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1 Introduction

Hierarchical models are central to many current analyses of functional imaging
data including random effects analysis, models using fMRI as priors for EEG
source localization and spatiotemporal Bayesian modelling of imaging data [3].
These hierarchical models posit linear relations between variables with error
terms that are Gaussian. The General Linear Model (GLM), which to date has
been so central to the analysis of functional imaging data, is a special case of
these hierarchical models consisting of just a single layer.

Model fitting and statistical inference for hierarchical models can be im-
plemented using a Parametric Empirical Bayes (PEB) algorithm described in
Chapter 17 and in [4]. The algorithm is sufficiently general to accomodate
multiple levels in the hierarchy and allows for the error covariances to take
on arbitrary form. This generality is particularly appealing as it renders the
method applicable to a wide variety of modelling scenarios. Because of this
generality, however, and the complexity of scenarios in which the method is
applied, readers wishing to learn about PEB for the first time are advised to
read this chapter first.

We provide an introduction to hierarchical models and focus on some rela-
tively simple examples. Each model and PEB algorithm we present is a special
case of that described in [4]. Whilst there are a number of tutorials on hierar-
chical modelling [9],[2] what we describe here has been tailored for functional
imaging applications. We also note that a tutorial on hierarchical models is, to
our minds, also a tutorial on Bayesian inference as higher levels act as priors
for parameters in lower levels. Readers are therefore encouraged to also consult
background texts on Bayesian inference, such as [5].

We restrict our attention to two-level models and show, in section 2, how one
computes the posterior distributions over the first- and second-level parameters.
These are derived, initially, for completely general design and error covariance
matrices. We then consider two special cases (i) models with equal error vari-
ances and (ii) separable models. In section 3 of the chapter we show how the
parameters and covariance components can be estimated using PEB.

In section 4 we show how a two-level hierarchical model can be used for
Random-Effects Analysis. For equal subject error variances at the first level
and the same first-level design matrices (ie. balanced designs) we show that
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the resulting inferences are identical to those made by the Summary-Statistic
(SS) approach [11]. If either of the criteria are not met then, strictly, the
SS approach is not valid. In section 5, however, we show that a modified SS
approach can be used for unbalanced designs and unequal error variances if the
covariance structure of the model at the second-level is modified appropriately.
The chapter closes with a discussion.

In what follows, the notation N(m,Σ) denotes a uni/multivariate normal
distribution with mean m and variance/covariance Σ and lower-case p’s denote
probability densities. Upper case letters denote matrices, lower case denote
column vectors and xT denotes the transpose of x. We will also make extensive
use of the normal density ie. if p(x) = N(m,Σ) then

p(x) ∝ exp
(
−1

2
(x−m)T Σ−1(x−m)

)
(1)

We also use Var[] to denote variance, ⊗ to denote the Kronecker product and
X+ to denote the pseudo-inverse.

2 Two-level models

We consider two-level linear Gaussian models of the form

y = Xw + e (2)
w = Mµ + z

where the errors are zero mean Gaussian with covariances Cov[e] = C and
Cov[z] = P . The model is shown graphically in Figure 1. The column vectors
y and w have K and N entries respectively. The vectors w and µ are the
first- and second-level parameters and X and M are the first- and second-level
design matrices. Models of this form have been used in functional imaging.
For example, in random effects analysis the second level models describe the
variation of subject effect sizes about a population effect size, µ. In Bayesian
inference with shrinkage priors, the second-level models variation of effect-size
over voxels around a whole-brain mean effect size of µ = 0 (ie. for a given
cognitive challenge the response of a voxel chosen at random is, on average,
zero). See, for example, [3].

The aim of Bayesian inference is to make inferences about w and µ (if we
don’t already know them) based on the posterior distributions p(w|y) and p(µ|y).
These can be derived as follows. We first note that the above equations specify
the likelihood and prior probability distributions

p(y|w) ∝ exp
(
− 1

2 (y −Xw)T C−1(y −Xw)
)

(3)

p(w) ∝ exp
(
− 1

2 (w −Mµ)T P−1(w −Mµ)
)

The posterior distribution is then

p(w|y) ∝ p(y|w)p(w) (4)

Taking logs and keeping only those terms that depend on w gives

log p(w|y) = −1
2
(y −Xw)T C−1(y −Xw) (5)
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− 1
2
(w −Mµ)T P−1(w −Mµ) + ..

