
 1

Haemodynamic modelling 
 

 

 

Glaser DE, Friston KJ, Mechelli A, Turner R and Price CJ 

 

 

 

 



 2

1. Introduction 
There is a growing appreciation of the importance of nonlinearities in evoked responses 

in fMRI, particularly with the advent of event-related fMRI.  These nonlinearities are 

commonly expressed as interactions among stimuli that can lead to the suppression and 

increased latency of responses to a stimulus that are incurred by a preceding stimulus.  

We have presented previously a model-free characterisation of these effects using generic 

techniques from nonlinear system identification, namely a Volterra series formulation.  

At the same time Buxton et al (1998) described a plausible and compelling dynamical 

model of haemodynamic signal transduction in fMRI.  Subsequent work by Mandeville et 

al (1999) provided important theoretical and empirical constraints on the form of the 

dynamic relationship between blood flow and volume that underpins the evolution of the 

fMRI signal.  In this chapter we combine these system identification and model-based 

approaches and ask whether the Balloon model is sufficient to account for the nonlinear 

behaviours observed in real time series.  We conclude that it can, and furthermore the 

model parameters that ensue are biologically plausible.  This conclusion is based on the 

observation that the Balloon model can produce Volterra kernels that emulate empirical 

kernels. 

   To enable this evaluation we have had to embed the Balloon model in a haemodynamic 

input-state-output model that included the dynamics of perfusion changes that are 

contingent on underlying synaptic activation.  This chapter presents (i) the full 

haemodynamic model (ii), how its associated Volterra kernels can be derived and (iii) 

addresses the model’s validity in relation to empirical nonlinear characterisations of 

evoked responses in fMRI and other neurophysiological constraints.   
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2. Background 
This chapter is about modelling the relationship between neural activity and the BOLD 

(blood oxygenation level dependent) fMRI signal. Before describing a comprehensive 

model which can account for the most important types of non-linearity empirically 

observed from fMRI studies, it is worth briefly putting this work into its proper context. 

Essentially there are three things that need to be modelled in order to understand the 

neural-BOLD relationship. We must be clear about which aspects of neural activity are of 

interest to us, and also which give rise to the signals we measure. We should clarify the 

nature and properties of the mechanisms relating this activity, through metabolic demand, 

to the blood supply to the tissue containing the neurons. Finally, we need a model of how 

these changes in blood supply affect the signal measured in the scanner. 

   That there is a connection between blood supply and brain activity has been known for 

over 100 years. In their seminal paper, Roy and Sherrington (1890) concluded that 

functional activity increased blood flow and inferred that there was a coupling generating 

increased blood flow in response to increased metabolic demand. Interestingly, their 

observation of the consequences of metabolic demand came before the demonstration of 

the increase in demand itself. It was more than seventy years later that the regional 

measurement of the metabolic changes was convincingly achieved using an 

autoradiographic technique which used a substitute for glucose, called deoxyglucose 

(2DG) radioactively labelled with C14. 2DG enters the cells by the same mechanisms as 

glucose but is not metabolized and thus accumulates inside the cells at a rate which is 

dependent on their metabolic activity. By examining the density of labelled 2DG in brain 

slices, Sokoloff and colleagues (Kennedy et al, 1976) obtained functional maps of the 

activity during the period in which 2DG was injected. This activity period was generally 

around 45 mins, which limited the time resolution of the technique. In addition, only one 

measurement per subject could be made since the technique involves the sacrifice of the 

animal (further developments allowed the injection of two tracers, but this was still very 

restrictive). However the spatial resolution could be microscopic since the label is 

contained in the cells themselves rather than being limited to the blood vessels 

surrounding them. Through theoretical modelling of the enzyme kinetics for the uptake of 

2DG and practical experiments, the relationships between neural function and glucose 
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metabolism have been established and underpin the development of  “metabolic 

encephalography”. 

   Positron emission tomography (PET) measures an intermediate stage in the chain 

linking neural activity via metabolism to the BOLD signal. By using a tracer such as O15 

labelled water, one can measure changes in regional cerebral blood flow (rCBF) which 

accompany changes in neural activity. This was originally thought of as an 

autoradiographic technique, but has many advantages over 2DG and is clearly much less 

invasive making it suitable for human studies. Also, substantially shorter times are 

required for measurements, typically well below a minute. As suggested above, the 

elucidation of the mechanisms underlying the coupling of neural activity and blood flow 

lags behind the exploitation of the phenomenon. There are several candidate signals 

including the diffusible second messengers such as nitric oxide or intravascular responses 

to changes in blood oxygenation level caused by changes in oxygen consumption, and 

this remains an active area of research independently of its consequences for models of 

functional brain imaging.  

   In the treatment below, we follow evidence from Miller et al (2000) among others, and 

assume that blood flow and neural activity are linearly related over normal ranges. 

However, there are ongoing arguments about the nature of the linkage between neural 

activity, the rate of metabolism of oxygen and cerebral blood flow. Some PET studies 

have suggested that while an increase in neural activity produces a proportionate increase 

in glucose metabolism and cerebral blood flow, oxygen consumption does not increase 

proportionately (PT Fox and ME Raichle, 1986). This decoupling between blood flow 

and oxidative metabolism is known as the ‘anaerobic brain’ hypothesis by analogy with 

muscle physiology. Arguing against this position, other groups have adopted an even 

more radical interpretation. They suggest that immediately following neural stimulation 

there is a transient decoupling between neural activity and blood flow (Vanzetta and 

Grinvald, 1999). By this argument, there is an immediate increase in oxidative 

metabolism which produces a transient localized increase in deoxyhaemoglobin. Only 

later do the mechanisms regulating blood flow kick in causing the observed increase in 

rCBF and hence blood volume. Evidence for this position comes from optical imaging 

studies and depends on modelling the absorption and light-scattering properties of 
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cortical tissue and the relevant chromophores, principally (de)oxyhaemoglobin. Other 

groups have questioned these aspects of the work, and the issue remains controversial 

(Lindauer et al 2001). One possible consequence of this position is that better spatial 

resolution would be obtained by focussing on this early phase of the haemodynamic 

response. 

