Nonparametric Permutation Tests for Functional Neuroimaging

T.E. Nichols^{*} A.P. Holmes[†]

March 4, 2003

- * Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, 48109. USA.
- † Andrew Holmes, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield. SK10 4TG. UK

1 Introduction

The statistical analyses of functional mapping experiments usually proceeds at the voxel level, involving the formation and assessment of a *statistic image*: at each voxel a statistic indicating evidence of the experimental effect of interest, at that voxel, is computed, giving an image of statistics, a *statistic image* or *Statistical Parametric Map* (SPM). In the absence of a priori anatomical hypotheses, the entire statistic image must be assessed for significant experimental effects, using a method that accounts for the inherent multiplicity involved in testing at all voxels simultaneously.

Traditionally, this has been accomplished in a classical *parametric* statistical framework. In the methods discussed in Chapters 7 and 8 of this book, the data are assumed to be normally distributed, with mean parameterized by a general linear model. This flexible framework encompasses *t*-tests, *F*-tests, paired *t*-tests, ANOVA(see eg. Chapter 7), correlation, linear regression, multiple regression, and ANCOVA, amongst others. The estimated parameters of this model are contrasted to produce a test statistic at each voxel, which have a Student's *t*-distribution under the null hypothesis. The resulting *t*-statistic image is then assessed for statistical significance, using distributional results for continuous random fields to identify voxels or regions where there is significant evidence against the null hypothesis (Worsley, 1996; Worsley *et al.*, 1995; Friston *et al.*, 1994; Poline *et al.*, 1997; Friston *et al.*, 1996).

Holmes *et al.* (1996) introduced a nonparametric alternative based on permutation test theory. This method is conceptually simple, relies only on minimal assumptions, deals with the multiple comparisons issue, and can be applied when the assumptions of a parametric approach are untenable. Further, in some circumstances, the permutation method outperforms parametric approaches. Arndt (1996), working independently, also discussed the advantages of similar approaches. Subsequently, Grabrowski *et al.* (1996) demonstrated empirically the potential power of the approach in comparison with other methods. Halber *et al.* (1997), discussed further by Holmes *et al.* (1998), also favour the permutation approach. Nichols & Holmes (2001) review the nonparametric theory and demonstrate how multisubject f MRI can be analyzed. Applications of permutation testing methods to *single* subject f MRI require modelling the temporal auto-correlation in the f MRI time series. Bullmore *et al.* (1996) develop permutation based procedures for periodic fMRI activation designs using a simple ARMA model for temporal autocorrelations, though they eschew the problem of multiple comparisons. Bullmore *et al.* (2001) use a wavelet transformation to account for more general forms of fMRI correlation. Locascio *et al.* (1997) describe an application to fMRI combining the general linear model (Friston *et al.*, 1995b), ARMA modelling (Bullmore *et al.*, 1996), and a multiple comparisons permutation procedure (Holmes *et al.*, 1996). (Liu *et al.*, 1998) consider an alternative approach, permuting labels. Bullmore *et al.* (1999) apply nonparametric methods to compare groups of structural MR images.

The aim of this chapter is to present the theory of the multiple comparisons nonparametric permutation for independent data (e.g. PET or intersubject fMRI), including detailed examples. While the traditional approach to multiple comparisons controls the familywise error rate, the chance of any false positives, another perspective has recently been introduced. The new approach controls the False Discovery Rate (FDR), the fraction of false positives among all detected voxels (Genovese *et al.*, 2001) (see Chapter 15 for a brief description). While this chapter only considers the familywise error rate, we note that a permutation approach to FDR has been proposed (Yekutieli & Benjamini, 1999).

We begin with an introduction to nonparametric permutation testing, reviewing experimental design and hypothesis testing issues, and illustrating the theory by considering testing a functional neuroimaging dataset at a single voxel. The problem of searching the brain volume for significant activations is then considered, and the extension of the permutation methods to the *multiple comparisons problem* of simultaneously testing at all voxels is described. With appropriate methodology in place, we conclude with three annotated examples illustrating the approach. Software implementing the approach, called Statistical Nonparametric Mapping, is available as an extension of the MATLAB based SPM package.