= −1
2
wT (XT C−1X + P−1)w + wT (XT C−1y + P−1Mµ) + ..

Taking logs of the Gaussian density p(x) in equation 1 and keeping only those
terms that depend on x gives

log p(x) = −1
2
xT Σ−1x + xT Σ−1m + .. (6)

Comparing equation 5 with terms in the above equation shows that

p(w|y) = N(m,Σ) (7)
Σ−1 = XT C−1X + P−1

m = Σ(XT C−1y + P−1Mµ)

The posterior distribution over the second-level coefficient is given by Bayes’
rule as

p(µ|y) =
p(y|µ)p(µ)

p(y)
(8)

However, because we do not have a prior p(µ) this posterior distribution becomes
identical to the likelihood term, p(y|µ), which can be found by eliminating the
first-level parameters from our two equations ie. by substituting the second level
equation into the first giving

y = XMµ + Xz + e (9)

which can be written as
y = X̃µ + ẽ (10)

where X̃ = XM and ẽ = Xz + e. The solution to equation 10 then gives

p(µ|y) = N(µ̂, Σµ) (11)

µ̂ = (X̃T C̃−1X̃)−1X̃T C̃−1y

Σµ = (X̃T C̃−1X̃)−1

where the covariance term

C̃ = Cov[ẽ] (12)
= XPXT + C

We have now achieved our first goal, the posterior distributions of first- and
second-level parameters being expressed in terms of the data, design and error-
covariance matrices. We now consider a number of special cases.

2.1 Sensor Fusion

The first special case is the univariate model

y = w + e (13)
w = µ + z
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with a single scalar data point, y, and variances C = 1/β, P = 1/α specified
in terms of the data precision β and the prior precision α (the ‘precision’ is the
inverse variance). Plugging these values into equation 7 gives

p(w|y) = N(m,λ−1) (14)
λ = β + α

m =
β

λ
y +

α

λ
µ

Despite its simplicity this model posseses two important features of Bayesian
learning in linear-Gaussian models. The first is that ‘precisions add’ - the pos-
terior precision is the sum of the data precision and the prior precision. The
second is that the posterior mean is the sum of the data mean and the prior
mean, each weighted by their relative precisions. A numerical example is shown
in Figure 2.

2.2 Equal variance

This special case is a two-level multivariate model as in equation 2 but with
isotropic covariances at both the first and second levels. We have C = β−1IK

and P = α−1IN . This means that observations are independent and have the
same error variance. This is an example of the errors being Independent and
Identically Distribution (IID), where in this case the distribution is a zero-mean
Gaussian having a particular variance. In this chapter we will also use the term
’sphericity’ for any model with IID errors. Models without IID errors will have
‘non-sphericity’ (as an aside we note that IID is not actually a requirement of
‘sphericity’ and readers looking for a precise definition are referred to [12] and
to Chapter 10).

On a further point of terminology, the unknown vectors w and µ will be
referred to as ‘parameters’ whereas variables related to error covariances will be
called ‘hyperparameters’. The variables α and β are therefore hyperparameters.
The posterior distribution is therefore given by

p(w|y) = N(ŵ, Σ̂) (15)
Σ̂ = (βXT X + αIN )−1

ŵ = Σ̂
(
βXT y + αMµ

)
Note that if α = 0 we recover the Maximum Likelihood estimate

ŵML = (XT X)−1XT y (16)

This is the familiar Ordinary Least Squares (OLS) estimate used in the GLM [7].
The posterior distribution of the second level coefficient is given by equation 11
with

C̃ = β−1IK + α−1XXT (17)

2.3 Separable model

We now consider ‘separable models’ which can be used, for example, for random
effects analysis. In these models, the first-level splits into N separate sub-
models. For each sub-model, i, there are ni observations yi giving information
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about the parameter wi via the design vector xi (this would typically be a boxcar
or, for event-related designs, a vector of delta functions). The overall first-level
design matrix X then has a block-diagonal form X = blkdiag(x1, .., xi, .., xN )
and the covariance is given by C = diag[β11T

n1
, .., βi1T

ni
, .., βN1T

nN
] where 1n is a

column vector of 1’s with n entries. For example, for N = 3 groups with n1 = 2,
n2 = 3 and n3 = 2 observations in each group