      As this chapter will demonstrate, the situation is even more complicated with regard 

to functional magnetic resonance imaging (fMRI) using a blood oxygenation level 

dependent (BOLD) contrast. As its name suggests, the technique exploits the amount of 

oxygen in the blood as a marker for neural activity, exploiting the fact that 

deoxyhaemoglobin is less diamagnetic than oxyhaemoglobin. Blood oxygenation level 

refers to the proportion of oxygenated blood but the signal depends on the total amount 

of deoxyhaemoglobin and so the total volume of blood is a factor. Another factor is the 

change in the amount of oxygen leaving the blood to enter the tissue and meet changes in 

metabolic demand. Since the blood which flows into the capillary bed is fully 

oxygenated, changes in blood flow also change blood oxygenation level. Finally the 

elasticity of the vascular tissue of the veins and venules means that an increase in blood 

flow causes an increase in blood volume. All these factors are modelled and discussed in 

the body of the chapter. Of course even more factors can be considered; for example 

Mayhew and colleagues (Zheng et al, 2002) have extended the treatment described here 

to include (among others) the dynamics of oxygen buffered in the tissue. 

   Notwithstanding these complications it is a standard assumption that “the fMRI signal 

is approximately proportional to a measure of local neural activity” (reviewed in Heeger 

& Ress, 2002), and this linear model is still used in many studies particularly where 

interstimulus intervals are more than a second or two. Empirical evidence against this 

hypothesis is outlined below, but note that there are now theoretical objections too. In 

particular, the models which have been developed to account for observed non-linearities 

embody our best knowledge about the physiological mechanisms at work in the 

regulation of blood volume and oxygenation. Since they generate non-linearities in 

BOLD response given reasonable choices for the parameters (discussed below), one 

might consider the genie to have been let out of the bottle. 
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   The last link in the chain concerns the relation between a complete description of the 

relevant aspects of blood supply and the physics underlying the BOLD signal. While this 

is not the principal focus of this chapter, a couple of simple points are worth emphasising. 

Firstly, differently sized blood vessels will give different changes in BOLD signal for the 

same changes in blood flow, volume and oxygenation. This is because of differences in 

the inhomogeneity of the magnetic fields in their vicinity. Secondly, and for partially 

related reasons, heuristic equations as employed in this and other models are dependent 

on the strength of the magnet. In particular the equation used here may be relevant only 

for 1.5 T scanners, although other versions for different field strength have been 

developed. 

   Finally a word about “neural activity”. So far in the discussion we have deliberately not 

specified what type of neural activity we are considering. Here again there are theoretical 

and practical issues. Firstly it is worth remembering that different electrophysiological 

measures can emphasise different elements of neural firing (also see below). In particular, 

recording of multiple single units with an intracortical microelectrode can tend to sample 

action potentials from large pyramidal output neurons. Such studies are frequently 

referred to when characterising the response properties of a primate cortical area. 

However, consideration of the metabolic demands of various cellular processes suggests 

that spiking is not the major drain on the resources of a cell but rather that synaptic 

transmission and conductances of post-synaptic potentials as well as cytoskeletal turnover 

are the dominating forces. Of course such processes are just as important, whether in 

interneurons and whether excitatory or inhibitory. An example of the difference between 

these two views of the cortex might be feed-forward vs. feed-back activity in low-level 

visual cortex. Indeed BOLD fMRI experiments in humans have shown good agreement 

with studies of spiking in V1 in response to modulating the contrast of a visual stimulus, 

but attentional (top-down) modulation effects in V1 have proved elusive in monkey 

electrophysiological studies but robust with BOLD studies in humans. Aside from their 

neurobiological significance, such discrepancies must be born in mind when defining the 

neural activity to which the BOLD signal might be linearly responding. 

   A further subtlety relates to the modelled time course of the neural activity. Even in 

everyday analysis of functional imaging data it is natural to separate the model of the 
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response into neural and haemodynamic components. However, a typical set of spikes or 

block functions often used to model the neural activity will fail to capture adaptation and 

response transients which should be well known from the neurophysiological literature. 

(Note that a recent set of studies has deliberately exploited these effects (Grill-Spector & 

Malach, 2001)). In the worst case an elaborate model designed to capture non-linearities 

in the BOLD response may inadvertently pick up such components of the neural 

response, and in any case careful stimulus design and modelling of neural responses is 

called for. 

   Recent studies using simultaneous fMRI and intracortical electrical recording in 

monkey have empirically validated many of the theoretical points considered above 

(Logothetis et al, 2001). In particular, the closeness of the BOLD signal to LFP and 

MUA rather than spiking activity have been emphasised. These studies also demonstrated 

that the linear assumption can predict up to 90% of the variance in BOLD responses in 

some cortical regions. However there was considerable variability in the accuracy of 

prediction, with nearby sites sometimes being substantially worse. Overall, substantial 

non-linearities were observed between stimulus contrast, blood flow and BOLD signals. 

   Having surveyed the general issues surrounding the coupling of neural activity and the 

BOLD signal, we will now proceed to outline a specific and detailed model. This should 

be considered as a partial instantiation of current knowledge and further extensions of 

this model have been proposed which incoporate new data. Mechelli (this volume) also 

presents further empirical verification of the parameter regime proposed here. What 

follows is largely a reprise of Friston et al (2000), and contains some advanced 

mathematical material 
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3. Nonlinear evoked responses 
We now focus on the nonlinear aspects of evoked responses in functional neuroimaging 

and presents a dynamical approach to modelling and characterising event-related signals 

in fMRI.  We aim to: (i) show that the Balloon/Windkessel model (Buxton and Frank 

1997, Buxton et al 1998, Mandeville et al 1999) is sufficient to account for nonlinearities 

in event-related responses that are seen empirically and (ii) describe a nonlinear 

dynamical model that couples changes in synaptic activity to fMRI signals.  This 

haemodynamic model obtains by combining the Balloon/Windkessel model (henceforth 

Balloon model) with a model of how synaptic activity causes changes in regional flow. 