2 Permutation tests

Permutation tests are one type of nonparametric test. They were proposed in the early twentieth century, but have only recently become popular with the availability of inexpensive, powerful computers to perform the computations involved.

The essential concept of a permutation test is relatively intuitive: For example, consider a simple single subject PET activation experiment, where a single subject is scanned repeatedly under "rest" and "activation" conditions. Considering the data at a particular voxel, if there is really no difference between the two conditions, then we would be fairly surprised if most of the "activation" observations were larger than the "rest" observations, and would be inclined to conclude that there was evidence of some activation at that voxel. Permutation tests simply provide a formal mechanism for quantifying this "surprise" in terms of probability, thereby leading to significance tests and p-values.

If there is no experimental effect, then the labelling of observations by the corresponding experimental condition is arbitrary, since the same data would have arisen whatever the condition. These *labels* can be any relevant attribute: condition "tags", such as "rest" or "active"; a covariate, such as task difficulty or response time; or a label, indicating group membership. Given the null hypothesis that the labellings are arbitrary, the significance of a statistic expressing the experimental effect can then be assessed by comparison with the distribution of values obtained when the labels are permuted.

The justification for exchanging the labels comes from either weak distributional assumptions, or by appeal to the randomization scheme used in designing the experiment. Tests justified by the initial randomization of conditions to experimental units (e.g. subjects or scans), are sometimes referred to as *randomization tests*, or *re-randomization tests*. Whatever the theoretical justification, the mechanics of the tests are the same. Many authors refer to both generically as permutation tests, a policy we shall adopt unless a distinction is necessary.

In this section, we describe the theoretical underpinning for randomization and permutation tests. Beginning with simple univariate tests at a single voxel, we first present randomization tests (§2.1), describing the key concepts at length, before turning to permutation tests (§2.2). These two approaches lead to exactly the same test, which we illustrate with a simple worked example (§2.3), before describing how the theory can be applied to assess an entire statistic image (§2.4). For simplicity of exposition, the methodology is developed using the example of a simple single subject PET activation experiment. However, the approach is not limited to activation experiments, nor to PET.

2.1 Randomization test

We first consider randomization tests, using a single subject activation experiment to illustrate the thinking: Suppose we are to conduct a simple single subject PET activation experiment, with the regional cerebral blood flow (rCBF) in "active" (A) condition scans to be compared with that in scans acquired under an appropriate "baseline" (B) condition. The fundamental concepts are of experimental *randomization*, the *null hypothesis*, *exchangability*, and the *randomization distribution*.

Randomization

To avoid unexpected confounding effects, suppose we randomize the allocation of conditions to scans prior to conducting the experiment. Using an appropriate scheme, we label the scans as A or B according to the conditions under which they will be acquired, and hence specify the *condition presentation order*. This allocation of condition labels to scans is randomly chosen according to the randomization scheme, and any other possible labelling of this scheme was equally likely to have been chosen.

Null hypothesis

In the randomization test, the null hypothesis is explicitly about the acquired data. For example: \mathcal{H}_0 : "Each scan would have been the same whatever the condition, A or B". The hypothesis is that the experimental conditions did not affect the data differentially, such that had we run the experiment with a different condition presentation order, we would have observed exactly the

same data. In this sense we regard the data as fixed, and the experimental design as random. (In contrast to regarding the design as fixed, and the data as a realization of a random process.) Under this null hypothesis, the labellings of the scans as A or B is arbitrary; since these labellings arose from the initial random allocation of conditions to scans, and any initial allocation would have given the same data. Thus, we may re-randomize the labels on the data, effectively permuting the labels, subject to the restriction that each permutation could have arisen from the initial randomization scheme. The observed data is equally likely to have arisen from any of these permuted labellings.

Exchangeability

This leads to the notion of *exchangeability*. Consider the situation before the data is collected, but after the condition labels have been assigned to scans. Formally, a set of labels on the data (still to be collected) are *exchangeable* if the distribution of the statistic (still to be evaluated) is the same whatever the labelling (Good, 1994). For our activation example, we would use a statistic expressing the difference between the "active" and "baseline" scans. Thus under the null hypothesis of no difference between the A & B conditions, the labels are exchangeable, provided the permuted labelling could have arisen from the initial randomization scheme. The initial randomization scheme gives us the probabilistic justification for permuting the labels, the null hypothesis asserts that the data would have been the same.