X =



x1(1) 0 0
x1(2) 0 0
0 x2(1) 0
0 x2(2) 0
0 x2(3) 0
0 0 x3(1)
0 0 x3(2)


(18)

and C = diag[β1, β1, β2, β2, β2, β3, β3]. The covariance at the second level is
P = α−1IN , as before, and we also assume that the second level design matrix is
a column of 1’s, M = 1N . The posterior distribution of the first level coefficient
is found by substituting X and C into equation 7. This gives a distribution
which factorises over the different first level coefficients such that

p(w|y) =
N∏

i=1

p(wi|y) (19)

p(wi|y) = N(ŵi, Σ̂ii)
Σ̂−1

ii = βix
T
i xi + α

ŵi = Σ̂iiβix
T
i yi + Σ̂iiαµ

The posterior distribution of the second level coefficient is, from equation 11,
given by

p(µ|y) = N( û, σ2
µ) (20)

σ2
µ =

1∑N
i=1 xT

i (α−1xixT
i + β−1

i )−1xi

µ̂ = σ2
µ

N∑
i=1

xT
i (α−1xix

T
i + β−1

i )−1yi

We note that in the absence of any second level variability, ie. α → ∞, the
estimate µ̂ reduces to the mean of the first level coefficients weighted by their
precision

µ̂ =
βix

T
i yi∑

i βixT
i xi

(21)

3 Parametric Empirical Bayes

In section 2 we have shown how to compute the posterior distributions p(w|y)
and p(µ|y). As can be seen from equations 7 and 11, however, these equations
depend on covariances P and C which in general are unknown. For the equal
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variance model and the separable model, the hyperparameters α and βi are
generally unknown. In [4] Friston et al. decompose the covariances using

C =
∑

j

λ1
jQ

1
j (22)

P =
∑

j

λ2
jQ

2
j

where Q1
j and Q2

j are basis functions that are specified by the modeller depend-
ing on the application in mind. For example, for analysis of fMRI data from a
single subject two basis functions are used, the first relating to error variance
and the second relating to temporal autocorrelation [3]. The hyperparameters
λ = [{λ1

j}, {λ2
j}] are unknown but can be estimated using the PEB algorithm

described in [4]. Variants of this algorithm are known as the evidence framework
[10] or Maximum Likelihood II (ML-II) [1]. The PEB algorithm is also referred
to as simply Empirical Bayes but we use the term PEB to differentiate it from
the Nonparametric Empirical Bayes methods described in [2]. The hyperpa-
rameters are set so as to maximise the evidence (also known as the marginal
likelihood)

p(y|λ) =
∫

p(y|w, λ)p(w|λ)dw (23)

This is the likelihood of the data after we have integrated out the first-level
parameters. For the two multivariate special cases described above, by substi-
tuting in our expressions for the prior and likelihood, integrating, taking logs
and then setting the derivatives to zero, we can derive a set of update rules
for the hyperparameters. These derivations are provided in the following two
sections.

3.1 Equal variance

For the equal variance model the objective function is

p(y|α, β) =
∫

p(y|w, β)p(w|α)dw (24)

Substituting in expressions for the likelihood and prior gives

p(y|α, β) =
(

β

2π

)K/2 ( α

2π

)N/2
∫

exp
(
−β

2
e(w)T e(w)− α

2
z(w)T z(w)

)
dw

where e(w) = y − Xw and z(w) = w − Mµ. By re-arranging the terms in
the exponent (and keeping all of them, unlike in section 2 where we were only
interested in w-dependent terms) the integral can be written as

I =
[∫

exp
(
−1

2
(w − ŵ)T Σ̂−1(w − ŵ)

)
dw

]
(25)

.