   In Friston et al (1994) we presented a linear model of haemodynamic responses in 

fMRI time-series, wherein underlying neuronal activity (inferred on the basis of changing 

stimulus or task conditions) is convolved, or smoothed with a haemodynamic response 

function.  In Friston et al (1998) we extended this model to cover nonlinear responses 

using a Volterra series expansion.  At the same time Buxton and colleagues developed a 

mechanistically compelling model of how evoked changes in blood flow were 

transformed into a blood oxygenation level dependent (BOLD) signal (Buxton et al 

1998).  A component of the Balloon model, namely the relationship between blood flow 

and volume, was then elaborated in the context of standard windkessel theory by 

Mandeville et al (1999). The Volterra approach, in contradistinction to other nonlinear 

characterisation of haemodynamic responses (c.f. Vazquez and Noll 1996), is model-

independent, in the sense that Volterra series can model the behaviour of any nonlinear 

time-invariant dynamical system1.  The principal aim of this work was to see if the 

theoretically motivated Balloon model would be sufficient to explain the nonlinearities 

embodied in a purely empirical Volterra characterisation.   

                                                           
1 In principle Volterra series can represent any dynamical input-state-output system and in this sense a 

characterisation in terms of Volterra kernels is model independent.  However, by using basis functions to 

constrain the solution space, constraints are imposed on the form of the kernels and, implicitly, the 

underlying dynamical system (i.e. state-space representation).  The characterisation is therefore only 

assumption free to the extent the basis set is sufficiently comprehensive. 
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3.1. Volterra Series 
Volterra series express the output of a system, in this case the BOLD signal from a 

particular voxel, as a function of some input, here the assumed synaptic activity that is 

changed experimentally.  This series is a function of the input over its recent history and 

is expressed in terms of generalised convolution kernels.  Volterra series are often 

referred to as nonlinear convolutions or polynomial expansions with memory.  They are 

simply Taylor expansions extended to cover dynamical input-state-output systems by 

considering the effect of the input now and at all times in the recent past.  The zeroth 

order kernel is simply a constant about which the response varies.  The first order kernel 

represents the weighting applied to a sum of inputs over the recent past (c.f. the 

haemodynamic response function) and can be thought of as the change in output for a 

change in the input at each time point.  Similarly, the second order coefficients represent 

interactions that are simply the effect of the input at one point in time on its contribution 

at another.  The second order kernel comprises coefficients that are applied to interactions 

among (i.e. products of) inputs, at different times in the past, to predict the response. 

   In short the output can be considered a nonlinear convolution of the input where 

nonlinear behaviours are captured by high order kernels.  For example the presence of a 

stimulus can be shown to attenuate the magnitude of, and induce a longer latency in, the 

response to a second stimulus that occurs within a second or so.  The example shown in 

Figure 1 comes from our previous analysis (Friston et al 1998) and shows how a 

preceding stimulus can modify the response to a subsequent stimulus.  This sort of effect 

led to the notion of haemodynamic refractoriness and is an important example of 

nonlinearity in fMRI time-series. 

   The important thing about Volterra series is that they do not refer to all the hidden state 

variables that mediate between the input and output (e.g. blood flow, venous volume, 

oxygenation, the dynamics of endothelium derived relaxing factor, kinetics of cerebral 

metabolism etc.).  This renders them very powerful because they provide for a complete 

specification of the dynamical behaviour of a system without ever having to measure the 

state variables or make any assumptions about how these variables interact to produce a 

response.  On the other hand the Volterra formulation is impoverished because it yields 

no mechanistic insight into how the response is mediated.  The alternative is to posit 
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some model of interacting state variables and establish the validity of that model in 

relation to observed input-output behaviours and the dynamics of the state variables 

themselves.  This involves specifying a series of differential equations that express the 

change in one state variable as a function of the others and the input.  Once these 

equations are specified the equivalent Volterra representation can be derived analytically 

(see the Appendix for details).  The Balloon model is a comprehensive example of  such 

a model. 

3.2. The Balloon model 
The Balloon model (Buxton and Frank 1997, Buxton et al 1998) is an input-state-output 

model with two state variables: volume (v) and deoxyhaemoglobin content (q).  The input 

to the system is blood flow (fin) and the output is the BOLD signal (y).  The BOLD signal 

is partitioned into an extra and intra-vascular component, weighted by their respective 

volumes.  These signal components depend on the deoxyhaemoglobin content and render 

the signal a nonlinear function of v and q.  The effect of flow on v and q (see below) 

determines the output and it is these effects that are the essence of the Balloon model: 

Increases in flow effectively inflate a venous ‘balloon’ such that deoxygenated blood is 

diluted and expelled at a greater rate.  The clearance of deoxyhaemoglobin reduces intra-

voxel dephasing and engenders an increase in signal.  Before the balloon has inflated 

sufficiently the expulsion and dilution may be insufficient to counteract the increased 

delivery of deoxygenated blood to the venous compartment and an ‘early dip’ in signal 

may be expressed.  After the flow has peaked, and the balloon has relaxed again, reduced 

clearance and dilution contribute to the post-stimulus undershoot commonly observed.   

This is a simple and plausible model that is predicated on a minimal set of assumptions 

and relates closely to the windkessel formulation of Mandeville et al (1999).  

Furthermore the predictions of the Balloon model concur with the steady-state models of 

Hoge and colleagues, and their elegant studies of the relationship between blood flow and 

oxygen consumption in human visual cortex (e.g. Hoge et al 1999). 

   The Balloon model is inherently nonlinear and may account for the sorts of nonlinear 

interactions revealed by the Volterra formulation.  One simple test of this hypothesis is to 

see if the Volterra kernels associated with the Balloon model compare with those derived 

empirically.  The Volterra kernels estimated in Friston et al (1998) clearly did not use 
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flow as input because flow is not measurable with BOLD fMRI.  The input comprised a 

stimulus function as an index of synaptic activity.  In order to evaluate the Balloon model 

in terms of these Volterra kernels it has to be extended to accommodate the dynamics of 

how flow is coupled to synaptic activity encoded in the stimulus function.  This chapter 

presents one such extension. 