So with a randomization test, the randomization scheme prescribes the possible labellings, and the null hypothesis asserts that the labels are exchangeable within the constraints of this scheme. Thus we define an *exchangeability block* (EB) as a block of scans within which the labels are exchangeable, a definition which mirrors that of randomization blocks, blocks of observations within which condition order is randomized.

Randomization distribution

Consider now some statistic expressing the experimental effect of interest at a particular voxel. For the current example of a PET single subject activation, this could be the mean difference between the A and the B condition scans, a two-sample *t*-statistic, a *t*-statistic from an ANCOVA, or any appropriate statistic. We are not restricted to the common statistics of classical parametric hypothesis whose null distributions are known under specific assumptions, because the appropriate distribution will be derived from the data.

The computation of the statistic depends on the labelling of the data. For example, with a two-sample t-statistic, the labels A & B specify the groupings. Thus, permuting the labels leads to an alternative value of the statistic.

Given exchangeability under the null hypothesis, the observed data is equally likely to have arisen from any of the possible labellings. Hence, the statistics associated with each of the possible labellings are also equally likely. Thus, we have the permutation (or randomization) distribution of our statistic: The *permutation distribution* is the *sampling distribution* of the statistic under the null hypothesis, given the data observed. Under the null hypothesis, the observed statistic is randomly chosen from the set of statistics corresponding to all possible relabellings. This gives us a way to formalize our "surprise" at an outcome: The probability of an outcome as or more extreme than the one observed, the *p*-value, is the proportion of statistic values in the permutation distribution greater or equal to that observed. The actual labelling used in the experiment is one of the possible labellings, so if the observed statistic is the largest of the permutation distribution, the *p*-value is 1/N, where N is the number of possible labellings of the initial randomization scheme. Since we are considering a test at a single voxel, these would be *uncorrected* p-values in the language of multiple comparisons (see below, Section 2.4).

Randomization test: Summary

To summarise, the null hypothesis asserts that the scans would have been the same whatever the experimental condition, A or B. Under this null hypothesis

the initial randomization scheme can be regarded as arbitrarily labelling scans as A or B, under which the experiment would have given the same data, and the labels are exchangeable. The statistic corresponding to any labelling from the initial randomization scheme is as likely as any other, since the permuted labelling could equally well have arisen in the initial randomization. The sampling distribution of the statistic (given the data) is the set of statistic values corresponding to all the possible labellings of the initial randomization scheme, each value being equally likely.

Randomization test: Mechanics

Let N denote the number of possible relabellings, t_i the statistic corresponding to relabelling *i*. (After having performed the experiment, we refer to relabellings for the data, identical to the labellings of the randomization scheme). The set of t_i for all possible relabellings constitutes the *permu*tation distribution. Let T denote the value of the statistic for the actual labelling of the experiment. As usual in statistics, we use a capital letter for a random variable. T is random, since under \mathcal{H}_0 it is chosen from the permutation distribution according to the initial randomization.

Under \mathcal{H}_0 , all of the t_i are equally likely, so we determine the significance of our observed statistic T by counting the proportion of the permutation distribution as or more extreme than T, giving us our p-value. We reject the null hypothesis at significance level α if the p-value is less than α . Equivalently, T must be greater or equal to the $100(1 - \alpha)$ %ile of the permutation distribution. Thus, the *critical value* is the (c + 1)th largest member of the permutation distribution, where $c = \lfloor \alpha N \rfloor$, αN rounded down. If T exceeds this critical value then the test is significant at level α .

2.2 Permutation test

In many situations it is impractical to randomly allocate experimental conditions, or perhaps we are presented with data from an experiment that was not randomized. For instance, we can not randomly assign subjects to be patients or normal controls. Or, for example, consider a multisubject fMRI second level analysis where a covariate is measured for each subject, and we seek brain regions whose activation appears to be related to the covariate value.