[
exp

(
−β

2
e(ŵ)T e(ŵ)− α

2
z(ŵ)T z(ŵ)

)]
where the second term is not dependent on w. The first factor is then simply
given by the normalising constant of the multivariate Gaussian density

(2π)N/2|Σ̂|1/2 (26)

6



Hence,

p(y|α, β) =
(

β

2π

)K/2

αN/2|Σ̂|1/2 exp
(
−β

2
e(ŵ)T e(ŵ)− α

2
z(ŵ)T z(ŵ)

)
where |Σ̂| denotes the determinant of Σ̂. Taking logs gives the ‘log-evidence’

F =
K

2
log

β

2π
+

N

2
log α +

1
2

log |Σ̂| − β

2
e(ŵ)T e(ŵ)− α

2
z(ŵ)T z(ŵ) (27)

To find equations for updating the hyperparameters we must differentiate F
with respect to α and β and set the derivative to zero. The only possibly
problematic term is the log-determinant but this can be differentiated by first
noting that the inverse covariance is given by

Σ̂−1 = βXT X + αIN (28)

If λj are the eigenvalues of the first term then the eigenvalues of Σ̂−1 are λj +α.
Hence,

|Σ̂−1| =
∏
j

(λj + α) (29)

|Σ̂| =
1∏

j(λj + α)

log |Σ̂| = −
∑

j

log(λj + α)

∂

∂α
log |Σ̂| = −

∑
j

1
λj + α

Setting the derivative ∂F/∂α to zero then gives

αz(ŵ)T z(ŵ) = N −
∑

j

α

λj + α
(30)

=
∑

j

λj + α

λj + α
−
∑

j

α

λj + α

=
∑

j

λj

λj + α

This is an implicit equation in α which leads to the following update rule. We
first define the quantity γ which is computed from the ‘old’ value of α

γ =
N∑

j=1

λj

λj + α
(31)

and then let

1
α

=
z(ŵ)T z(ŵ)

γ
(32)
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The update for β is derived by first noting that the eigenvalues λj are linearly
dependent on β. Hence

∂λj

∂β
=

λj

β
(33)

The derivative of the log-determinant is then given by
∂

∂β
log |Σ̂−1| =

1
β

∑
j

λj

λj + α
(34)

which leads to the update

1
β

=
e(ŵ)T e(ŵ)

K − γ
(35)

The PEB algorithm consists of iterating the update rules in equations 31, 32, 35
and the posterior estimates in equation 15, until convergence.

The update rules in equations 31, 32 and 35 can be interpreted as follows.
For every j for which λj >> α, the quantity γ increases by 1. As α is the prior
precision and λj is the data precision (of the jth ‘eigencoefficient’) γ therefore
measures the number of parameters that are determined by the data. Given K
data points, the quantity K − γ therefore corresponds to the number of degrees
of freedom in the data set. The variances α−1 and β−1 are then updated based
on the sum of squares divided by the appropriate degrees of freedom.

3.2 Separable models

For separable models the objective function is

p(y|α, {βi}) =
∫

p(y|w, {βi})p(w|α)dw (36)

Because the second-level here is the same as for the equal variance case, so is
the update for alpha. The updates for βi are derived in a similar manner as
before but we also make use of the fact that the first-level posterior distribution
factorises (see equation 19). This decouples the updates for each βi and results
in the following PEB algorithm

êi = yi − ŵixi (37)
ẑi = ŵi − µ̂

λi = βix
T
i xi

γi =
λi

λi + α

γ =
∑

i

γi

βi = (ni − γi)/êT
i êi

α = γ/ẑT ẑ

ŵi = (βix
T
i yi + αµ)/(λi + α)

di = (α−1
i xix

T
i + β−1

i Ini
)−1

σ2
µ = 1/(

∑
i

xT
i dixi)

µ̂ = σ2
µ

∑
i

xT
i diyi
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Initial values for ŵi and βi are set using OLS, µ̂ is initially set to the mean of
ŵi and α is initially set to 0. The equations are then iterated until convergence
(in our examples we never required more than ten iterations).

The PEB algorithms we have described show how Bayesian inference can
take place when the variance components are unknown (in section 2 we assumed
the variance components were known). We now turn to an application.

4 Random-Effects Analysis

To make contact with the summary statistic and ML approaches (see [11]) we
desribed the statistical model underlying random effects analysis as follows.
The model described in this section is identical to the separable model but with
xi = 1n and βi = β. Given a data set of contrasts from N subjects with n scans
per subject, the population contrast can be modelled by the two level process

yij = wi + eij (38)
wi = wpop + zi

where yij (a scalar) is the data from the ith subject and the jth scan at a
particular voxel. These data points are accompanied by errors eij with wi

being the size of the effect for subject i, wpop being the size of the effect in
the population and zi being the between subject error. This may be viewed as
a Bayesian model where the first equation acts as a likelihood and the second
equation acts as a prior. That is