In summary the Balloon model deals with the link between flow and BOLD signal.  By 

extending the model to cover the dynamic coupling of synaptic activity and flow a 

complete model, relating experimentally-induced changes in neuronal activity to BOLD 

signal, obtains.  The input-output behaviour of this model can be compared to the real 

brain in terms of their respective Volterra kernels. 

The remainder of this chapter is divided into three sections.  In the next section we 

present a haemodynamic model of the coupling between synaptic activity and BOLD 

response that builds upon the Balloon model.  The second section presents an empirical 

evaluation of this model by comparing its Volterra kernels with those obtained using real 

fMRI data.  This is not a trivial exercise because; (i) there is no guarantee that the 

Balloon model could produce the complicated forms of the kernels seen empirically and, 

(ii) even if it could, the parameters needed to do so may be biologically implausible.  This 

section provides estimates of these parameters, which allow some comment on the face 

validity of the model, in relation to known physiology.  The final section presents a 

discussion of the results in relation to known biophysics and neurophysiology. 

   This chapter is concerned with the validation and evaluation of the Balloon model, in 

relation to the Volterra characterisations, and the haemodynamic model presented below 

in relation to real haemodynamics.  Subsequent papers will use the model to address 

some important issues related to experimental design and the sorts of neuronal dynamics 

that BOLD signals are most sensitive to. 

4. The haemodynamic model 
In this section we describe a haemodynamic model that mediates between synaptic 

activity and measured BOLD responses.  This model essentially combines the Balloon 

model and a simple linear dynamical model of changes in regional cerebral blood flow 

(rCBF) caused by neuronal activity.  The model architecture is summarised in Figure 2.  
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To motivate the model components more clearly we will start at the output and work 

towards the input. 

4.1. The Balloon component 
This component links rCBF and the BOLD signal as described in Buxton et al (1998).  

All variables are expressed in normalised form, relative to resting values.  The BOLD 

signal ),,()( 0Eqvty λ=  is taken to be a static nonlinear function of normalised venous 

volume (v), normalised total deoxyhaemoglobin voxel content (q) and resting net oxygen 

extraction fraction by the capillary bed (E0)   
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where V0 is resting blood volume fraction.  This signal comprises a volume-weighted sum 

of extra- and intra-vascular signals that are functions of volume and deoxyhaemoglobin 

content.  The latter are the state variables whose dynamics need specifying.  The rate of 

change of volume is simply 

 

   ( )vffv outin −=&0τ       2 

 

See Mandeville et al (1999) for an excellent discussion of this equation in relation to 

windkessel theory.  Eq(2) says that volume changes reflect the difference between inflow 

inf  and outflow outf  from the venous compartment with a time constant 0τ .  This 

constant represents the mean transit time (i.e. the average time it takes to traverse the 

venous compartment or for that compartment to be replenished) and is 00 / FV  where 

0F is resting flow. The physiology of the relationship between flow and volume is 

determined by the evolution of the transit time.  Mandeville et al (1999) reformulated the 

temporal evolution of transit time into a description of the dynamics of resistance and 

capacitance of the balloon using windkessel theory (‘windkessel’ means leather bag).  
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This enabled them to posit a form for the temporal evolution of a downstream elastic 

response to arteriolar vasomotor changes and estimate mean transit times using 

measurements of volume and flow, in rats, using fMRI and laser-Doppler flowmetry.  We 

will compare these estimates to our empirical estimates in the next section. 

   Note that outflow is a function of volume.  This function models the balloon-like 

capacity of the venous compartment to expel blood at a greater rate when distended.  We 

model it with a single parameter α  based on the windkessel model 

 

    ( ) α/1vvfout =       3 

 

where βγα +=/1 . (c.f. Eq(6) in Mandeville et al 1999).  2=γ  represents laminar flow. 

1>β  models diminished volume reserve at high pressures and can be thought of as the 

ratio of the balloon’s capacitance to its compliance.  At steady state empirical results 

from PET suggest 38.0≈α  (Grubb et al 1974).  However, when flow and volume are 

changing dynamically, this value is smaller.  Mandeville et al (1999) were the first to 

measure the dynamic flow-volume relationship and estimated 18.0≈α , after 6 seconds 

of stimulation, with a projected asymptotic [steady-state] value of 0.36. 

   The change in deoxyhaemoglobin q&  reflects the delivery of deoxyhaemoglobin into the 

venous compartment minus that expelled (outflow times concentration) 
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where ( )0, EfE in  is the fraction of oxygen extracted from the inflowing blood.  This is 

assumed to depend on oxygen delivery and is consequently flow-dependent.  A 

reasonable approximation for a wide range of transport conditions is (Buxton et al 1998)  
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The second term in Eq(4) represents an important nonlinearity: The effect of flow on 

signal is largely determined by the inflation of the balloon, resulting in an increase of 

( )vfout  and clearance of deoxyhaemoglobin.  This effect depends upon the concentration 

of deoxyhaemoglobin such that the clearance attained by the outflow will be severely 

attenuated when the concentration is low (e.g. during the peak response to a prior 

stimulus).  The implications of this will be illustrated in the next section. 

   This concludes the Balloon model component, where there are only three unknown 

parameters that determine the dynamics ατ  and  , 00E , namely resting oxygen extraction 

fraction )( 0E , mean transit time )( 0τ  and a stiffness exponent )(α  specifying the flow-

volume relationship of the venous balloon.  The only thing required, to specify the BOLD 

response, is inflow. 