In the absence of an explicit randomization of conditions to scans, we must make weak distributional assumptions to justify permuting the labels on the data. Typically, all that is required is that distributions have the same shape, or are symmetric. The actual permutations that are performed again depend on the degree of exchangeability, which in turn depend on the actual assumptions made. With the randomization test, the experimenter designs the initial randomization scheme carefully to avoid confounds. The randomization scheme reflects an implicitly assumed degree of exchangeability. With the permutation test, the degree of exchangeability must be assumed post hoc. Usually, the reasoning that would have led to a particular randomization scheme can be applied post-hoc to an experiment, leading to a permutation test with the same degree of exchangeability. Given exchangeability, computation proceeds as for the randomization test.

Permutation test: Summary

Weak distributional assumptions are made, which embody the degree of exchangeability. The exact form of these assumptions depends on the experiment at hand, as illustrated in the following section and in the examples section.

For a simple single subject activation experiment, we might typically assume the following: For a particular voxel, "active" and "baseline" scans within a given block have a distribution with the same shape, though possibly different means. The null hypothesis asserts that the distributions for the "baseline" and "active" scans have the same mean, and hence are the same. Then the labels are arbitrary within the chosen blocks, which are thus the exchangeability blocks. Any permutation of the labels within the exchangeability blocks leads to an equally likely statistic.

The mechanics are then the same as with the randomization test: For each

of the possible relabellings, compute the statistic of interest; for relabelling i, call this statistic t_i . Under the null hypothesis each of the t_i are equally likely, so the *p*-value is the proportion of the t_i 's greater than or equal to the statistic T corresponding to the correctly labelled data.

2.3 Single voxel example

To make these concepts concrete, consider assessing the evidence of an activation effect at a single voxel of a single subject PET activation experiment consisting of six scans, three in each of the "active" (A) and "baseline" (B) conditions. Suppose that the conditions were presented alternately, starting with rest, and that the observed data at this voxel are {90.48, 103.00, 87.83, 99.93, 96.06, 99.76} to 2 decimal places. (These data are from a voxel in the primary visual cortex of the second subject in the PET visual activation experiment presented in the examples section.)

As mentioned before, any statistic can be used, so for simplicity of illustration we use the "mean difference," i.e. $T = \frac{1}{3} \sum_{j=1}^{3} (A_j - B_j)$ where B_j and A_j indicate the value of the *j*th scan at the particular voxel of interest, under the baseline and active conditions respectively. Thus, we observe statistic T = 9.45

Randomization test

Suppose that the condition presentation order was randomized, the actual ordering of BABABA having being randomly selected from all allocations of three A's and three B's to the six available scans, a simple balanced randomization within a single randomization block of size six. By combinatorics, or some counting, we find that this randomization scheme has twenty ($_{6}C_{3} = 20$) possible outcomes.

Then we can justify permuting the labels on the basis of this initial randomization. Under the null hypothesis \mathcal{H}_0 : "The scans would have been the same whatever the experimental condition, A or B", the labels are exchangeable, and the statistics corresponding to the twenty possible labellings are equally likely. The twenty possible labellings are:

1:	AAABBB	6:	ABABAB	11:	BAAABB	16:	BABBAA
2:	AABABB	7:	ABABBA	12:	BAABAB	17:	BBAAAB
3:	AABBAB	8:	ABBAAB	13:	BAABBA	18:	BBAABA
4:	AABBBA	9:	ABBABA	14:	BABAAB	19:	BBABAA
5:	ABAABB	10:	ABBBAA	15:	BABABA	20:	BBBAAA

Permutation test

Suppose there was no initial randomization of conditions to scans, and that the condition presentation order ABABAB was simply chosen. With no randomization, we must make weak distributional assumptions to justify permuting the labels, effectively prescribing the degree of exchangeability.

For this example, consider permuting the labels freely amongst the six scans. This corresponds to *full exchangeability*, a single exchangeability block of size six. For this to be tenable, we must either assume the absence of any temporal or similar confounds, or model their effect such that they do not affect the statistic under permutations of the labels. Consider the former. This gives twenty possible permutations of the labels, precisely those enumerated for the randomization justification above. Formally, we're assuming that the voxel values for the "baseline" and "active" scans come from distributions that are the same except for a possible difference in location, or mean. Our null hypothesis is that these distributions have the same mean, and therefore are the same.

