 

maps can then be analyzed on a voxel by voxel basis (tensor-based morphometry).  Finally, 

the normalized structural images can themselves be subject to satirical analysis after some 

suitable segmentation procedure (see Chapter 5: Image segmentation).  This is known as 

voxel-based morphometry.  Voxel-based morphometry is the most commonly used voxel-

based neuroanatomical procedure and can easily be extended to incorporate tensor-based 

approaches.  See Chapter 6: Morphometry, for more details. 

 

 

IV.  STATISTICAL PARAMETRIC MAPPING 

(SECTIONS II AND III, MODELING AND INFERENCE) 
 

Functional mapping studies are usually analyzed with some form of statistical parametric 

mapping.  Statistical parametric mapping entails the construction of spatially extended 

statistical processes to test hypotheses about regionally specific effects (Friston et al 1991).  

Statistical parametric maps (SPMs) are image processes with voxel values that are, under the 

null hypothesis, distributed according to a known probability density function, usually the 

Student's T or F distributions.  These are known colloquially as T- or F-maps.  The success of 

statistical parametric mapping is due largely to the simplicity of the idea.  Namely, one 

analyses each and every voxel using any standard (univariate) statistical test.  The resulting 

statistical parameters are assembled into an image - the SPM.  SPMs are interpreted as 

spatially extended statistical processes by referring to the probabilistic behavior of Gaussian 



fields (Adler 1981, Worsley et al 1992, Friston et al 1994a, Worsley et al 1996).  Gaussian 

random fields model both the univariate probabilistic characteristics of a SPM and any non-

stationary spatial covariance structure.  'Unlikely' excursions of the SPM are interpreted as 

regionally specific effects, attributable to the sensorimotor or cognitive process that has been 

manipulated experimentally. 

  Over the years statistical parametric mapping has come to refer to the conjoint use of the 

general linear model (GLM) and Gaussian random field (GRF) theory to analyze and make 

classical inferences about spatially extended data through statistical parametric maps (SPMs).  

The GLM is used to estimate some parameters that could explain the spatially continuos data 

in exactly the same way as in conventional analysis of discrete data (see Chapter 7: The 

General Linear Model).  GRF theory is used to resolve the multiple comparison problem 

that ensues when making inferences over a volume of the brain.  GRF theory provides a 

method for correcting p values for the search volume of a SPM and plays the same role for 

continuous data (i.e. images) as the Bonferonni correction for the number of discontinuous or 

discrete statistical tests (see Chapter 14: Introduction to Random Field Theory). 

   The approach was called SPM for three reasons; (i) To acknowledge Significance 

Probability Mapping, the use of interpolated pseudo-maps of p values used to summarize the 

analysis of multi-channel ERP studies. (ii) For consistency with the nomenclature of 

parametric maps of physiological or physical parameters (e.g. regional cerebral blood flow 

rCBF or volume rCBV parametric maps). (iii) In reference to the parametric statistics that 

comprise the maps.  Despite its simplicity there are some fairly subtle motivations for the 

approach that deserve mention.  Usually, given a response or dependent variable comprising 

many thousands of voxels one would use multivariate analyses as opposed to the mass-

univariate approach that SPM represents.  The problems with multivariate approaches are 

that; (i) they do not support inferences about regionally specific effects, (ii) they require more 

observations than the dimension of the response variable (i.e. number of voxels) and (iii), 

even in the context of dimension reduction, they are less sensitive to focal effects than mass-

univariate approaches.  A heuristic argument, for their relative lack of power, is that 

multivariate approaches estimate the model’s error covariances using lots of parameters (e.g. 

the covariance between the errors at all pairs of voxels).  In general, the more parameters 

(and hyper-parameters) an estimation procedure has to deal with, the more variable the 

estimate of any one parameter becomes.  This renders inferences about any single estimate 

less efficient. 



   Multivariate approaches consider voxels as different levels of an experimental or treatment 

factor and use classical analysis of variance, not at each voxel (c.f. SPM), but by considering 

the data sequences from all voxels together, as replications over voxels.  The problem here is 

that regional changes in error variance, and spatial correlations in the data, induce profound 

non-sphericity1 in the error terms.  This non-sphericity would again require large numbers of 

[hyper]parameters to be estimated for each voxel using conventional techniques.  In SPM the 

non-sphericity is parameterized in a very parsimonious way with just two [hyper]parameters 

for each voxel.  These are the error variance and smoothness estimators (see Section III and 

Figure 2).  This minimal parameterization lends SPM a sensitivity that surpasses multivariate 

approaches.  SPM can do this because GRF theory implicitly imposes constraints on the non-

sphericity implied by the continuous and [spatially] extended nature of the data (see Chapter 

15: Random Field Theory). This is something that conventional multivariate and equivalent 

univariate approaches do not accommodate, to their cost.   

   Some analyses use statistical maps based on non-parametric tests that eschew distributional 

assumptions about the data (see Chapter 16: Non-parametric Approaches)..  These 

approaches are generally less powerful (i.e. less sensitive) than parametric approaches (see 

Aguirre et al 1998).  However, they have an important role in evaluating the assumptions 

behind parametric approaches and may supercede in terms of sensitivity when these 

assumptions are violated (e.g. when degrees of freedom are very small and voxel sizes are 

large in relation to smoothness). 

  In Chapter 17 (Classical and Bayesian Inference) we consider the Bayesian alternative to 

classical inference with SPMs.  This rests on conditional inferences about an effect, given the 

data, as opposed to classical inferences about the data, given the effect is zero.  Bayesian 

inferences about spatially extended effects use Posterior Probability Maps (PPMs).  Although 

less commonly used than SPMs, PPMs are potentially very useful, not least because they do 

not have to contend with the multiple comparisons problem induced by classical inference.  

In contradistinction to SPM, this means that inferences about a given regional response do 

not depend on inferences about responses elsewhere. 

                                                           
1 Sphericity refers to the assumption of identically and independently distributed error terms (i.i.d.).  Under i.i.d. 
the probability density function of the errors, from all observations, has spherical iso-contours, hence sphericity.  
Deviations from either of the i.i.d. criteria constitute non-sphericity.  If the error terms are not identically 
distributed then different observations have different error variances.  Correlations among error terms reflect 
dependencies among the error terms (e.g. serial correlation in fMRI time series) and constitute the second 
component of non-sphericity.  In Neuroimaging both spatial and temporal non-sphericity can be quite profound 
issues. 



.  Next we consider parameter estimation in the context of the GLM.  This is followed by an 

introduction to the role of GRF theory when making classical inferences about continuous 

data. 

 

A The general linear model (Chapter 7) 

Statistical analysis of imaging data corresponds to (i) modeling the data to partition observed 

neurophysiological responses into components of interest, confounds and error and (ii) 

making inferences about the interesting effects in relation to the error variance.  This 

classical inference can be regarded as a direct comparison of the variance due to an 

interesting experimental manipulation with the error variance (c.f. the F statistic and other 

likelihood ratios).  Alternatively, one can view the statistic as an estimate of the response, or 

difference of interest, divided by an estimate of its standard deviation.  This is a useful way 

to think about the T statistic.   

   A brief review of the literature may give the impression that there are numerous ways to 

analyze PET and fMRI time-series with a diversity of statistical and conceptual approaches.  

This is not the case.  With very a few exceptions, every analysis is a variant of the general 

linear model.  This includes; (i) simple T tests on scans assigned to one condition or another, 

(ii) correlation coefficients between observed responses and boxcar stimulus functions in 

fMRI, (iii) inferences made using multiple linear regression, (iv) evoked responses estimated 

using linear time invariant models and (v) selective averaging to estimate event-related 

responses in fMRI.  Mathematically, they are all identical can be implemented with the same 

equations and algorithms.  The only thing that distinguishes among them is the design matrix 

encoding the experimental design.  The use of the correlation coefficient deserves special 

mention because of its popularity in fMRI (Bandettini et al 1993).  The significance of a 

correlation is identical to the significance of the equivalent T statistic testing for a regression 

of the data on the stimulus function.  The correlation coefficient approach is useful but the 

inference is effectively based on a limiting case of multiple linear regression that obtains 

when there is only one regressor.  In fMRI many regressors usually enter into a statistical 

model.  Therefore, the T statistic provides a more versatile and generic way of assessing the 

significance of regional effects and is preferred over the correlation coefficient. 

   The general linear model is an equation εβ += XY  that expresses the observed response 

variable Y in terms of a linear combination of explanatory variables X plus a well behaved 

error term (see Figure 4 and Friston et al 1995b).  The general linear model is variously 



known as 'analysis of covariance' or 'multiple regression analysis' and subsumes simpler 

variants, like the 'T test' for a difference in means, to more elaborate linear convolution 

models such as finite impulse response (FIR) models.  The matrix X that contains the 

explanatory variables (e.g. designed effects or confounds) is called the design matrix.  Each 

column of the design matrix corresponds to some effect one has built into the experiment or 

that may confound the results.  These are referred to as explanatory variables, covariates or 

regressors.  The example in Figure 1 relates to a fMRI study of visual stimulation under four 

conditions.  The effects on the response variable are modeled in terms of functions of the 

presence of these conditions (i.e. boxcars smoothed with a hemodynamic response function) 

and constitute the first four columns of the design matrix.  There then follows a series of 

terms that are designed to remove or model low frequency variations in signal due to artifacts 

such as aliased biorhythms and other drift terms.  The final column is whole brain activity.  