 

4.2. rCBF component 
It is generally accepted that, over normal ranges, blood flow and synaptic activity are 

linearly related.  A recent empirical verification of this assumption can be found in Miller 

et al (2000) who used MRI perfusion imaging to address this issue in visual and motor 

cortices.  After modelling neuronal adaptation they were able to conclude, "Both rCBF 

responses are consistent with a linear transformation of a simple nonlinear neural 

response model".  Furthermore our own work using PET and fMRI replications of the 

same experiments suggests that the observed nonlinearities enter into the translation of 

rCBF into a BOLD response (as opposed to a nonlinear relationship between synaptic 

activity and rCBF) in the auditory cortices (see Friston et al 1998).  Under the constraint 

that the dynamical system linking synaptic activity and rCBF is linear we have chosen the 

most parsimonious model 

 

     sf in =&      6 

 

where s is some flow inducing signal defined, operationally, in units corresponding to the 

rate of change of normalised flow (i.e. sec-1).  Although it may seem more natural to 

express the effect of this signal directly on vascular resistance (r), for example ,sr −=&  



 15

Eq(6) has the more plausible form.  This is because the effect of signal (s) is much 

smaller when r is small (when the arterioles are fully dilated signals such as endothelium-

derived relaxing factor or nitric oxide will cause relatively small decrements in 

resistance).  This can be seen by noting Eq(6) is equivalent to srr 2−=& , where rf in /1= . 

   The signal is assumed to subsume many neurogenic and diffusive signal sub-

components and is generated by neuronal activity u(t) 

 

   finftus ττε /)1(s/ )( s −−−=&      7 

 

fττε  and  , s  are the three unknown parameters that determine the dynamics of this 

component of the haemodynamic model.  They represent the efficacy with which 

neuronal activity causes an increase in signal, the time-constant for signal decay or 

elimination and the time-constant for autoregulatory feedback from blood flow.  The 

existence of this feedback term can be inferred from; (i) post-stimulus undershoots in 

rCBF (e.g. Irikura et al 1994) and (ii) the well-characterised vasomotor signal in optical 

imaging (Mayhew et al 1998).  The critical aspect of the latter oscillatory (~0.1 Hz) 

component of intrinsic signals is that it shows variable phase relationships from region to 

region, supporting strongly the notion of local closed-loop feedback mechanisms as 

modelled in Eq(6) and Eq(7). 

 

There are three unknown parameters for each of the two components of the 

haemodynamic model above (see also Figure 2 for a schematic summary). Figure 3 

illustrates the behaviour of the haemodynamic model for typical values of the six 

parameters (  8.0 ,2.0 ,1 ,4.0 ,8.0 ,5.0 00 ====== Efs ατττε and assuming 02.00 =V  

here and throughout).  We have used a very high value for oxygen extraction to 

accentuate the early dip (see discussion).  Following a short-lived neuronal transient a 

substantial amount of signal is created and starts to decay immediately.  This signal 

induces an increase in flow that itself augments signal decay, to the extent the signal is 

suppressed below resting levels (see the upper left panel in Figure 3).  This behaviour is 

homologous to a very dampened oscillator.  Increases in flow (lower left panel) dilate the 
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venous balloon which responds by ejecting deoxyhaemoglobin.  In the first few hundred 

milliseconds the net deoxyhaemoglobin (q) increases with an accelerating inflow-

dependent delivery.  It is then cleared by volume-dependent outflow expressing a 

negative peak a second or so after the positive volume (v) peak (the broken and solid 

lines in the upper right panel correspond to q and v respectively).  This results in an early 

dip in the BOLD signal followed by a pronounced positive peak at about 4 seconds 

(lower right panel) that reflects the combined effects of reduced net deoxyhaemoglobin, 

increased venous volume and consequent dilution of deoxyhaemoglobin.  Note that the 

rise and peak in volume (solid line in the upper right panel) lags flow by about a second.  

This is very similar to the predictions of the windkessel formulation and the empirical 

results presented in Mandeville et al (1999) (see their Figure 2).  After about 8 seconds 

the inflow experiences a rebound due to its suppression of the perfusion signal.  The 

reduced venous volume and ensuing outflow permit a re-accumulation of 

deoxyhaemoglobin and a consequent undershoot in the BOLD signal. 

  The rCBF component of the haemodynamic model is a linear dynamical system and as 

such has only zeroth and first order kernels.  This means it cannot account for the 

haemodynamic refractoriness and nonlinearities observed in BOLD responses.  Although 

the rCBF component may facilitate the Balloon component's capacity to model 

nonlinearities (by providing appropriate input), the rCBF component alone cannot 

generate second order kernels.  The question addressed in this chapter is whether the 

Balloon component can produce second order kernels that are realistic and do so with 

physiologically plausible parameters. 

5. Model parameter estimation 
In this section we describe the data used to estimate Volterra kernels.  The six unknown 

parameters of the haemodynamic model that best reproduce these empirical kernels are 

then identified. By minimising the difference between the model kernels and the 

empirical kernels the optimal parameters for any voxel can be determined.  The critical 

questions this section addresses are (i) ‘can the haemodynamic model account for the 

form of empirical kernels up to second order?’ and (ii) ‘are the model parameters 

required to do this physiologically plausible?’ 
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5.1. Empirical analyses 
The data and Volterra kernel estimation are described in detail in Friston et al (1998).  In 

brief we obtained fMRI time-series from a single subject at 2 Tesla using a Magnetom 

VISION (Siemens, Erlangen) whole body MRI system, equipped with a head volume 

coil.  Contiguous multi-slice T2*-weighted fMRI images were obtained with a gradient 

echo-planar sequence using an axial slice orientation (TE = 40ms, TR = 1.7 seconds, 

64x64x16 voxels).  After discarding initial scans (to allow for magnetic saturation 

effects) each time-series comprised 1200 volume images with 3mm isotropic voxels.  The 

subject listened to monosyllabic or bi-syllabic concrete nouns (i.e. 'dog', 'radio', 

'mountain', 'gate') presented at 5 different rates (10 15 30 60 and 90 words per minute) for 

epochs of 34 seconds, intercalated with periods of rest.  The 5 presentation rates were 

successively repeated according to a Latin Square design. 