p(yij |wi) = N(wi, σ
2
w) (39)

p(wi) = N(wpop, σ
2
b )

where σ2
b is the between subject variance and σ2

w is the within subject variance.
We can make contact with the hierarchical formalism by making the following
identities. We place the yij in the column vector y in the order - all from
subject 1, all from subject 2 etc (this is described mathematically by the vec
operator and is implemented in MATLAB (Mathworks, Inc.) by the colon
operator). We also let X = IN ⊗ 1n where ⊗ is the Kronecker product and let
w = [w1, w2, ..., wN ]T . With these values the first level in equation 2 is then the
matrix equivalent of equation 38 (ie. it holds for all i, j). For y = Xw + e and
eg. N = 3,n = 2 we then have

y11

y12

y21

y22

y31

y32

 =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


 w1

w2

w3

+


e11

e12

e21

e22

e31

e32

 (40)

We then note that XT X = nIN , Σ̂ = diag(Var[w1],Var[w2], ...,Var[wN ]) and the
ith element of XT y is equal to

∑n
j=1 yij .

If we let M = 1N then the second level in equation 2 is then the matrix
equivalent of the second-level in equation 38 (ie. it holds for all i). Plugging in
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our values for M and X and letting β = 1/σ2
w and α = 1/σ2

b gives

Var[ŵpop] =
1
N

α + βn

αβn
(41)

and

ŵpop =
1
N

α + βn

αβn

αβ

α + βn

∑
i,j

yij (42)

=
1

Nn

∑
i,j

yij

So the estimate of the population mean is simply the average value of yij . The
variance can be re-written as

Var[ŵpop] =
σ2

b

N
+

σ2
w

Nn
(43)

This result is identical to the maximum-likelihood and summary-statistic
results. The equivalence between the Bayesian and ML results derives from the
fact that there is no prior at the population level. Hence, p(Y |µ) = p(µ|Y ) as
indicated in section 2.

4.1 Unequal variances

The model described in this section is identical to the separable model but with
xi = 1ni

. If the error covariance matrix is non-isotropic ie. C 6= σ2
wI, then the

population estimates will change. This can occur, for example, if the design
matrices are different for different subjects (so-called ‘unbalanced-designs’), or
if the data from some of the subjects is particularly ill-fitting. In these cases,
we consider the within subject variances σ2

w(i) and the number of scans ni to
be subject-specific.

If we let M = 1N then the second level in equation 2 is then the matrix
equivalent of the second-level in equation 38 (ie. it holds for all i). Plugging in
our values for M and X gives

Var[ŵpop] =

(
N∑

i=1

αβini

α + niβi

)−1

(44)

and

ŵpop =

(
N∑

i=1

αβini

α + βini

)−1 N∑
i=1

αβi

α + βini

ni∑
j=1

yij (45)

This reduces to the earlier result if βi = β and ni = n. Both of these results are
different to the summary statistic approach which we note is therefore invalid
for unequal variances.
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4.2 Parametric Empirical Bayes

To implement the PEB estimation scheme for the unequal variance case we first
compute the errors êij = yij − Xŵi, ẑi = ŵi − Mŵpop. We then substitute
xi = 1ni into the update rules derived in section 3 to obtain

σ2
b ≡

1
α

=
1
γ

N∑
i=1

ẑ2
i (46)

σ2
w(i) ≡ 1

βi
=

1
ni − γi

ni∑
j=1

ê2
ij (47)

where

γ =
N∑

i=1

γi (48)

and
γi =

niβi

α + niβi
(49)

For balanced designs βi = β and ni = n we get

σ2
b ≡

1
α

=
1
γ

N∑
i=1

ẑ2
i (50)

σ2
w ≡

1
β

=
1

Nn− γ

N∑
i=1

n∑
j=1

ê2
ij (51)

where
γ =

nβ

α + nβ
N (52)

Effectively, the degrees of freedom in the data set (Nn) are partitioned into
those that are used to estimate the between-subject variance, γ, and those that
are used to estimate the within-subject variance, Nn− γ.