The relative contribution of each of these columns is assessed using standard least squares 

and inferences about these contributions are made using T or F statistics, depending upon 

whether one is looking at a particular linear combination (e.g. a subtraction), or all of them 

together.  The operational equations are depicted schematically in Figure 4.  In this scheme 

the general linear model has been extended (Worsley and Friston 1995) to incorporate 

intrinsic non-sphericity, or correlations among the error terms, and to allow for some 

specified temporal filtering of the data with the matrix S.  This generalization brings with it 

the notion of effective degrees of freedom, which are less than the conventional degrees of 

freedom under i.i.d. assumptions (see footnote).  They are smaller because the temporal 

correlations reduce the effective number of independent observations.  The T and F statistics 

are constructed using Satterthwaite’s approximation.  This is the same approximation used in 

classical non-sphericity corrections such as the Geisser-Greenhouse correction.  However, in 

the Worsley and Friston (1995) scheme, Satherthwaite’s approximation is used to construct 

the statistics and appropriate degrees of freedom, not simply to provide a post hoc correction 

to the degrees of freedom. 

   A special case of temporal filtering deserved mention.  This is when the filtering 

decorrelates (i.e. whitens) the error terms by using 2/1−Σ=S .  This is the filtering scheme 

used in current implementations of software for SPM and renders the ordinary least squares 

(OLS) parameter estimates maximum likelihood (ML) estimators.  These are optimal in the 

sense that they are the minimum variance estimators of all unbiased estimators.  The 

estimation of 2/1−Σ=S  uses expectation maximization (EM) to provide restricted maximum 



likelihood (ReML) estimates of )(λΣ=Σ  in terms of hyperparameters λ  corresponding to 

variance components (see Chapter 9: Variance Components. and Chapter 17: Classical and 

Bayesian Inference, for an explanation of EM).  In this case the effective degrees of freedom revert 

to their maximum that would be attained in the absence of temporal correlations or non-sphericity. 

   The equations summarized in Figure 4 can be used to implement a vast range of statistical 

analyses.  The issue is therefore not so much the mathematics but the formulation of a design 

matrix X appropriate to the study design and inferences that are sought.  The design matrix 

can contain both covariates and indicator variables.  Each column of X has an associated 

unknown parameter.  Some of these parameters will be of interest (e.g. the effect of particular 

sensorimotor or cognitive condition or the regression coefficient of hemodynamic responses 

on reaction time).  The remaining parameters will be of no interest and pertain to 

confounding effects (e.g. the effect of being a particular subject or the regression slope of 

voxel activity on global activity).  Inferences about the parameter estimates are made using 

their estimated variance.  This allows one to test the null hypothesis that all the estimates are 

zero using the F statistic to give an SPM{F} or that some particular linear combination (e.g. a 

subtraction) of the estimates is zero using an SPM{T}.  The T statistic obtains by dividing a 

contrast or compound (specified by contrast weights) of the ensuing parameter estimates by 

the standard error of that compound.  The latter is estimated using the variance of the 

residuals about the least-squares fit.  An example of a contrast weight vector would be [-1 1 0 

0..... ] to compare the difference in responses evoked by two conditions, modeled by the first 

two condition-specific regressors in the design matrix.  Sometimes several contrasts of 

parameter estimates are jointly interesting.  For example, when using polynomial (Büchel et 

al 1996) or basis function expansions of some experimental factor.  In these instances, the 

SPM{F} is used and is specified with a matrix of contrast weights that can be thought of as a 

collection of ‘T contrasts’ that one wants to test together.  See Chapter 8: Contrasts and 

Classical Inference, for a fuller explanation.  A ‘F-contrast’ may look like, 
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which would test for the significance of the first or second parameter estimates.  The fact that 

the first weight is –1 as opposed to 1 has no effect on the test because the F statistic is based 

on sums of squares. 



. In most analysis the design matrix contains indicator variables or parametric variables 

encoding the experimental manipulations.  These are formally identical to classical analysis 

of [co]variance (i.e. AnCova) models.  An important instance of the GLM, from the 

perspective of fMRI, is the linear time invariant (LTI) model.  Mathematically this is no 

different from any other GLM.  However, it explicitly treats the data-sequence as an ordered 

time-series and enables a signal processing perspective that can be very useful (see Chapter 

10: Analysis of fMRI time series). 

 

1 Linear Time Invariant (LTI) systems and temporal basis functions 

In Friston et al (1994b) the form of the hemodynamic impulse response function (HRF) was 

estimated using a least squares de-convolution and a time invariant model, where evoked 

neuronal responses are convolved with the HRF to give the measured hemodynamic response 

(see Boynton et al 1996).  This simple linear framework is the cornerstone for making 

statistical inferences about activations in fMRI with the GLM.  An impulse response function 

is the response to a single impulse, measured at a series of times after the input.  It 

characterizes the input-output behavior of the system (i.e. voxel) and places important 

constraints on the sorts of inputs that will excite a response.  The HRFs, estimated in Friston 

et al (1994b) resembled a Poisson or Gamma function, peaking at about 5 seconds.  Our 

understanding of the biophysical and physiological mechanisms that underpin the HRF has 

grown considerably in the past few years (e.g. Buxton and Frank 1997. See Chapter 11: 

Hemodynamic modeling).  Figure 5 shows some simulations based on the hemodynamic 

model described in Friston et al (2000a).  Here, neuronal activity induces some auto-

regulated signal that causes transient increases in rCBF.  The resulting flow increases dilate 

the venous balloon increasing its volume (v) and diluting venous blood to decrease 

deoxyhemoglobin content (q).  The BOLD signal is roughly proportional to the concentration 

of deoxyhemoglobin (q/v) and follows the rCBF response with about a seconds delay. 

   Knowing the forms that the HRF can take is important for several reasons, not least 

because it allows for better statistical models of the data.  The HRF may vary from voxel to 

voxel and this has to be accommodated in the GLM.  To allow for different HRFs in different 

brain regions the notion of temporal basis functions, to model evoked responses in fMRI, was 

introduced (Friston et al 1995c) and applied to event-related responses in Josephs et al 

(1997) (see also Lange and Zeger 1997).  The basic idea behind temporal basis functions is 

that the hemodynamic response induced by any given trial type can be expressed as the linear 



combination of several [basis] functions of peristimulus time.  The convolution model for 

fMRI responses takes a stimulus function encoding the supposed neuronal responses and 

convolves it with an HRF to give a regressor that enters into the design matrix.  When using 

basis functions, the stimulus function is convolved with all the basis functions to give a series 

of regressors.  The associated parameter estimates are the coefficients or weights that 

determine the mixture of basis functions that best models the HRF for the trial type and voxel 

in question.  We find the most useful basis set to be a canonical HRF and its derivatives with 

respect to the key parameters that determine its form (e.g. latency and dispersion).  The nice 

thing about this approach is that it can partition differences among evoked responses into 

differences in magnitude, latency or dispersion, that can be tested for using specific contrasts 

and the SPM{T} (Friston et al 1998b). 

   Temporal basis functions are important because they enable a graceful transition between 

conventional multi-linear regression models with one stimulus function per condition and 

FIR models with a parameter for each time point following the onset of a condition or trial 

type.  Figure 6 illustrates this graphically (see Figure legend).  In summary, temporal basis 

functions offer useful constraints on the form of the estimated response that retain (i) the 

flexibility of FIR models and (ii) the efficiency of single regressor models. The advantage of 

using several temporal basis functions (as opposed to an assumed form for the HRF) is that 

one can model voxel-specific forms for hemodynamic responses and formal differences (e.g. 

onset latencies) among responses to different sorts of events.  The advantages of using basis 

functions over FIR models are that (i) the parameters are estimated more efficiently and (ii) 

stimuli can be presented at any point in the inter-stimulus interval.  The latter is important 

because time-locking stimulus presentation and data acquisition gives a biased sampling over 

peristimulus time and can lead to differential sensitivities, in multi-slice acquisition, over the 

brain. 

 

B Statistical inference and the theory of Random Fields 

(Chapters 14 and 15: [Introduction to] Random Field Theory) 

Classical inferences using SPMs can be of two sorts depending on whether one knows where 

to look in advance.  With an anatomically constrained hypothesis, about effects in a 

particular brain region, the uncorrected p value associated with the height or extent of that 

region in the SPM can be used to test the hypothesis.  With an anatomically open hypothesis 

(i.e. a null hypothesis that there is no effect anywhere in a specified volume of the brain) a 



correction for multiple dependent comparisons is necessary.  The theory of random fields 

provides a way of adjusting the p-value that takes into account the fact that neighboring 

voxels are not independent by virtue of continuity in the original data.  Provided the data are 

sufficiently smooth the GRF correction is less severe (i.e. is more sensitive) than a 

Bonferroni correction for the number of voxels. As noted above GRF theory deals with the 

multiple comparisons problem in the context of continuous, spatially extended statistical 

fields, in a way that is analogous to the Bonferroni procedure for families of discrete 

statistical tests.  There are many ways to appreciate the difference between GRF and 

Bonferroni corrections.  Perhaps the most intuitive is to consider the fundamental difference 

between a SPM and a collection of discrete T values.  When declaring a connected volume or 

region of the SPM to be significant, we refer collectively to all the voxels that comprise that 

volume.  The false positive rate is expressed in terms of connected [excursion] sets of voxels 

above some threshold, under the null hypothesis of no activation.  This is not the expected 

number of false positive voxels.  One false positive region may contain hundreds of voxels, if 

the SPM is very smooth.  A Bonferroni correction would control the expected number of 

false positive voxels, whereas GRF theory controls the expected number of false positive 

regions.  Because a false positive region can contain many voxels the corrected threshold 

under a GRF correction is much lower, rendering it much more sensitive.  In fact the number 

of voxels in a region is somewhat irrelevant because it is a function of smoothness.  The GRF 

correction discounts voxel size by expressing the search volume in terms of smoothness or 

resolution elements (Resels). See Figure 7.  This intuitive perspective is expressed formally 

in terms of differential topology using the Euler characteristic (Worsley et al 1992). At high 

thresholds the Euler characteristic corresponds to the number of regions exceeding the 

threshold. 