Clearly the mean difference statistic under consideration in the current example is confounded with time for labellings such as AAABBB (#1) and BBBAAA (#20), where a time effect will result in a large mean difference between the A and the B labelled scans. The test is still valid, but possibly conservative. The actual condition presentation order of BABABA is relatively unconfounded with time, but the contribution of confounds to the statistics for alternative labellings such as #1 & #20 will potentially increase the number of statistics greater than the observed statistic.

Computation

Let t_i be the mean difference for labelling i, as enumerated above. Computing for each of the twenty relabellings:

$t_1 = +4.82$	$t_6 = +9.45$	$t_{11} = -1.48$	$t_{16} = -6.86$
$t_2 = -3.25$	$t_7 = +6.97$	$t_{12} = +1.10$	$t_{17} = +3.15$
$t_3 = -0.67$	$t_8 = +1.38$	$t_{13} = -1.38$	$t_{18} = +0.67$
$t_4 = -3.15$	$t_9 = -1.10$	$t_{14} = -6.97$	$t_{19} = +3.25$
$t_5 = +6.86$	$t_{10} = +1.48$	$t_{15} = -9.45$	$t_{20} = -4.82.$

This is our permutation distribution for this analysis, summarized as a histogram in figure 1. Each of the possible labellings was equally likely. Under the null hypothesis the statistics corresponding to these labellings are equally likely. The *p*-value is the proportion of the permutation distribution greater or equal to *T*. Here the actual labelling #6 with $t_6 = +9.4$ gives the largest mean difference of all the possible labellings, so the *p*-value is 1/20 = 0.05. For a test at given α level, we reject the null hypothesis if the *p*-value is less than α , so we conclude that there is significant evidence against the null hypothesis of no activation at this voxel at level $\alpha = 0.05$.

2.4 Multiple comparisons permutation tests

Thus far we have considered using a permutation test at a single voxel: For each voxel we can produce a *p*-value, p^k , for the null hypothesis \mathcal{H}_0^k , where the superscript *k* indexes the voxels. If we have an a priori anatomical hypothesis concerning the experimentally induced effect at a single voxel, then we can simply test at that voxel using an appropriate α level test. If we don't have such precise anatomical hypotheses, evidence for an experimental effect must be assessed at each and every voxel. We must take account of the multiplicity of testing. Clearly 5% of voxels are expected to have *p*-values less than $\alpha = 0.05$. This is the essence of the *multiple comparisons problem*. In the language of multiple comparisons, these *p*-values are *uncorrected p*values. Type I errors must be controlled overall, such that the probability of falsely declaring any region as significant is less than the nominal test level α . This is known as controlling the familywise error rate, the family being the collection of tests performed over the entire brain. Formally, we require a test procedure maintaining strong control over *familywise* Type I error, giving *adjusted p*-values, *p*-values *corrected* for multiple comparisons.

The construction of suitable multiple comparisons procedures for the problem of assessing statistic images from functional mapping experiments within parametric frameworks has occupied many authors (Friston *et al.* (1991); Worsley *et al.* (1992; 1994; 1995); Poline *et al.* (1993; 1997); Roland *et al.* (1993); Forman *et al.* (1995); (Friston *et al.*, 1994; Friston *et al.*, 1996); (Cao, 1999) \ldots amongst others). In contrast to these parametric and simulation based methods, a nonparametric resampling based approach provides an intuitive and easily implemented solution (Westfall & Young, 1993). The key realization is that the reasoning presented above for permutation tests at a single voxel rely on relabelling entire *images*, so the arguments can be extended to image level inference by considering an appropriate *maximal statistic*. If, under the omnibus null hypothesis, the labels are exchangeable with respect to the voxel statistic under consideration, then the labels are exchangeable with respect to any statistic summarizing the voxel statistics, such as their maxima.

We consider two popular types of test, *single threshold* and *suprathreshold cluster* size tests, but note again the flexibility of these methods to consider any statistic.