The posterior distribution of the first-level coefficients is

p(wi|yij) ≡ p(ŵi) = N(w̄i,Var[ŵi]) (53)

where
Var[ŵi] =

1
α + niβi

(54)

ŵi =
βi

α + niβi

ni∑
j=1

yij +
α

α + niβi
ŵpop (55)

Overall, the EB estimation scheme is implemented by first initialising ŵi, ŵpop

and α, βi (for example to values given from the equal error-variance scheme).
We then compute the errors êij , ẑi and re-estimate the α and βi’s using the
above equations. The coefficients ŵi and ŵpop are then re-estimated and the
last two steps are iterated until convergence. This algorithm is identical to the
PEB algorithm for the separable model but with xi = 1ni

.
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5 Second-level modelling

The results at the beginning of section 4 and in section 4.1 show that the SS
approach is equivalent to PEB for equal first level error variances and balanced
designs, but that SS is otherwise invalid. In this section we show that a modified
SS approach that uses a non-isotropic covariance at the second level is equivalent
to PEB. Firstly, we re-write the first-level equation in 2 as

w = X+(y − e) (56)

and substitute w into the second level and re-arrange to give

X+y = Mµ + z + X+e (57)

By letting c = X+y and r = z + X+e we can write the above equation as

c = Mµ + r (58)

where
R ≡ Cov[r] = P + X+C(X+)T (59)

The estimation of µ can then proceed based solely on c, R and M

p(µ|y) = N(µ̂,Σµ) (60)
µ̂ = (MT R−1M)−1MT R−1c

Σµ = (MT R−1M)−1

This implies that if we bring forward OLS parameter estimates from the first-
level (ie. c = X+y) then we can take into account the, as yet unaccounted for,
non-sphericity at the first-level by using an appropriately corrected covariance
matrix at the second-level (the matrix R). Jenkinson et al. [8] have proposed
a similar strategy but based on Weighted Least Squares (WLS) parameter es-
timates from the first-level. The problem with this ‘plug-in approach’, however
is that P is unknown. Note that SS estimates of hyperparameters in P contain
contributions from both within and between subject error, as shown in [11], so
these could not be used directly.

5.1 Separable models

For the case of unequal variances at the first level (described at the beginning
of this section), we have C =

∑N
i=1 β−1

i Ii, P = α−1IN and X = IN ⊗ 1n. This
gives X+ = n−1(IN ⊗ 1T

n ) and results in a diagonal matrix for R with entries

Rii = σ2
b +

1
ni

σ2
w(i) (61)

The fact that R is diagonal for separable models is no surprise as subjects
are drawn independently from the population. Re-assuringly, plugging in the
above value of Rii into the expression for Σµ above gives the same estimate of
population variance as before (cf. equations 43 and 44).

Thus, in principle, one could bring forward both OLS estimates, c, and first-
level variances (σ2

w(i)) to a second-level analysis. However, as we have already
mentioned, the hyperparmeter of P , ie. σ2

b , is unknown.
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An alternative strategy is to estimate the hyperparameters Rii using PEB
based solely on a second level model. Ordinarily this would be impossible as
there are more hyperparameters and parameters (N + 1) than (second-level)
data points (N). But by pooling data over voxels, as described in [6], this
becomes feasible.

6 Example

We now give an example of random effects analysis on simulated data. The
purpose is to compare the PEB and SS algorithms. We generated data from
a three-subject, two-level model with population mean µ = 2, subject effect
sizes w = [2.2, 1.8, 0.0]T and within subject variances σ2

w(1) = 1, σ2
w(2) = 1.

For the third subject σ2
w(3) was varied from 1 to 10. The second level design

matrix was M = [1, 1, 1]T and the first-level design matrix was given by X =
blkdiag(x1, x2, x3) with xi being a boxcar. This model conforms to the notion
of a separable model defined in section 2.3.

Figure 3 shows a realisation of the three time series for σ2
w(3) = 2. The first

two time series contain stimulus-related activity but the third does not. We then
applied the PEB algorithm (section 3.2) to obtain estimates of the population
mean µ̂ and estimated variances, σ2

µ. For comparison, we also obtained equiv-
alent estimates using the SS approach. We then computed the accuracy with
which the population mean was estimated using the criterion (µ̂ − µ)2. This
was repeated for 1000 different data sets generated using the above parameter
values, and for 10 different values of σ2

w(3). The results are shown in figures 4
and 5.