    There are only two assumptions underlying the use of the GRF correction: (i) The error 

fields (but not necessarily the data) are a reasonable lattice approximation to an underlying 

random field with a multivariate Gaussian distribution.  (ii) These fields are continuous, with 

a differentiable and invertible autocorrelation function.  A common misconception is that the 

autocorrelation function has to be Gaussian.  It does not.  The only way in which these 

assumptions can be violated is if; (i) the data are not smoothed (with or without sub-sampling 

to preserve resolution), violating the reasonable lattice assumption or (ii) the statistical model 

is mis-specified so that the errors are not normally distributed. Early formulations of the GRF 

correction were based on the assumption that the spatial correlation structure was wide-sense 



stationary.  This assumption can now be relaxed due to a revision of the way in which the 

smoothness estimator enters the correction procedure (Kiebel et al 1999).  In other words, the 

corrections retain their validity, even if the smoothness varies from voxel to voxel. 

 

1 Anatomically closed hypotheses 

When making inferences about regional effects (e.g. activations) in SPMs, one often has 

some idea about where the activation should be.  In this instance a correction for the entire 

search volume is inappropriate.  However, a problem remains in the sense that one would 

like to consider activations that are 'near' the predicted location, even if they are not exactly 

coincident.  There are two approaches one can adopt; (i) pre-specify a small search volume 

and make the appropriate GRF correction (Worsley et al 1996) or (ii) used the uncorrected p 

value based on spatial extent of the nearest cluster (Friston 1997).  This probability is based 

on getting the observed number of voxels, or more, in a given cluster (conditional on that 

cluster existing).  Both these procedures are based on distributional approximations from 

GRF theory. 

 

2 Anatomically open hypotheses and levels of inference 

To make inferences about regionally specific effects the SPM is thresholded, using some 

height and spatial extent thresholds that are specified by the user.  Corrected p-values can 

then be derived that pertain to; (i) the number of activated regions (i.e. number of clusters 

above the height and volume threshold) - set level inferences, (ii) the number of activated 

voxels (i.e. volume) comprising a particular region - cluster level inferences and (iii) the p-

value for each voxel within that cluster - voxel level inferences.   These p-values are 

corrected for the multiple dependent comparisons and are based on the probability of 

obtaining c, or more, clusters with k, or more, voxels, above a threshold u in an SPM of 

known or estimated smoothness.  This probability has a reasonably simple form (see Figure 7 

for details).  

   Set-level refers to the inference that the number of clusters comprising an observed 

activation profile is highly unlikely to have occurred by chance and is a statement about the 

activation profile, as characterized by its constituent regions.  Cluster-level inferences are a 

special case of set-level inferences, that obtain when the number of clusters c = 1.  Similarly 

voxel-level inferences are special cases of cluster-level inferences that result when the cluster 

can be small (i.e. k = 0).  Using a theoretical power analysis (Friston et al 1996b) of 



distributed activations, one observes that set-level inferences are generally more powerful 

than cluster-level inferences and that cluster-level inferences are generally more powerful 

than voxel-level inferences.  The price paid for this increased sensitivity is reduced localizing 

power. Voxel-level tests permit individual voxels to be identified as significant, whereas 

cluster and set-level inferences only allow clusters or sets of clusters to be declared 

significant.  It should be remembered that these conclusions, about the relative power of 

different inference levels, are based on distributed activations.  Focal activation may well be 

detected with greater sensitivity using voxel-level tests based on peak height.  Typically, 

people use voxel-level inferences and a spatial extent threshold of zero.  This reflects the fact 

that characterizations of functional anatomy are generally more useful when specified with a 

high degree of anatomical precision. 

 

 

V. EXPERIMENTAL DESIGN 

 

This section considers the different sorts of designs that can be employed in neuroimaging 

studies.  Experimental designs can be classified as single factor or multifactorial designs, 

within this classification the levels of each factor can be categorical or parametric.  We will 

start by discussing categorical and parametric designs and then deal with multifactorial 

designs. 

 

A Categorical designs, cognitive subtraction and conjunctions 

The tenet of cognitive subtraction is that the difference between two tasks can be formulated 

as a separable cognitive or sensorimotor component and that regionally specific differences 

in hemodynamic responses, evoked by the two tasks, identify the corresponding functionally 

specialized area.  Early applications of subtraction range from the functional anatomy of 

word processing (Petersen et al 1989) to functional specialization in extrastriate cortex 

(Lueck et al 1989).  The latter studies involved presenting visual stimuli with and without 

some sensory attribute (e.g. color, motion etc).  The areas highlighted by subtraction were 

identified with homologous areas in monkeys that showed selective electrophysiological 

responses to equivalent visual stimuli. 

   Cognitive conjunctions (Price and Friston 1997) can be thought of as an extension of the 

subtraction technique, in the sense that they combine a series of subtractions.  In subtraction 



ones tests a single hypothesis pertaining to the activation in one task relative to another.  In 

conjunction analyses several hypotheses are tested, asking whether all the activations, in a 

series of task pairs, are jointly significant.  Consider the problem of identifying regionally 

specific activations due to a particular cognitive component (e.g. object recognition).  If one 

can identify a series of task pairs whose differences have only that component in common, 

then the region which activates, in all the corresponding subtractions, can be associated with 

the common component.  Conjunction analyses allow one to demonstrate the context-

invariant nature of regional responses.  One important application of conjunction analyses is 

in multi-subject fMRI studies, where generic effects are identified as those that are conjointly 

significant in all the subjects studied (see below). 

 

B Parametric designs 

The premise behind parametric designs is that regional physiology will vary systematically 

with the degree of cognitive or sensorimotor processing or deficits thereof.  Examples of this 

approach include the PET experiments of Grafton et al (1992) that demonstrated significant 

correlations between hemodynamic responses and the performance of a visually guided 

motor tracking task.  On the sensory side Price et al (1992) demonstrated a remarkable linear 

relationship between perfusion in peri-auditory regions and frequency of aural word 

presentation.  This correlation was not observed in Wernicke's area, where perfusion 

appeared to correlate, not with the discriminative attributes of the stimulus, but with the 

presence or absence of semantic content.  These relationships or neurometric functions may 

be linear or nonlinear.  Using polynomial regression, in the context of the GLM, one can 

identify nonlinear relationships between stimulus parameters (e.g. stimulus duration or 

presentation rate) and evoked responses.  To do this one usually uses a SPM{F} (see Büchel 

et al 1996). 

   The example provided in Figure 8 illustrates both categorical and parametric aspects of 

design and analysis.  These data were obtained from a fMRI study of visual motion 

processing using radially moving dots.  The stimuli were presented over a range of speeds 

using isoluminant and isochromatic stimuli.  To identify areas involved in visual motion a 

stationary dots condition was subtracted from the moving dots conditions (see the contrast 

weights on the upper right).  To ensure significant motion-sensitive responses, using both 

color and luminance cues, a conjunction of the equivalent subtractions was assessed under 

both viewing contexts.  Areas V5 and V3a are seen in the ensuing SPM{T}.  The T values in 



this SPM are simply the minimum of the T values for each subtraction.  Thresholding this 

SPM{Tmin} ensures that all voxels survive the threshold u in each subtraction separately.  

This conjunction SPM has an equivalent interpretation; it represents the intersection of the 

excursion sets, defined by the threshold u, of each component SPM.  This intersection is the 

essence of a conjunction.  The expressions in Figure 7 pertain to the general case of the 

minimum of n T values.  The special case where n = 1 corresponds to a conventional 

SPM{T}. 

   The responses in left V5 are shown in the lower panel of Figure 8 and speak to a 

compelling inverted 'U' relationship between speed and evoked response that peaks at around 

8 degrees per second.  It is this sort of relationship that parametric designs try to characterize.  

Interestingly, the form of these speed-dependent responses was similar using both stimulus 

types, although luminance cues are seen to elicit a greater response.  From the point of view 

of a factorial design there is a main effect of cue (isoluminant vs. isochromatic), a main 

[nonlinear] effect of speed, but no speed by cue interaction. 

   Clinical neuroscience studies can use parametric designs by looking for the neuronal 

correlates of clinical (e.g. symptom) ratings over subjects.  In many cases multiple clinical 

scores are available for each subject and the statistical design can usually be seen as a 

multilinear regression.  In situations where the clinical scores are correlated principal 

component analysis or factor analysis is sometimes applied to generate a new, and smaller, 

set of explanatory variables that are orthogonal to each other.  This has proved particularly 

useful in psychiatric studies where syndromes can be expressed over a number of different 

dimensions (e.g. the degree of psychomotor poverty, disorganization and reality distortion in 

schizophrenia.  See Liddle et al 1992).  In this way, regionally specific correlates of various 

symptoms may point to their distinct pathogenesis in a way that transcends the syndrome 

itself.  For example psychomotor poverty may be associated with left dorsolateral prefrontal 

dysfunction irrespective of whether the patient is suffering from schizophrenia or depression. 

 

C Multifactorial designs 

Factorial designs are becoming more prevalent than single factor designs because they enable 

inferences about interactions.  At its simplest an interaction represents a change in a change.  

Interactions are associated with factorial designs where two or more factors are combined in 

the same experiment.  The effect of one factor, on the effect of the other, is assessed by the 

interaction term.  Factorial designs have a wide range of applications.  An early application, 



in neuroimaging, examined physiological adaptation and plasticity during motor 

performance, by assessing time by condition interactions (Friston et al 1992a).  