Single threshold test

With a single threshold test, the statistic image is thresholded at a given *critical threshold*, and voxels with statistic values exceeding this threshold have their null hypotheses rejected. Rejection of the *omnibus hypothesis* (that all the voxel hypotheses are true) occurs if any voxel value exceeds the threshold, a situation clearly determined by the value of the maximum value of the statistic image. Thus, consideration of the maximum voxel statistic deals with the multiple comparisons problem. For a valid omnibus test, the critical threshold is such that the probability that it is exceeded by the maximal statistic is less than α . Thus, we require the distribution of

the maxima of the null statistic image. Approximate parametric derivations based on the theory of strictly stationary continuous random fields are given by Friston *et al.* (1991) and Worsley *et al.* (1992; 1994; 1995).

The permutation approach can yield the distribution of the maximal statistic in a straightforward manner: Rather than compute the permutation distribution of the statistic at a particular voxel, we compute the permutation distribution of the maximal voxel statistic over the volume of interest. We reject the omnibus hypothesis at level α if the maximal statistic for the actual labelling of the experiment is in the top $100\alpha\%$ of the permutation distribution for the maximal statistic. The critical value is the (c+1)th largest member of the permutation distribution, where $c = \lfloor \alpha N \rfloor$, αN rounded down. Furthermore, we can reject the null hypothesis at any voxel with a statistic value exceeding this threshold: The critical value for the maximal statistic is the critical threshold for a single threshold test over the same volume of interest. This test can be shown to have *strong* control over *experiment-wise* Type I error. A formal proof is given by Holmes *et al.* (1996).

The mechanics of the test are as follows: For each possible relabelling $i = 1, \ldots, N$, note the maximal statistic t_i^{\max} , the maximum of the voxel statistics for relabelling $i: t_i^{\max} = \max\{t_i\}_{i=1}^N$. This gives the permutation distribution for T^{\max} , the maximal statistic. The critical threshold is the c + 1 largest member of the permutation distribution for T^{\max} , where $c = \lfloor \alpha N \rfloor$, αN rounded down. Voxels with statistics exceeding this threshold exhibit evidence against the corresponding voxel hypotheses at level α . The corresponding corrected *p*-value for each voxel is the proportion of the permutation distribution for the maximal statistic that is greater or equal to the voxel statistic.

Suprathreshold cluster tests

Suprathreshold cluster tests start by thresholding the statistic image at a predetermined *primary* threshold, and then assess the resulting pattern of suprathreshold activity. Suprathreshold cluster size tests assess the size of connected suprathreshold regions for significance, declaring regions greater than a critical size as activated. Thus, the distribution of the maximal suprathreshold cluster size (for the given primary threshold) is required. Simulation approaches have been presented by Poline & Mazoyer (1993) and Roland *et al.* (1993) for PET, Forman *et al.* (1995) for fMRI. Friston *et al.* (1994) give a theoretical parametric derivation for Gaussian statistic images based on the theory of continuous Gaussian random fields, Cao (1999) gives results for χ^2 , *t* and *F* fields.

Again, as noted by Holmes *et al.* (1996), a nonparametric permutation approach is simple to derive. Simply construct the permutation distribution of the maximal suprathreshold cluster size. For the statistic image corresponding to each possible relabelling, note the size of the largest suprathreshold cluster above the primary threshold. The critical suprathreshold cluster size for this primary threshold is the $(\lfloor \alpha N \rfloor + 1)$ th largest member of this permutation distribution. Corrected *p*-values for each suprathreshold cluster in the observed statistic image are obtained by comparing their size to the permutation distribution.

In general such suprathreshold cluster tests are more powerful for functional neuroimaging data then the single threshold approach (see Friston *et al.* (1995b) for a fuller discussion). However, it must be remembered that this additional power comes at the price of reduced localizing power: The null hypotheses for voxels within a significant cluster are not tested, so individual voxels cannot be declared significant. Only the omnibus null hypothesis for the cluster can be rejected. Further, the choice of primary threshold dictates the power of the test in detecting different types of deviation from the omnibus null hypothesis. With a low threshold, large suprathreshold clusters are to be expected, so intense focal "signals" will be missed. At higher thresholds these focal activations will be detected, but lower intensity diffuse "signals" may go undetected below the primary threshold.

Poline *et al.* (1997) addressed these issues within a parametric framework by considering the suprathreshold cluster size and height jointly. A nonparametric variation could be to consider the *exceedance mass*, the excess mass of the suprathreshold cluster, defined as the integral of the statistic image above the primary threshold within the suprathreshold cluster (Holmes, 1994; Bullmore *et al.*, 1999). Calculation of the permutation distribution and *p*-values proceeds exactly as before.