   The data were processed within SPM (Wellcome Department of Cognitive Neurology, 

http://www.fil.ion.ucl.ac.uk/spm).  The time-series were realigned, corrected for 

movement-related effects and spatially normalised into the standard space of Talairach 

and Tournoux (1988).  The data were smoothed spatially with a 5mm isotropic Gaussian 

kernel.  Volterra kernels were estimated by expanding the kernels in terms of temporal 

basis functions and estimating the kernel coefficients up to second order using a 

generalised linear model (Worsley and Friston 1995).  The basis set comprised three 

gamma varieties of increasing dispersion and their temporal derivatives (as described in 

Friston et al 1998). 

The stimulus function u(t), the supposed neuronal activity, was simply the word 

presentation rate at which the scan was acquired. We selected voxels that showed a 

robust response to stimulation from two superior temporal regions in both hemispheres 

(see Figure 4). These were the 128 voxels showing the most significant response when 

testing for the null hypothesis that the first and second order kernels were jointly zero.  

Selecting these voxels ensured that the kernel estimates had minimal variance. 

5.2. Estimating the model parameters 
For each voxel we identified the six parameters of the haemodynamic model of the 

previous section whose kernels corresponded, in a least squares sense, to the empirical 

kernels for that voxel.  To do this we used nonlinear function minimisation as 
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implemented in MATLAB5 (MathWorks Inc. MA).  The model’s kernels were 

computed, for a given parameter vector, as described in the Appendix and entered, with 

the corresponding empirical estimates, into the objective function that was minimised. 

 

5.3. Results 
The model-based and empirical kernels for the first voxel are shown in Figure 5.  It can 

be seen that there is a remarkable agreement both in terms of the first and second order 

kernels.  This is important because it suggests that the nonlinearities inherent in the 

Balloon component of the haemodynamic model are sufficient to account for the 

nonlinear responses observed in real time-series.   The first order kernel corresponds to 

the conventional [first order] haemodynamic response function and shows the 

characteristic peak at about 4 seconds and the post-stimulus undershoot.  The empirical 

undershoot appears more protracted than the model’s prediction suggesting that the 

model is not perfect in every respect.  The second order kernel has a pronounced 

negativity on the upper left, flanked by two smaller positivities.  This negativity accounts 

for the refractoriness seen when two stimuli are temporally proximate, where this 

proximity is defined by the radius of the negative region.  From the perspective of the 

Balloon model the second stimulus is compromised, in terms of elaborating a BOLD 

signal, because of the venous pooling, and consequent dilution of deoxyhaemoglobin, 

incurred by the first stimulus.  This means that less deoxyhaemoglobin can be cleared for 

a given increase in flow.  More interesting are the positive regions, which suggest stimuli 

separated by about 8 seconds should show super-additive effects.  This can be attributed 

to the fact that, during the flow undershoot following the first stimulus, 

deoxyhaemoglobin concentration is greater than normal (see the upper right panel in 

Figure 3), thereby facilitating clearance of deoxyhaemoglobin following the second 

stimulus. 

   Figure 6 shows the various functions implied by the haemodynamic model parameters 

averaged over all voxels.  These include outflow as a function of venous volume 

),( αvfout and oxygen extraction fraction as a function of inflow.  The solid line in the 

upper right panel is extraction per se ),( 0EfE in  and the broken line is the net normalised 
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delivery of deoxyhaemoglobin to the venous compartment 00 /),( EEfEf inin .  Note that 

although the fraction of oxygen extracted decreases with flow the net delivery of 

deoxygenated haemoglobin increases with flow.  In other words inflow increases per se 

actually reduce signal.  It is only the secondary effects of inflow on dilution and volume-

dependent outflow that cause an increase in BOLD signal.  The lower panel depicts the 

nonlinear function of volume and deoxyhaemoglobin that represents BOLD signal 

),,()( 0Eqvty λ= .  Here one observes that positive BOLD signals are expressed only 

when deoxyhaemoglobin is low.  The effect of volume is much less marked and tends to 

affect signal predominantly through dilution.  This is consistent with the fact that 32 kk >  

[see Eq(1)] for the value of 0E  estimated for these data. 

   The distributions of the parameters over voxels are shown in Figure 7 with their mean 

in brackets at the top of each panel.  It should be noted that the data from which these 

estimates came were not independent.  However, given they came from four different 

brain regions they are remarkably consistent.  In the next section we will discuss each of 

these parameters and the effect it exerts on the BOLD response. 

 

 

6. Discussion 
 

The main point to be made here is that the Balloon model, suitably extended to 

incorporate the dynamics of rCBF induction by synaptic activity, is sufficient to 

reproduce the same form of Volterra kernels that are seen empirically.  As such the 

Balloon model is sufficient to account for the more important nonlinearities observed in 

evoked fMRI responses.  The remainder of this section deals with the validity of the 

haemodynamic model in terms of the plausibility of the parameter estimates from the 

previous section.  The role of each parameter, in shaping the haemodynamic response, is 

illustrated in the associated panel in Figure 8 and is discussed in the following 

subsections. 
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6.1. The neuronal efficacy )(ε  
This represents the increase in perfusion signal elicited by neuronal activity, expressed in 

terms of event density (i.e. number of evoked transients per second).  From a biophysical 

perspective it is not exceedingly interesting because it reflects both the potency of the 

stimulus in eliciting a neuronal response and the efficacy of the ensuing synaptic activity 

to induce the signal.  It is interesting to note however that one word per second invokes 

an increase in normalised rCBF of unity (i.e., in the absence of regulatory effects, a 

doubling of blood flow over a second).  As might be expected changes in this parameter 

simply modulate the evoked haemodynamic responses (see the first panel in Figure 8). 