Psychopharmacological activation studies are further examples of factorial designs (Friston 

et al 1992b).  In these studies cognitively evoked responses are assessed before and after 

being given a drug.  The interaction term reflects the pharmacological modulation of task-

dependent activations.  Factorial designs have an important role in the context of cognitive 

subtraction and additive factors logic by virtue of being able to test for interactions, or 

context-sensitive activations (i.e. to demonstrate the fallacy of 'pure insertion'.  See Friston et 

al 1996c).  These interaction effects can sometimes be interpreted as (i) the integration of the 

two or more [cognitive] processes or (ii) the modulation of one [perceptual] process by 

another.  See Figure 9 for an example.  From the point of view of clinical studies interactions 

are central.  The effect of a disease process on sensorimotor or cognitive activation is simply 

an interaction and involves replicating a subtraction experiment in subjects with and without 

the pathophysiology studied.  Factorial designs can also embody parametric factors.  If one of 

the factors has a number of parametric levels, the interaction can be expressed as a difference 

in regression slope of regional activity on the parameter, under both levels of the other 

[categorical] factor.  An important example of factorial designs, that mix categorical and 

parameter factors, are those looking for psychophysiological interactions.  Here the 

parametric factor is brain activity measured in a particular brain region.  These designs have 

proven useful in looking at the interaction between bottom-up and top-down influences 

within processing hierarchies in the brain (Friston et al 1997).  This issue will be addressed 

below and in Section IV, from the point of view of effective connectivity. 

 

VI DESIGNING fMRI STUDIES  

(Chapter 11: Analysis of fMRI time series) 

In this section we consider fMRI time-series from a signal processing perspective with 

particular focus on optimal experimental design and efficiency.  fMRI time-series can be 

viewed as a linear admixture of signal and noise.  Signal corresponds to neuronally mediated 

hemodynamic changes that can be modeled as a [non]linear convolution of some underlying 

neuronal process, responding to changes in experimental factors, by a hemodynamic 

response function (HRF).  Noise has many contributions that render it rather complicated in 

relation to other neurophysiological measurements.  These include neuronal and non-

neuronal sources.  Neuronal noise refers to neurogenic signal not modeled by the explanatory 



variables and has the same frequency structure as the signal itself.  Non-neuronal components 

have both white (e.g. R.F. Johnson noise) and colored components (e.g. pulsatile motion of 

the brain caused by cardiac cycles and local modulation of the static magnetic field B0 by 

respiratory movement).  These effects are typically low frequency or wide-band (e.g. aliased 

cardiac-locked pulsatile motion).  The superposition of all these components induces 

temporal correlations among the error terms (denoted by Σ  in Figure 4) that can effect 

sensitivity to experimental effects.  Sensitivity depends upon (i) the relative amounts of 

signal and noise and (ii) the efficiency of the experimental design.  Efficiency is simply a 

measure of how reliable the parameter estimates are and can be defined as the inverse of the 

variance of a contrast of parameter estimates (see Figure 4).  There are two important 

considerations that arise from this perspective on fMRI time-series: The first pertains to 

optimal experimental design and the second to optimum [de]convolution of the time-series to 

obtain the most efficient parameter estimates. 

 

A The hemodynamic response function and optimum design 

As noted above, an LTI model of neuronally mediated signals in fMRI suggests that only 

those experimentally induced signals that survive convolution with the hemodynamic 

response function (HRF) can be estimated with any efficiency.  By convolution theorem the 

frequency structure of experimental variance should therefore be designed to match the 

transfer function of the HRF.  The corresponding frequency profile of this transfer function is 

shown in Figure 10 - solid line).  It is clear that frequencies around 0.03 Hz are optimal, 

corresponding to periodic designs with 32-second periods (i.e. 16-second epochs).  

Generally, the first objective of experimental design is to comply with the natural constraints 

imposed by the HRF and ensure that experimental variance occupies these intermediate 

frequencies. 

 

B Serial correlations and filtering 

This is quite a complicated but important area.  Conventional signal processing approaches 

dictate that whitening the data engenders the most efficient parameter estimation.  This 

corresponds to filtering with a convolution matrix S (see Figure 3) that is the inverse of the 

intrinsic convolution matrix K ( Σ=TKK ).  This whitening strategy renders the least square 

estimator in Figure 4 equivalent to the ML or Gauss-Markov estimator. However, one 

generally does not know the form of the intrinsic correlations, which means they have to be 



estimated.  This estimation usually proceeds using a restricted maximum likelihood (ReML) 

estimate of the serial correlations, among the residuals, that properly accommodates the 

effects of the residual-forming matrix and associated loss of degrees of freedom.  However, 

using this estimate of the intrinsic non-sphericity to form a Gauss-Markov estimator at each 

voxel is not easy.  First the estimate of non-sphericity can itself be imprecise leading to bias 

in the standard error (Friston et al 2000b).  Second, ReML estimation requires a 

computationally prohibitive iterative procedure at every voxel.  There are a number of 

approaches to these problems that aim to increase the efficiency of the estimation and reduce 

the computational burden. The approach adopted in current versions of our software is use 

ReML estimates based on all voxels that respond to experimental manipulation.  This affords 

very efficient hyperparameter estimates2 and, furthermore, allows one to use the same 

matrices at each voxel when computing the parameter estimates. 

   Although we usually make 12/1 −− =Σ= KS , using a first-pass ReML estimate of the serial 

correlations, we will deal with the simpler and more general case where S can take any form.  

In this case the parameter estimates are generalized least square (GLS) estimators.  The GLS 

estimator is unbiased and, luckily, is identical to the Gauss-Markov estimator if the 

regressors in the design matrix are periodic3.  After GLS estimation, the ReML estimate of 
TSSV Σ=  enters into the expressions for the standard error and degrees of freedom provided 

in Figure 4 

   fMRI noise has been variously characterized as a 1/f process (Zarahn et al 1997) or an 

autoregressive process (Bullmore et al 1996) with white noise (Purdon and Weisskoff 1998).  

Irrespective of the exact form these serial correlations take, treating low frequency drifts as 

fixed effects can finesse the hyper-parameterization of serial correlations.  Removing low 

frequencies from the time series allows the model to fit serial correlations over a more 

restricted frequency range or shorter time spans. Drift removal can be implemented by 

including drift terms in the design matrix or by including the implicit residual forming matrix 

in S to make it a high-pass filter.  An example of a high-pass filter with a high-pass cut-off of 

1/64 Hz is shown in inset of Figure 8.  This filter’s transfer function (the broken line in the 

main panel) illustrates the frequency structure of neurogenic signals after high-pass filtering. 

 

C Spatially coherent confounds and global normalization 

                                                           
2 The efficiency scales with the number of voxels 
3 More exactly, the GLS and ML estimators are the same if X lies within the space spanned by the eigenvectors 
of Toeplitz autocorrelation matrix Σ . 



Implicit in the use of high-pass filtering is the removal of low frequency components that can 

be regarded as confounds.  Other important confounds are signal components that are 

artifactual or have no regional specificity.  These are referred to as global confounds and 

have a number of causes.  These can be divided into physiological (e.g. global perfusion 

changes in PET, mediated by changes in pCO2) and non-physiological (e.g. transmitter 

power calibration, B1 coil profile and receiver gain in fMRI).  The latter generally scale the 

signal before the MRI sampling process.  Other non-physiological effects may have a non-

scaling effect (e.g. Nyquist ghosting, movement-related effects etc).  In PET it is generally 

accepted that regional changes in rCBF, evoked neuronally, mix additively with global 

changes to give the measured signal.  This calls for a global normalization procedure where 

the global estimator enters into the statistical model as a confound.  In fMRI, instrumentation 

effects that scale the data motivate a global normalization by proportional scaling, using the 

whole brain mean, before the data enter into the statistical model. 

   It is important to differentiate between global confounds and their estimators.  By 

definition the global mean over intra-cranial voxels will subsume all regionally specific 

effects.  This means that the global estimator may be partially collinear with effects of 

interest, especially if the evoked responses are substantial and widespread.  In these 

situations global normalization may induce apparent deactivations in regions not expressing a 

physiological response.  These are not artifacts in the sense that they are real, relative to 

global changes, but they have little face validity in terms of the underlying neurophysiology.  

In instances where regionally specific effects bias the global estimator, some investigators 

prefer to omit global normalization.  Provided drift terms are removed from the time-series, 

this is generally acceptable because most global effects have slow time constants.  However, 

the issue of normalization-induced deactivations is better circumnavigated with experimental 

designs that use well-controlled conditions, which elicit differential responses in restricted 

brain systems. 

 

D Nonlinear system identification approaches 

So far we have only considered LTI models and first order HRFs.  Another signal processing 

perspective is provided by nonlinear system identification (Vazquez and Noll 1998).  This 

section considers nonlinear models as a prelude to the next subsection on event-related fMRI, 

where nonlinear interactions among evoked responses provide constraints for experimental 

design and analysis.  We have described an approach to characterizing evoked hemodynamic 



responses in fMRI based on nonlinear system identification, in particular the use of Volterra 

series (Friston et al 1998a).  This approach enables one to estimate Volterra kernels that 

describe the relationship between stimulus presentation and the hemodynamic responses that 

ensue.  Volterra series are essentially high order extensions of linear convolution models.  

These kernels therefore represent a nonlinear characterization of the HRF that can model the 

responses to stimuli in different contexts and interactions among stimuli.  In fMRI, the kernel 

coefficients can be estimated by (i) using a second order approximation to the Volterra series 

to formulate the problem in terms of a general linear model and (ii) expanding the kernels in 

terms of temporal basis functions.  This allows the use of the standard techniques described 

above to estimate the kernels and to make inferences about their significance on a voxel-

specific basis using SPMs.  

  One important manifestation of the nonlinear effects, captured by the second order kernels, 

is a modulation of stimulus-specific responses by preceding stimuli that are proximate in 

time.  This means that responses at high stimulus presentation rates saturate and, in some 

instances, show an inverted U behavior.  This behavior appears to be specific to BOLD 

effects (as distinct from evoked changes in cerebral blood flow) and may represent a 

hemodynamic refractoriness.  This effect has important implications for event-related fMRI, 

where one may want to present trials in quick succession.  