Firstly we note that, as predicted by theory, both PEB and SS give identical
results when the first level error variances are equal. When the variance on
the ‘rogue’ time series approaches double that of the others we see different
estimates both µ̂ and σ2

µ. With increasing rogue error variance the SS estimates
get worse but the PEB estimates get better (with respect to the true values, as
shown in Figure 4, and with respect to the variability of the estimate, as shown
in Figure 5 ). This is because the third time series is more readily recognised
by PEB as containing less reliable information about the population mean and
is increasingly ignored. This gives better estimates µ̂ and a reduced estimation
error, σ2

µ.
We created the above example to reiterate a key point of this chapter, that

SS gives identical results to PEB for equal within subject error variances (ho-
moscedasticity) and unbalanced designs, but not otherwise. In the example,
divergent behaviour is observed when the error variances differ by a factor of
two. For studies with more subjects (12 being a typical number), however,
this divergence requires a much greater disparity in error variances. In fact we
initially found it difficult to generate data sets where PEB showed a consistent
improvement over SS ! It is therefore our experience that the vanilla SS approach
is particularly robust to departures from homoscedasticity. This conclusion is
supported by what is known of the robustness of the t-test that is central to the
SS approach. Lack of homoscedasticity only causes problems when the sample
size (ie. number of subjects) is small. As sample size increases so does the
robustness (see eg. [13]).
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7 Discussion

We have described Bayesian inference for some particular two-level linear-Gaussian
hierarchical models. A key feature of Bayesian inference in this context is that
the posterior distributions are Gaussian with precisions that are the sum of the
data and prior precisions and with means that are the sum of the data and prior
means, each weighted according to their relative precision. With zero prior pre-
cision, two-level models reduce to a single-level model (ie. a GLM) and Bayesian
inference reduces to the familiar maximum-likelihood estimation scheme. With
non-zero and, in general unknown, prior means and precisions these parameters
can be estimated using PEB.

We have described two special cases of the PEB algorithm, one for equal
variances and one for separable models. Both algorithms are special cases of
a general approach described in [4] and in Chapter 17. In these contexts, we
have shown that PEB automatically partitions the total degrees of freedom (ie.
number of data points) into those to be used to estimate the hyperparamaters
of the prior distribution and those to be used to estimate hyperparameters of
the likelihood distribution.

We have shown, both theoretically and via computer simulation, that a
random effects analysis based on PEB and one based on the summary statistic
approach are identical given that the first-level error variances are equal. For
unequal error variances we have shown, via simulations, how the accuracy of
the summary-statistic approach falls off.

Finally, we have noted that the standard summary statistic approach as-
sumes an isotropic error covariance matrix at the second level. If, however, this
matrix is changed to reflect both first and second level covariance terms then
this ‘modified’ summary statistic approach will give identical results to PEB.
This requires that we make estimates of the ‘non-sphericity’ (see Chapter 10)
at the second level.
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Figure 1: Two-level hierarchical model. The data y are explained as deriving
from an effect w and a zero-mean Gaussian random variation with covariance
C. The effects w in turn are random effects deriving from a superordinate
effect µ and zero-mean Gaussian random variation with covariance P . The goal
of Bayesian inference is to make inferences about µ and w from the posterior
distributions p(µ|y) and p(w|y).
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Figure 2: Bayes rule for univariate Gaussians. The two solid curves show the
probability densities for the prior p(w) = N(µ, α−1) with µ = 20 and α = 1
and the likelihood p(y|w) = N(w, β−1) with w = 25 and β = 3. The dotted
curve shows the posterior distribution, p(w|y) = N(m,λ−1) with m = 23.75 and
λ = 4, as computed from equation 14. The posterior distribution is closer to the
likelihood because the likelihood has higher precision.
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Figure 3: Simulated data for random effects analysis. Three representative time
series produced from the two-level hierarchical model. The first two time-series
contain stimulus-related activity but the third does not.
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Figure 4: A plot of the error in estimating the population mean E =< (µ̂−µ)2 >
versus the observation noise level for the third subject, σ2

w(3), for the Empirical
Bayes approach (solid line) and the Summary-Statistic approach (dotted line).
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Figure 5: A plot of the estimated variance of the population mean, σ2
µ, versus

the observation noise level for the third subject, σ2
w(3), for the Empirical Bayes

approach (solid line) and the Summary-Statistic approach (dotted line).
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