 

6.2. Signal decay )( sτ  
This parameter reflects signal decay or elimination.  Transduction of neuronal activity 

into perfusion changes, over a few 100 microns, has a substantial neurogenic component 

(that may be augmented by electrical conduction up the vascular endothelium).  However 

at spatial scales of several mm it is likely that rapidly diffusing spatial signals mediate 

increases in rCBF through relaxation of arteriolar smooth muscle.  There are a number of 

candidates for this signal, nitric oxide (NO) being the primary one.  It has been shown 

that the rate of elimination is critical in determining the effective time-constants of 

haemodynamic transduction (Friston 1995).  Our decay parameter had a mean of about 

1.54 seconds giving a half-life == 2ln2/1 st τ 1067 ms. The half-life of NO is between 

100 and 1000 ms (Paulson and Newman 1987) whereas that of K+ is about 5 seconds.  

Our results are therefore consistent with spatial signalling with NO.  It should be 

remembered that the model signal subsumes all the actual signalling mechanisms 

employed in the real brain.  Increases in this parameter dampen the rCBF response to any 

input and will also suppress the undershoot (see next subsection) because the feedback 

mechanisms, that are largely responsible for the undershoot, are selectively suppressed 

(relative to just reducing neuronal efficacy during signal induction). 
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6.3. Autoregulation )( fτ  
This parameter is the time-constant of the feedback autoregulatory mechanism whose 

physiological nature remains unspecified (but see Irikura et al 1994).  The coupled 

differential equations Eq(6) and Eq(7) represent a damped oscillator with a resonance 

frequency of 101.0)2/(1 ≈= fτπϖ  per second.  This is exactly the frequency of the 

vasomotor signal that typically has a period of about 10 seconds.  This is a pleasing result 

that emerges spontaneously from the parameter estimation.  The nature of these 

oscillations can be revealed by increasing the signal decay time constant (i.e. reducing the 

dampening) and presenting the model with low-level random neuronal input 

(uncorrelated Gaussian noise with a standard deviation of 1/64) as shown in Figure 9.   

The characteristic oscillatory dynamics are readily expressed.  The effect of increasing 

the feedback time constant is to decrease the resonance frequency and render the BOLD 

(and rCBF) response more enduring with a reduction or elimination of the undershoot.  

The third panel in Figure 8 shows the effect of doubling fτ . 

 

6.4. Transit time )( 0τ  
This is an important parameter that determines the dynamics of the signal.  It is 

effectively resting venous volume divided by resting flow, and in our data is estimated at 

about one second (0.98 seconds).  The transit time through the rat brain is roughly 1.4 

seconds at rest and, according to the asymptotic projections for rCBF and volume, falls to 

0.73 seconds during stimulation (Mandeville et al 1999).  In other words it takes about a 

second for a blood cell to traverse the venous compartment.  The effect of increasing 

mean transit time is to slow down the dynamics of the BOLD signal with respect to the 

flow changes.  The shape of the response remains the same but it is expressed more 

slowly.  In the fourth panel of Figure 8 a doubling of the mean transit time is seen to 

retard the peak BOLD response by about a second and the undershoot by about 2 

seconds. 
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6.5. Stiffness parameter )(α  
Under steady state conditions this would be about 0.38.  The mean over voxels 

considered above was about 0.33.  This discrepancy, in relation to steady state levels, is 

anticipated by the windkessel formulation and is attributable to the fact that volume and 

flow are in a state of continuous flux during the evoked responses.   Recall from Eq(3) 

that 03.3/1 =+= βγα , in our data.  Under the assumption of laminar flow ( 2=γ ), 

1≈β  which is less that the Mandeville et al (1999) founds for rats during forepaw 

stimulation but is certainly in a plausible range.  Increasing this parameter increases the 

degree of nonlinearity in the flow-volume behaviour of the venous balloon that underpins 

the nonlinear behaviours we are trying to account for. However its direct effect on 

evoked responses to single stimuli is not very marked.  The fifth panel of Figure 8 shows 

the effects when α is decreased by 50%. 

 

6.6. Resting oxygen extraction )( 0E  
This is about 34% and the range observed in our data fit exactly with known values for 

resting oxygen extraction fraction (between 20% and 55%). Oxygen extraction fraction is 

a potentially important factor in determining the nature of evoked fMRI responses 

because it may be sensitive to the nature of the baseline that defines the resting state.  

Increases in this parameter can have quite profound effects on the shape of the response 

that bias it towards an early dip.  In the example shown (last panel in Figure 8) the resting 

extraction has been increased to 78%.  This is a potentially important observation that 

may explain why the initial dip has been difficult to observe in all studies.  According to 

the results presented in Figure 8 the initial dip is very sensitive to resting oxygen 

extraction fraction, which should be high before the dip is expressed.  Extraction fraction 

will be high in regions with very low blood flow, or in tissue with endogenously high 

extraction.  It may be that cytochrome oxidase rich cortex, like the visual cortices, may 

have a higher fraction and be more like to evidence early dips. 

 

In summary the parameters of the haemodynamic model that best reproduce empirically-

derived Volterra kernels are all biologically plausible and lend the model a construct 
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validity (in relation to the Volterra formulation) and face validity (in relation to other 

physiological characterisations of the cerebral haemodynamics reviewed in this section).  

In this extended haemodynamic model nonlinearities, inherent in the Balloon model, 

have been related directly to nonlinearities in responses.  Their role in mediating the post-

stimulus undershoot is emphasised less here because the rCBF component can model 

undershoots. 

   The conclusions above are based only on data from the auditory cortex and from one 

subject.  There is no guarantee that they will generalise.   When submitted in paper form, 

one of our reviewers thought that it was more important for its conceptual motivation of 

modelling than for the specific findings.  This is a very valid point.  We anticipate that 

the framework  presented here will be refined or changed when applied to other data, or 

the assumptions upon which it is based are confirmed or refuted.   