   The results of a typical nonlinear analysis are given in Figure 11.  The results in the right 

panel represent the average response, integrated over a 32-second train of stimuli as a 

function of stimulus onset asynchrony (SOA) within that train.  These responses are based on 

the kernel estimates (left hand panels) using data from a voxel in the left posterior temporal 

region of a subject obtained during the presentation of single words at different rates.  The 

solid line represents the estimated response and shows a clear maximum at just less than one 

second.  The dots are responses based on empirical data from the same experiment.  The 

broken line shows the expected response in the absence of nonlinear effects (i.e. that 

predicted by setting the second order kernel to zero).  It is clear that nonlinearities become 

important at around two seconds leading to an actual diminution of the integrated response at 

sub-second SOAs.  The implication of this sort of result is that (i) SOAs should not really fall 

much below one second and (ii) at short SOAs the assumptions of linearity are violated.  It 

should be noted that these data pertain to single word processing in auditory association 

cortex.  More linear behaviors may be expressed in primary sensory cortex where the 

feasibility of using minimum SOAs as low as 500ms has been demonstrated (Burock et al 



1998).  This lower bound on SOA is important because some effects are detected more 

efficiently with high presentation rates.  We now consider this from the point of view of 

event-related designs. 

 

E Event and epoch-related designs 

A crucial distinction, in experimental design for fMRI, is that between epoch and event-

related designs.  In SPECT and PET only epoch-related responses can be assessed because of 

the relatively long half-life of the radiotracers used. However, in fMRI there is an 

opportunity to measure event-related responses that may be important in some cognitive and 

clinical contexts.  An important issue, in event-related fMRI, is the choice of inter-stimulus 

interval or more precisely SOA.  The SOA, or the distribution of SOAs, is a critical factor in 

and is chosen, subject to psychological or psychophysical constraints, to maximize the 

efficiency of response estimation.  The constraints on the SOA clearly depend upon the 

nature of the experiment but are generally satisfied when the SOA is small and derives from 

a random distribution.  Rapid presentation rates allow for the maintenance of a particular 

cognitive or attentional set, decrease the latitude that the subject has for engaging alternative 

strategies, or incidental processing, and allows the integration of event-related paradigms 

using fMRI and electrophysiology.  Random SOAs ensure that preparatory or anticipatory 

factors do not confound event-related responses and ensure a uniform context in which 

events are presented.  These constraints speak to the well-documented advantages of event-

related fMRI over conventional blocked designs (Buckner et al 1996, Clark et al 1998). 

   In order to compare the efficiency of different designs it is useful to have some common 

framework that encompassed all of them.  The efficiency can then be examined in relation to 

the parameters of the designs. Designs can be stochastic or deterministic depending on 

whether there is a random element to their specification. In stochastic designs (Heid et al 

1997) one needs to specify the probabilities of an event occurring at all times those events 

could occur.  In deterministic designs the occurrence probability is unity and the design is 

completely specified by the times of stimulus presentation or trials.  The distinction between 

stochastic and deterministic designs pertains to how a particular realization or stimulus 

sequence is created.  The efficiency afforded by a particular event sequence is a function of 

the event sequence itself, and not of the process generating the sequence (i.e. deterministic or 

stochastic). However, within stochastic designs, the design matrix X, and associated 



efficiency, are random variables and the expected or average efficiency, over realizations of 

X is easily computed. 

  In the framework considered here (Friston et al 1999a) the occurrence probability p of any 

event occurring is specified at each time that it could occur (i.e. every SOA).  Here p is a 

vector with an element for every SOA.  This formulation engenders the distinction between 

stationary stochastic designs, where the occurrence probabilities are constant and non-

stationary stochastic designs, where they change over time.  For deterministic designs the 

elements of p are 0 or 1, the presence of a 1 denoting the occurrence of an event.  An 

example of p might be the boxcars used in conventional block designs.  Stochastic designs 

correspond to a vector of identical values and are therefore stationary in nature.  Stochastic 

designs with temporal modulation of occurrence probability have time-dependent 

probabilities varying between 0 and 1.  With these probabilities the expected design matrices 

and expected efficiencies can be computed.  A useful thing about this formulation is that by 

setting the mean of the probabilities p to a constant, one can compare different deterministic 

and stochastic designs given the same number of events.  Some common examples are given 

in Figure 12 (right panel) for an SOA of 1 second and 32 expected events or trials over a 64 

second period (except for the first deterministic example with 4 events and an SOA of 16 

seconds).  It can be seen that the least efficient is the sparse deterministic design (despite the 

fact that the SOA is roughly optimal for this class), whereas the most efficient is a block 

design.  A slow modulation of occurrence probabilities gives high efficiency whilst retaining 

the advantages of stochastic designs and may represent a useful compromise between the 

high efficiency of block designs and the psychological benefits and latitude afforded by 

stochastic designs.  However, it is important not to generalize these conclusions too far.  An 

efficient design for one effect may not be the optimum for another, even within the same 

experiment.  This can be illustrated by comparing the efficiency with which evoked 

responses are detected and the efficiency of detecting the difference in evoked responses 

elicited by two sorts of trials: 

   Consider a stationary stochastic design with two trial types.  Because the design is 

stationary the vector of occurrence probabilities, for each trial type, is specified by a single 

probability.  Let us assume that the two trial types occur with the same probability p. .By 

varying p and SOA one can find the most efficient design depending upon whether one is 

looking for evoked responses per se or differences among evoked responses.  These two 

situations are depicted in the left panels of Figure 12.  It is immediately apparent that, for 



both sorts of effects, very small SOAs are optimal.  However, the optimal occurrence 

probabilities are not the same.  More infrequent events (corresponding to a smaller p = 1/3) 

are required to estimate the responses themselves efficiently.  This is equivalent to treating 

the baseline or control condition as any other condition (i.e. by including null events, with 

equal probability, as further event types).  Conversely, if we are only interested in making 

inferences about the differences, one of the events plays the role of a null event and the most 

efficient design ensues when one or the other event occurs (i.e. p = 1/2).  In short, the most 

efficient designs obtain when the events subtending the differences of interest occur with 

equal probability. 

   Another example, of how the efficiency is sensitive to the effect of interest, is apparent 

when we consider different parameterizations of the HRF.  This issue is sometimes addressed 

through distinguishing between the efficiency of response detection and response estimation.  

However, the principles are identical and the distinction reduces to how many parameters one 

uses to model the HRF for each trail type (one basis function is used for detection and a 

number are required to estimate the shape of the HRF).  Here the contrasts may be the same 

but the shape of the regressors will change depending on the temporal basis set employed.  

The conclusions above were based on a single canonical HRF.  Had we used a more refined 

parameterization of the HRF, say using three-basis functions, the most efficient design to 

estimate one basis function coefficient would not be the most efficient for another.  This is 

most easily seen from the signal processing perspective where basis functions with high 

frequency structure (e.g. temporal derivatives) require the experimental variance to contain 

high frequency components.  For these basis functions a randomized stochastic design may 

be more efficient than a deterministic block design, simply because the former embodies 

higher frequencies.  In the limiting case of FIR estimation the regressors become a series of 

stick functions (see Figure 6) all of which have high frequencies. This parameterization of 

the HRF calls for high frequencies in the experimental variance.  However, the use of FIR 

models is contraindicated by model selection procedures (see Chapter 10: Analysis of fMRI 

time series) that suggest only two or three HRF parameters can be estimated with any 

efficiency.   Results that are reported in terms of FIRs should be treated with caution because 

the inferences about evoked responses are seldom based on the FIR parameter estimates.  

This is precisely because they are estimated inefficiently and contain little useful 

information. 

 



 

VII INFERENCES ABOUT SUBJECTS AND POPULATIONS 

 

In this section we consider some issues that are generic to brain mapping studies that have 

repeated measures or replications over subjects.  The critical issue is whether we want to 

make an inference about the effect in relation to the within-subject variability or with respect 

to the between subject variability.  For a given group of subjects, there is a fundamental 

distinction between saying that the response is significant relative to the precision4 with 

which that response in measured and saying that it is significant in relation to the inter-

subject variability.  This distinction relates directly to the difference between fixed and 

random-effect analyses.  The following example tries to make this clear.  Consider what 

would happen if we scanned six subjects during the performance of a task and baseline.  We 

then constructed a statistical model, where task-specific effects were modelled separately for 

each subject.  Unknown to us, only one of the subjects activated a particular brain region.  

When we examine the contrast of parameter estimates, assessing the mean activation over all 

the subjects, we see that it is greater than zero by virtue of this subject's activation.  

Furthermore, because that model fits the data extremely well (modelling no activation in five 

subjects and a substantial activation in the sixth) the error variance, on a scan to scan basis, is 

small and the T statistic is very significant.  Can we then say that the group shows an 

activation?  On the one hand, we can say, quite properly, that the mean group response 

embodies an activation but clearly this does not constitute an inference that the group's 

response is significant (i.e. that this sample of subjects shows a consistent activation).  The 

problem here is that we are using the scan to scan error variance and this is not necessarily 

appropriate for an inference about group responses.  In order to make the inference that the 

group showed a significant activation one would have to assess the variability in activation 

effects from subject to subject (using the contrast of parameter estimates for each subject).  

This variability now constitutes the proper error variance.  In this example the variance of 

these six measurements would be large relative to their mean and the corresponding T 

statistic would not be significant. 

   The distinction, between the two approaches above, relates to how one computes the 

appropriate error variance.  The first represents a fixed-effect analysis and the second a 

random-effect analysis (or more exactly a mixed-effects analysis).  In the former the error 

                                                           
4 Precision is the inverse of the variance. 



variance is estimated on a scan to scan basis, assuming that each scan represents an 

independent observation (ignoring serial correlations).  Here the degrees of freedom are 

essentially the number of scans (minus the rank of the design matrix).  Conversely, in 

random-effect analyses, the appropriate error variance is based on the activation from subject 

to subject where the effect per se constitutes an independent observation and the degrees of 

freedom fall dramatically to the number of subjects.  The term ‘random-effect’ indicates that 

we have accommodated the randomness of differential responses by comparing the mean 

activation to the variability in activations from subject to subject.  Both analyses are perfectly 

valid but only in relation to the inferences that are being made: Inferences based on fixed-

effects analyses are about the particular subject[s] studied.  Random-effects analyses are 

usually more conservative but allow the inference to be generalized to the population from 

which the subjects were selected. 

 

A Random-effects analyses (Chapter 12: Random effects analysis) 

The implementation of random-effect analyses in SPM is fairly straightforward and involves 

taking the contrasts of parameters estimated from a first-level (fixed-effect) analysis and 

entering them into a second-level (random-effect) analysis.  This ensures that there is only 

one observation (i.e. contrast) per subject in the second-level analysis and that the error 

variance is computed using the subject to subject variability of estimates from the first level.  

The nature of the inference made is determined by the contrasts entered into the second level 

(see Figure 13).  The second-level design matrix simply tests the null hypothesis that the 

contrasts are zero (and is usually a column of ones, implementing a single sample T test). 

   The reason this multistage procedure emulates a full mixed-effects analyses, using a 

hierarchical observation model (see Chapter 13: Hierarchical models), rests upon the fact 

that the design matrices for each subject are the same (or sufficiently similar).  In this special 

case the estimator of the variance at the second level contains the right mixture of variance 

induced by observation error at the first level and between-subject error at the second.  It is 

important to appreciate this because the efficiency of the design at the first level percolates to 

higher levels.  It is therefore important to use efficient strategies at all levels in a hierarchical 

design. 

 

B Conjunction analyses and population inferences 



In some instances a fixed effects analysis is more appropriate, particularly to facilitate the 

reporting of a series of single-case studies.  Among these single cases it is natural to ask what 

are common features of functional anatomy (e.g. the location of V5) and what aspects are 

subject–specific (e.g. the location of ocular dominance columns).  One way to address 

commonalties is to use a conjunction analysis over subjects.  It is important to understand the 

nature of the inference provided by conjunction analyses of this sort.  Imagine that in 16 

subjects the activation in V5, elicited by a motion stimulus, was great than zero.  The 

probability of this occurring by chance, in the same area, is extremely small and is the p-

value returned by a conjunction analysis using a threshold of p = 0.5 (T = 0) for each subject. 

This result constitutes evidence that V5 is involved in motion processing.  However, note that 

this is not an assertion that each subject activated significantly (we only require the T value 

to be greater than zero for each subject).  In other words, a significant conjunction of 

activations is not synonymous with a conjunction of significant activations. 

   The motivations for conjunction analyses, in the context of multi-subject studies are 

twofold. (i) They provide an inference, in a fixed-effect analysis testing the null hypotheses 

of no activation in any of the subjects, that can be much more sensitive than testing for the 

average activation.  (ii) They can be extended to make inferences about the population as 

described next. 

 If, for any given contrast, one can establish a conjunction of effects over n subjects using a 

test with a specificity of α and sensitivity β, the probability of this occurring by chance can 

be expressed as a function of γ.   γ is the proportion of the population that would have 

activated (see the equation in Figure 13 - lower right panel).  This probability has an upper 

bound αc corresponding to a critical proportion γc that is realized when (the generally 

unknown) sensitivity is one.  In other words, under the null hypothesis that the proportion of 

the population evidencing this effect is less than or equal to γc, the probability of getting a 

conjunction over n subjects is equal to, or less than, αc.  In short a conjunction allows one to 

say, with a specificity of αc, that more than γc of the population show the effect in question.  

Formally, we can view this analysis as a conservative 100(1 - αc)% confidence region for the 

unknown parameter γ. These inferences can be construed as statements about how typical the 

effect is, without saying that it is necessarily present in every subject. 

   In practice, a conjunction analysis of a multi-subject study comprises the following steps:  

(i) A design matrix is constructed where the explanatory variables pertaining to each 

experimental condition are replicated for each subject.  This subject-separable design matrix 



implicitly models subject by condition interactions (i.e. different condition-specific responses 

among sessions).  (ii) Contrasts are then specified that test for the effect of interest in each 

subjects to give a series of SPM{T} that can be reported as a series of ‘single-case’ studies in 

the usual way. (iii) These SPM{T} are combined at a threshold u (corresponding to the 

specificity α in Figure 13) to give a SPM{Tmin} (i.e. conjunction SPM).  The corrected p-

values associated with each voxel are computed as described in Figure 7.  These p-values 

provide for inferences about effects that are common to the particular subjects studied.  

Because we have demonstrated regionally specific conjunctions, one can also proceed to 

make an inference about the population from which these subjects came using the confidence 

region approach described above (see Friston et al 1999b for a fuller discussion). 

 

 

VIII FUNCTIONAL INTEGRATION (SECTION IV) 

 

A Functional and Effective connectivity 

(Chapter 18: Functional integration) 

Imaging neuroscience has firmly established functional specialization as a principle of brain 

organization in man.  The integration of specialized areas has proven more difficult to assess.  

Functional integration is usually inferred on the basis of correlations among measurements of 

neuronal activity.  Functional connectivity has been defined as statistical dependencies or 

correlations among remote neurophysiological events.  However correlations can arise in a 

variety of ways: For example in multi-unit electrode recordings they can result from 

stimulus-locked transients evoked by a common input or reflect stimulus-induced oscillations 

mediated by synaptic connections (Gerstein and Perkel 1969).  Integration within a 

distributed system is usually better understood in terms of effective connectivity: Effective 

connectivity refers explicitly to the influence that one neural system exerts over another, 

either at a synaptic (i.e. synaptic efficacy) or population level.  It has been proposed that "the 

[electrophysiological] notion of effective connectivity should be understood as the 

experiment- and time-dependent, simplest possible circuit diagram that would replicate the 

observed timing relationships between the recorded neurons" (Aertsen and Preißl 1991).  

This speaks to two important points:  (i) Effective connectivity is dynamic, i.e. activity- and 

time-dependent and (ii) it depends upon a model of the interactions.  The estimation 

procedures employed in functional neuroimaging can be classified as (i) those based on 



linear regression models (McIntosh et al 1994, Friston et al 1995d) or (ii) those based on 

nonlinear dynamic models. 

   There is a necessary relationship between approaches to characterizing functional 

integration and multivariate analyses because the latter are necessary to model interactions 

among brain regions.  Multivariate approaches can be divided into those that are inferential 

in nature and those that are data led or exploratory. We will first consider multivariate 

approaches that are universally based on functional connectivity or covariance patterns (and 

are generally exploratory) and then turn to models of effective connectivity (that usually 

allow for some form of inference). 

 

B Eigenimage analysis and related approaches 

(Chapter 19: Functional connectivity) 

Most analyses of covariances among brain regions are based on the singular value 

decomposition (SVD) of between-voxel covariances in a neuroimaging time-series.  In 

Friston et al (1993) we introduced voxel-based principal component analysis (PCA) of 

neuroimaging time-series to characterize distributed brain systems implicated in 

sensorimotor, perceptual or cognitive processes.  These distributed systems are identified 

with principal components or eigenimages that correspond to spatial modes of coherent brain 

activity.  This approach represents one of the simplest multivariate characterizations of 

functional neuroimaging time-series and falls into the class of exploratory analyses.  

Principal component or eigenimage analysis generally uses SVD to identify a set of 

orthogonal spatial modes that capture the greatest amount of variance expressed over time.  

As such the ensuing modes embody the most prominent aspects of the variance-covariance 

structure of a given time-series.  Noting that covariance among brain regions is equivalent to 

functional connectivity renders eigenimage analysis particularly interesting because it was 

among the first ways of addressing functional integration (i.e. connectivity) with 

neuroimaging data.  Subsequently, eigenimage analysis has been elaborated in a number of 

ways.  Notable among these is canonical variate analysis (CVA) and multidimensional 

scaling (Friston et al 1996d,e).  Canonical variate analysis was introduced in the context of 

ManCova (multiple analysis of covariance) and uses the generalized eigenvector solution to 

maximize the variance that can be explained by some explanatory variables relative to error.  

CVA can be thought of as an extension of eigenimage analysis that refers explicitly to some 

explanatory variables and allows for statistical inference. 



   In fMRI, eigenimage analysis (e.g. Sychra et al 1994) is generally used as an exploratory 

device to characterize coherent brain activity.  These variance components may, or may not 

be, related to experimental design and endogenous coherent dynamics have been observed in 

the motor system (Biswal et al 1995).  Despite its exploratory power eigenimage analysis is 

fundamentally limited for two reasons.  Firstly, it offers only a linear decomposition of any 

set of neurophysiological measurements and secondly the particular set of eigenimages or 

spatial modes obtained is uniquely determined by constraints that are biologically 

implausible.  These aspects of PCA confer inherent limitations on the interpretability and 

usefulness of eigenimage analysis of biological time-series and have motivated the 

exploration of nonlinear PCA and neural network approaches (e.g. Mørch et al 1995). 