 

7. Conclusion 
 

In conclusion we have developed an input-state-output model of the haemodynamic 

response to changes in synaptic activity that combines the Balloon model of flow to 

BOLD signal coupling and a dynamical model of the transduction of neuronal activity 

into perfusion changes.  This model has been characterised in terms of its Volterra 

kernels and easily reproduces empirical kernels with parameters that are biologically 

plausible.  This means that the nonlinearities inherent in the Balloon model are sufficient 

to account for haemodynamic refractoriness and other nonlinear aspects of evoked 

responses in fMRI. 
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8. Appendix 
 

Volterra kernels represent a generic and important characterisation of the invariant 

aspects of a nonlinear system (see Bendat 1990).  This appendix describes the nature of 

these kernels and how they are obtained given the differential equations describing the 

evolution of the state variables.  Consider the single input-single output (SISO) system 
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The Volterra series expresses the output y(t) as a nonlinear convolution of the neuronal 

inputs u(t), critically without reference to the state variables X(t).  This series can be 

considered a nonlinear convolution that obtains from a functional Taylor expansion of 

y(t) about X(0) = X0 = [0, 1, 1, 1]T and u(t) = 0 
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where κi is the ith, generally time-dependent, kernel.  The Taylor expansion of 

)(tX& about X0 and u(t) = 0 
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has a bilinear form following a change of variables (equivalent to adding an extra state 

variable x0(t) = 1) 
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This formulation is important because the Volterra kernels of bilinear systems have 

closed-form expressions.  The existence of these closed-form expressions is due to the 

fact that the iterated integrals associated with the system’s Generating Series can be 

expressed in terms of the generalised convolution integrals, of which the Volterra series 

is comprised (Fliess et al 1983).  Here we take a more heuristic approach and consider 

the solution to A.2 and its derivatives with respect to the inputs u(t) 
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The kernels associated with the state variables X’ are these derivatives evaluated at u(t)=0 
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The kernels associated with the output y(t) follow from the chain rule 
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If the system is fully nonlinear, as in this case then the kernels can be considered local 

approximations. In other words the kernels are valid for inputs (i.e. neuronal activations) 

of a reasonable magnitude. 
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11. Figure Legends 
 
Figure 1 
Top panel: Simulated responses to a pair of words (bars) one second apart, presented together (solid line) 
and separately (broken lines) based on the kernels shown in Figure 4.  Lower panel: The response to the 
second word when presented alone (broken line as above) and when preceded by the first (solid line).  The 
latter obtains by subtracting the response to the first word from the response to both.  The difference 
reflects the effect of the first word on the response to the second. 
 
Figure 2 
Schematic illustrating the organisation of the haemodynamic model.  This is a fully nonlinear single input 

)(tu , single output )(ty  state model with four state variables qvfs  and , , .  The form and motivation 
for the changes in each state variable, as functions of the others, is described in the main text. 
 
Figure 3 
Dynamics of the haemodynamic model.  Upper left panel: The time-dependent changes in the neuronally 
induced perfusion signal that causes an increase in blood flow.  Lower left panel: The resulting changes in 
normalised blood flow (f).  Upper right panel: The concomitant changes in normalised venous volume (v) 
(solid line) and normalised deoxyhaemoglobin content (q) (broken line).  Lower right panel: The percent 
change in BOLD signal that is contingent on v and q.  The broken line is inflow normalised to the same 
maximum as the BOLD signal.  This highlights the fact that BOLD signal lags the rCBF signal by about a 
second. 
 
Figure 4 
Voxels used to estimate the parameters of the haemodynamic model shown in Figure 2.  This is a SPM{F} 
testing for the significance of the first and second order kernel coefficients in the empirical analysis and 
represents a maximum intensity projection of a statistical process of the F ratio, following a multiple 
regression analysis at each voxel.  This regression analysis estimated the kernel coefficients after expanding 
them in terms of a small number of temporal basis functions (see Friston et al 1998 for details). The format 
is standard and provides three orthogonal projections in the standard space conforming to that described in 
Talairach and Tournoux (1988).  The grey scale is arbitrary and the SPM{F} has been thresholded to show 
the 128 most significant voxels. 
 
Figure 5 
The first and second order Volterra kernels based on parameter estimates from a voxel in the left superior 
temporal gyrus at -56, -28, 12mm.  These kernels can be thought of as a second order haemodynamic 
response function.  The first order kernels (upper panels) represent the (first order) component usually 
presented in linear analyses.  The second order kernels (lower panels) are presented in image format.  The 
colour scale is arbitrary; white is positive and black is negative.  The left-hand panels are kernels based on 
parameter estimates from the analysis described in Figure 4.   The right hand panels are the kernels 
associated with the haemodynamic model using parameter estimates that best match the empirical kernels. 
 
Figure 6 
Functions implied by the [mean] haemodynamic model parameters over the voxels shown in Figure 4.  
Upper left panel: Outflow as a function of venous volume ),( αvfout .  Upper right panel: oxygen 

extraction as a function of inflow.  The solid line is extraction per se ),( 0EfE in  and the broken line is the 

net normalised delivery of deoxyhaemoglobin to the venous compartment 00 /),( EEfEf inin . Lower 
panel: This is a plot of the nonlinear function of volume and deoxyhaemoglobin that represents BOLD 
signal ),,()( 0Eqvty λ= . 
 
Figure 7 
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Histograms of the distribution of the 6 free parameters of the haemodynamic model estimated over the 
voxels shown in Figure 3.  The number in brackets at the top of each histogram is the mean value for the 
parameters in question: neuronal efficacy is ε , signal decay is sτ , autoregulation is fτ , transit time is 

0τ , stiffness is α  and oxygen extraction is 0E . 
 
Figure 8 
The effects of changing the model parameters on the evoked BOLD response.  The number in brackets at 
the top of each graph is the factor applied to the parameter in question.  Solid lines correspond to the 
response after changing the parameter and the broken line is the response for the original parameter values 
(the mean values given in Figure 7): neuronal efficacy is ε , signal decay is sτ , autoregulation is fτ , 

transit time is 0τ , stiffness is α  and oxygen extraction is 0E . 
 
Figure 9 
Simulated response to a noisy neuronal input (standard deviation 1/64 and mean of 0) for a model with 
decreased signal decay (i.e. less dampening).  The model parameters were the same as in the Figure 3 with 
the exception of sτ  which was increased by a factor of 4.  The characteristic 0.1 Hz oscillations are very 
similar to the oscillatory vasomotor signal seen in optical imaging experiments. 
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