  Two other important approaches deserve mention here.  The first is independent component 

analysis (ICA).  ICA uses entropy maximization to find, using iterative schemes, spatial 

modes or their dynamics that are approximately independent.  This is a stronger requirement 

than orthogonality in PCA and involves removing high order correlations among the modes 

(or dynamics).  It was initially introduced as spatial ICA (McKeown et al 1998) in which the 

independence constraint was applied to the modes (with no constraints on their temporal 

expression).  More recent approaches use, by analogy with magneto- and 

electrophysiological time-series analysis, temporal ICA where the dynamics are enforced to 

be independent.  This requires an initial dimension reduction (usually using conventional 

eigenimage analysis).  Finally, there has been an interest in cluster analysis (Baumgartner et 

al 1997).  Conceptually, this can be related to eigenimage analysis through multidimensional 

scaling and principal coordinate analysis.  In cluster analysis voxels in a multidimensional 

scaling space are assigned belonging probabilities to a small number of clusters, thereby 

characterizing the temporal dynamics (in terms of the cluster centroids) and spatial modes 

(defined by the belonging probability for each cluster).  These approaches eschew many of 

the unnatural constraints imposed by eigenimage analysis and can be a useful exploratory 

device. 

 

C Characterizing nonlinear coupling among brain areas 

(Chapters 20: Effective connectivity) 

Linear models of effective connectivity assume that the multiple inputs to a brain region are 

linearly separable.  This assumption precludes activity-dependent connections that are 

expressed in one context and not in another.  The resolution of this problem lies in adopting 



models that include interactions among inputs. These interactions or bilinear effects can be 

construed as a context- or activity-dependent modulation of the influence that one region 

exerts over another, where that context is instantiated by activity in further brain regions 

exerting modulatory effects.  These nonlinearities can be introduced into structural equation 

modeling using so-called 'moderator' variables that represent the interaction between two 

regions in causing activity in a third (Büchel et al 1997).  From the point of view of 

regression models modulatory effects can be modeled with nonlinear input-output models 

and in particular the Volterra formulation described above.  In this instance, the inputs are 

not stimuli but activities from other regions.  Because the kernels are high-order they embody 

interactions over time and among inputs and can be thought of as explicit measures of 

effective connectivity (see Figure 14).  An important thing about the Volterra formulation is 

that it has a high face validity and biological plausibility.  The only thing it assumes is that 

the response of a region is some analytic nonlinear function of the inputs over the recent past.  

This function exists even for complicated dynamical systems with many [unobservable] state 

variables.  Within these models, the influence of one region on another has two components;  

(i) the direct or driving influence of input from the first (e.g. hierarchically lower) region, 

irrespective of the activities elsewhere and (ii) an activity-dependent, modulatory component 

that represents an interaction with inputs from the remaining (e.g. hierarchically higher) 

regions.  These are mediated by the first and second order kernels respectively.  The example 

provided in Figure 15 addresses the modulation of visual cortical responses by attentional 

mechanisms (e.g. Treue and Maunsell 1996) and the mediating role of activity-dependent 

changes in effective connectivity. The right panel in Figure 15 shows a characterization of 

this modulatory effect in terms of the increase in V5 responses, to a simulated V2 input, 

when posterior parietal activity is zero (broken line) and when it is high (solid lines). The 

estimation of the Volterra kernels and statistical inference procedure is described in Friston 

and Büchel  (2000c). 

   The key thing about this example is that the most interesting thing is the change in effective 

connectivity from V2 to V5.  Context-sensitive changes in effective connectivity transpire to 

be the most important aspect of functional integration and have two fundamental implications 

for experimental design and analysis.  First, experimental designs for analyses of effective 

connectivity are generally multifactorial.  This is because one factor is needed to evoke 

responses and render the coupling among brain areas measurable and a second factor is 

required to induce changes in that coupling.  The second implication is that models of 



effective connectivity should embrace changes in coupling.  As will be seen in Section IV 

these changes are usually modeled with bilinear terms or interactions.  Bilinear terms appear 

in the simplest models of effective connectivity (e.g. psychophysiological interactions) 

through to nonlinear dynamic causal models (see Chapter 22: Dynamic Causal Modeling). 

 

CONCLUSION 

In this chapter we have reviewed the main components of image analysis and have touched 

briefly on ways of assessing functional integration in the brain.  The key principles of 

functional specialization and integration were used to motivate the various approaches 

considered.  In the remaining chapters of this book we will revisit these procedures and 

disclose the details that underpin each component.  
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Figure Legends 

 

Figure 1 

This schematic depicts the transformations that start with an imaging data sequence and end 

with a statistical parametric map (SPM).  SPMs that can be thought of as 'X-rays' of the 

significance of an effect.  Voxel-based analyses require the data to be in the same anatomical 

space: This is effected by realigning the data (and removing movement-related signal 

components that persist after realignment).  After realignment the images are subject to non-

linear warping so that they match a template that already conforms to a standard anatomical 

space.  After smoothing, the general linear model is employed to (i) estimate the parameters 

of the model and (ii) derive the appropriate univariate test statistic at every voxel (see Figure 

4).  The test statistics that ensue (usually T or F statistics) constitute the SPM.  The final 

stage is to make statistical inferences on the basis of the SPM and Random Field theory (see 

Figure 7) and characterize the responses observed using the fitted responses or parameter 

estimates.   

 

Figure 2 

Schematic illustrating a Gauss-Newton scheme for maximizing the posterior probability 

)|( yp θ  of the parameters required to spatially normalize an image.  This scheme is iterative.  

At each step the conditional estimate of the parameters is obtained by jointly minimizing the 

likelihood and the prior potentials.  The former is the difference between a resampled (i.e. 

warped) version y of the image f and the best linear combination of some templates g.  These 

parameters are used to mix the templates and resample the image to progressively reduce 

both the spatial and intensity differences.  After convergence the resampled image can be 

considered normalized. 

 

Figure 3 

Schematic illustrating different procedures in computational anatomy.  After spatial 

normalization, one has access to the normalized image and the deformation field 

implementing the normalization.  The deformation or tensor field can be analyzed directly 

(deformation-based morphometry) or can be used to derive maps of formal attributes (e.g. 

compression, dilatation, shear etc.).  These maps can then be subject to conventional voxel-

based analyses (tensor-based morphometry).   Alternatively the normalized images can be 



processed (e.g. segmented) to reveal some interesting aspect of anatomy (e.g. the tissue 

composition) and analyzed in a similar way (voxel-based morphometry).  Techniques 

developed for tensor-based morphometry can be absorbed into voxel-based morphometry to 

prove a unified framework. For example, before statistical analysis Jacobian, or voxel-

compression, maps can be multiplied by gray-matter density maps.  This endows volumetric 

changes, derived from the tensor, with tissue specificity, based on the segmentation. 

 

Figure 4 

The general linear model.  The general linear model is an equation expressing the response 

variable Y in terms of a linear combination of explanatory variables in a design matrix X and 

an error term with assumed or known autocorrelation Σ.  In fMRI the data can be filtered 

with a convolution or residual forming matrix (or a combination) S, leading to a generalized 

linear model that includes [intrinsic] serial correlations and applied [extrinsic] filtering5.  

Different choices of S correspond to different estimation schemes as indicated on the upper 

left.  The parameter estimates obtain in a least squares sense using the pseudoinverse 

(denoted by +) of the filtered design matrix.  Generally an effect of interest is specified by a 

vector of contrast weights c that give a weighted sum or compound of parameter estimatesβ ̂ 

referred to as a contrast.  The T statistic is simply this contrast divided by its the estimated 

standard error (i.e. square root of its estimated variance).  The ensuing T statistic is 

distributed with ν v degrees of freedom.  The equations for estimating the variance of the 

contrast and the degrees of freedom associated with the error variance are provided in the 

right-hand panel.  Efficiency is simply the inverse of the variance of the contrast. These 

expressions are useful when assessing the relative efficiency of experimental designs.  The 

parameter estimates can either be examined directly or used to compute the fitted responses 

(see lower left panel).  Adjusted data refers to data from which estimated confounds have 

been removed.  The residuals r obtain from applying the residual-forming matrix R to the 

data.  These residual fields are used to estimate the smoothness of the component fields of 

the SPM used in random field theory (see Figure 7). 
 

                                                           
5 It should be noted that generalised linear models are much more extensive than linear models with non-
spherical Gaussian errors and cover models with non-Gaussian errors.  This means that the generalised linear 
models referred to in this book are the simplest generalisation of general linear models. 



Figure 5 

Hemodynamics elicited by an impulse of neuronal activity as predicted by a dynamical 

biophysical model (see Friston et al 2000a for details).  A burst of neuronal activity causes an 

increase in flow inducing signal that decays with first order kinetics and is down regulated by 

local flow.  This signal increases rCBF with dilates the venous capillaries, increasing volume 

(v).  Concurrently, venous blood is expelled from the venous pool decreasing 

deoxyhemoglobin content (q).  The resulting fall in deoxyhemoglobin concentration leads to 

a transient increases in BOLD (blood oxygenation level dependent) signal and a subsequent 

undershoot. 

 

Figure 6 

Temporal basis functions offer useful constraints on the form of the estimated response that 

retain (i) the flexibility of FIR models and (ii) the efficiency of single regressor models.  The 

specification of these constrained FIR models involves setting up stimulus functions x(t) that 

model expected neuronal changes [e.g. boxcars of epoch-related responses or spikes (delta 

functions) at the onset of specific events or trials].  These stimulus functions are then 

convolved with a set of basis functions )(ufi  of peri-stimulus time u, that model the HRF, in 

some linear combination.  The ensuing regressors are assembled into the design matrix.  The 

basis functions can be as simple as a single canonical HRF (middle), through to a series of 

delayed delta functions (bottom).  The latter case corresponds to a FIR model and the 

coefficients constitute estimates of the impulse response function at a finite number of 

discrete sampling times.  Selective averaging in event-related fMRI (Dale and Buckner 1997) 

is mathematically equivalent to this limiting case. 

 

Figure 7 

Schematic illustrating the use of Random Field theory in making inferences about SPMs.  If 

one knew where to look exactly, then inference can be based on the value of the statistic at a 

specified location in the SPM, without correction.  However, if one did not have an 

anatomical constraint a priori, then an adjustment for multiple dependent comparisons has to 

be made.  These corrections are usually made using distributional approximations from GRF 

theory.  This schematic deals with a general case of n SPM{T} whose voxels all survive a 

common threshold  u (i.e. a conjunction of n component SPMs).  The central probability, 

upon which all voxel, cluster or set-level inferences are made, is the probability P of getting c 



or more clusters with k or more resels (resolution elements) above this threshold.  By 

assuming that clusters behave like a multidimensional Poisson point process (i.e. the Poisson 

clumping heuristic) P is simply determined.  The distribution of c is Poisson with an 

expectation that corresponds to the product of the expected number of clusters, of any size, 

and the probability that any cluster will be bigger than k resels.  The latter probability is 

shown using a form for a single Z-variate field constrained by the expected number of resels 

per cluster (<.> denotes expectation or average).  The expected number of resels per cluster is 

simply the expected number of resels in total divided by the expected number of clusters.  

The expected number of clusters is estimated with the Euler characteristic (EC) (effectively 

the number of blobs minus the number of holes).  This estimate is in turn a function of the 

EC density for the statistic in question (with ν degrees of freedom v) and the resel counts.  The 

EC density is the expected EC per unit of D-dimensional volume of the SPM where the D 

dimensional volume of the search space is given by the corresponding element in the vector 

of resel counts.  Resel counts can be thought of as a volume metric that has been normalized 

by the smoothness of the SPMs component fields expressed in terms of the full width at half 

maximum (FWHM).  This is estimated from the determinant of the variance-covariance 

matrix of the first spatial derivatives of e, the normalized residual fields r (from Figure 4).  In 

this example equations for a sphere of radius θ are given.  Φ denotes the cumulative density 

function for the sub-scripted statistic in question. 

 

Figure 8 

Top right: Design matrix: This is an image representation of the design matrix.  Contrasts:  

These are the vectors of contrast weights defining the linear compounds of parameters tested.  

The contrast weights are displayed over the column of the design matrix that corresponds to 

the effects in question.  The design matrix here includes condition-specific effects (boxcars 

convolved with a hemodynamic response function).  Odd columns correspond to stimuli 

shown under isochromatic conditions and even columns model responses to isoluminant 

stimuli.  The first two columns are for stationary stimuli and the remaining columns are for 

conditions of increasing speed.  The final column is a constant term.  Top left: SPM{T}:  

This is a maximum intensity projection of the SPM{T} conforming to the standard 

anatomical space of Talairach and Tournoux (1988).  The T values here are the minimum T 

values from both contrasts, thresholded at p = 0.001 uncorrected.  The most significant 



conjunction is seen in left V5.  Lower panel: Plot of the condition-specific parameter 

estimates for this voxel.  The T value was 9.25 (p<0.001 corrected - see Figure 7). 

 

Figure 9 

Results showing how to assess an interaction using an event-related design.  Subjects viewed 

stationary monochromatic stimuli that occasionally changed color and moved at the same 

time.  These compound events were presented under two levels of attentional set (attention to 

color and attention to motion), The event-related responses are modeled, in an attention-

specific fashion by the first four regressors (delta functions convolved with a hemodynamic 

response function and its derivative) in the design matrix on the right.  The simple main 

effects of attention are modeled as similarly convolved boxcars.  The interaction between 

attentional set and visually evoked responses is simply the difference in evoked responses 

under both levels of attention and is tested for with the appropriate contrast weights (upper 

right).  Only the first 256 rows of the design matrix are shown.  The most significant 

modulation of evoked responses, under attention to motion, was seen in left V5 (insert).  The 

fitted responses and their standard errors are shown on the left as functions of peristimulus 

time. 

 

Figure 10 

Modulation transfer function of a canonical hemodynamic response function (HRF), with 

(broken line) and without (solid line) the application of a high-pass filter.  This transfer 

function corresponds to the spectral density of a white noise process after convolution with 

the HRF and places constraints on the frequencies that are survive convolution with the HRF.  

This follows from convolution theorem (summarized in the equations).  The insert is the 

filter expressed in time, corresponding to the spectral density that obtains after convolution 

with the HRF and high-pass filtering. 

 

Figure 11 

Left panels: Volterra kernels from a voxel in the left superior temporal gyrus at -56, -28, 

12mm.  These kernel estimates were based on a single subject study of aural word 

presentation at different rates (from 0 to 90 words per minute) using a second order 

approximation to a Volterra series expansion modeling the observed hemodynamic response 

to stimulus input (a delta function for each word).  These kernels can be thought of as a 



characterization of the second order hemodynamic response function.  The first order kernel 

1κ (upper panel) represents the (first order) component usually presented in linear analyses.  

The second order kernel (lower panel) is presented in image format.  The color scale is 

arbitrary; white is positive and black is negative.  The insert on the right represents T
11κκ , the 

second order kernel that would be predicted by a simple model that involved linear 

convolution with 1κ  followed by some static nonlinearity. 

Right panel: Integrated responses over a 32-second stimulus train as a function of SOA.  

Solid line: Estimates based on the nonlinear convolution model parameterized by the kernels 

on the left. Broken line: The responses expected in the absence of second order effects (i.e. in 

a truly linear system).  Dots:  Empirical averages based on the presentation of actual stimulus 

trains. 

 

Figure 12 

Efficiency as a function of occurrence probabilities p. for a model X formed by post-

multiplying S (a matrix containing n columns, modeling n possible event-related responses 

every SOA) by B.  B is a random binary vector that determines whether the nth response is 

included in X or not, where pB >=< .  Right panels: A comparison of some common 

designs. A graphical representation of the occurrence probabilities p expressed as a function 

of time (seconds) is shown on the left and the corresponding efficiency is shown on the right.  

These results assume a minimum SOA of one second, a time-series of 64 seconds and a 

single trial-type.  The expected number of events was 32 in all cases (apart from the first).  

Left panels: Efficiency in a stationary stochastic design with two event types both presented 

with probability p every SOA.  The upper graph is for a contrast testing for the response 

evoked by one trial type and the lower graph is for a contrast testing for differential 

responses. 

 

Figure 13 

Schematic illustrating the implementation of random-effect and conjunction analyses for 

population inference.  The lower right graph shows the probability p(n) of obtaining a 

conjunction over n subjects, conditional on a certain proportion γ of the population 

expressing the effect, for a test with specificity of α = 0.05, at several sensitivities (β = 1, 0.9, 

0.8 and 0.6).  The broken lines denote the critical specificity for population inference αc and 

the associated proportion of the population γc. 



 

Figure 14 

Schematic depicting the causal relationship between the outputs and the recent history of the 

inputs to a nonlinear dynamical system, in this instance a brain region or voxel.  This 

relationship can be expressed as a Volterra series, which expresses the response or output y(t) 

as a nonlinear convolution of the inputs u(t), critically without reference to any [hidden] state 

variables.  This series is simply a functional Taylor expansion of y(t) as a function of the 

inputs over the recent past.  ),( 1 ii σσκ K  is the ith order kernel.  Volterra series have been 

described as a 'power series with memory' and are generally thought of as a high-order or 

'nonlinear convolution' of the inputs to provide an output.  Volterra kernels are useful in 

characterizing the effective connectivity or influences that one neuronal system exerts over 

another because they represent the causal characteristics of the system in question.  

Neurobiologically they have a simple and compelling interpretation – they are synonymous 

with effective connectivity.  It is evident that the first-order kernel embodies the response 

evoked by a change in input at 1σ−t .  In other words it is a time-dependant measure of 

driving efficacy.  Similarly the second order kernel reflects the modulatory influence of the 

input at 1σ−t  on the evoked response at 2σ−t .  And so on for higher orders. 

 

Figure 15 

Left: Brain regions and connections comprising an effective connectivity model formulated 

in terms of a Volterra series (see Figure 14).  Right: Characterization of the effects of V2 

inputs on V5 and their modulation by posterior parietal cortex (PPC).  The broken lines 

represent estimates of V5 responses when PPC activity is zero, according to a second order 

Volterra model of effective connectivity with inputs to V5 from V2, PPC and the pulvinar 

(PUL).  The solid curves represent the same response when PPC activity is one standard 

deviation of its variation over conditions.  It is evident that V2 has an activating effect on V5 

and that PPC increases the responsiveness of V5 to these inputs.  In this study subjects were 

studied with fMRI under identical stimulus conditions (visual motion subtended by radially 

moving dots) whilst manipulating the attentional component of the task (detection of velocity 

changes).  The insert shows all the voxels in V5 that evidenced a modulatory effect (p < 0.05 

uncorrected).   These voxels were identified by thresholding a SPM{F} testing for the 

contribution of second order kernels involving V2 and PPC while treating all other 

components as nuisance variables. 
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Interactions between set and event-related responses:
Attentional modulation of V5 responses

attention to motion

attention to colour



A Signal processing perspective

by convolution theorem

Experimental variance
(~32s cycles)
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Nonlinear saturation
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Efficiency and fMRI design:
The design matrix as a stochastic variable

Probability {p} Efficiency

SOA {sec} Probability {p}

Probability {p}

Efficiency - evoked responses

Efficiency - evoked differences

SOA {sec}



Conjunction analysisConjunction analysis

DataData

contrastscontrasts

Random-effects analysisRandom-effects analysis
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2nd level design matrix

1st level design matrix
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Volterra series a general nonlinear input-state-output characterization

response y(t)inputs u(t)

kernels

Activity in distal 
regions
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n.b. Volterra kernels are synonymous with effective connectivity



Changes in V5 response to V2 inputs depend on 
PPC activity

i.e. a modulatory component of V5 responses

SPM{F}

PPC activity = 1

PPC activity = 0

PPCPPC

V5V5

PULPUL

V2V2