2.5 Considerations

Before turning to example applications of the nonparametric permutation tests described above, we note some relevant theoretical issues. The statistical literature (referenced below) should be consulted for additional theoretical discussion. For issues related to the current application to functional neuroimaging, see also Holmes (1994), Holmes *et al.* (1996), and Arndt *et al.* (1996).

Nonparametric statistics

Firstly, it should be noted that these methods are neither new nor contentious: Originally expounded by Fisher (1935), Pitman (1937a; 1937b; 1937c), and later Edgington (1964; 1969b; 1969a), these approaches are enjoying a renaissance as computing technology makes the requisite computations feasible for practical applications. Had R.A. Fisher and his peers had access to similar resources, it is possible that large areas of parametric statistics would have gone undeveloped! Modern texts on the subject include Good's *Permutation Tests* (Good, 1994), Edgington's *Randomization Tests* (Edgington, 1995), and Manly's *Randomization, Bootstrap and Monte-Carlo Methods in Biology* (1997). Recent interest in more general resampling methods, such as the bootstrap, has further contributed to the field. For a treatise on resampling based multiple comparisons procedures, see Westfall & Young (1993).

Many standard statistical tests are essentially permutation tests: The "classic" nonparametric tests, such as the Wilcoxon and Mann-Whitney tests, are permutation tests with the data replaced by appropriate ranks, such that the critical values are only a function of sample size and can therefore be tabulated. Fisher's exact test (Fisher & Bennett, 1990), and tests of Spearman and Kendall correlations (Kendall & Gibbons, 1990), are all permutation/randomization based.

Assumptions

The only assumptions required for a valid permutation test are those to justify permuting the labels. Clearly the experimental design, model, statistic and permutations must also be appropriate for the question of interest. For a randomization test the probablistic justification follows directly from the initial randomization of condition labels to scans. In the absence of an initial randomization, permutation of the labels can be justified via weak distributional assumptions. Thus, only minimal assumptions are required for a valid test. (The notable case when exchangeability under the null hypothesis is not tenable is fMRI time series, due to temporal autocorrelation.)

In contrast to parametric approaches where the statistic must have a known null distributional form, the permutation approach is free to consider any statistic summarizing evidence for the effect of interest at each voxel. The consideration of the maximal statistic over the volume of interest then deals with the multiple comparisons problem.

However, there are additional considerations when using the non-parametric approach with a maximal statistic to account for multiple comparisons. In order for the single threshold test to be equally sensitive at all voxels, the (null) sampling distribution of the chosen statistic should be similar across voxels. For instance, the simple mean difference statistic used in the single voxel example (§2.3) could be considered as a voxel statistic, but areas where the mean difference is highly variable will dominate the permutation distribution for the maximal statistic. The test will still be valid, but will be less sensitive at those voxels with lower variability. So, although for an individual voxel a permutation test on group mean differences is equivalent to one using a two-sample t-statistic (Edgington, 1995), this not true in the multiple comparisons setting using a maximal statistic.

One approach to this problem is to consider multi-step tests, which iteratively identify activated areas, cut them out, and continue assessing the remaining volume. These are described below, but are additionally computationally intensive. Preferable is to use a voxel statistic with approximately homogeneous null permutation distribution across the volume of interest, such as an appropriate t-statistic. A t-statistic is essentially a mean difference normalized by a variance estimate, effectively measuring the reliability of an effect.

Thus, we consider the same voxel statistics for a non-parametric approach as we would for a comparable parametric approach.

Pseudo *t*-statistics

Nonetheless, we can still do a little better than a straight t-statistic, particularly at low degrees of freedom. A t-statistic is a change divided by the square root of the estimated variance of that change. When there are few degrees of freedom available for variance estimation, say, less than 20, this variance is estimated poorly. Errors in estimation of the variance from voxel to voxel appear as high (spatial) frequency noise in images of the estimated variance or near-zero variance estimates, which in either case cause noisy t-statistic images. Given that PET and fMRI measure (indicators of) blood flow, physiological considerations would suggest that the variance be roughly constant over small localities. This suggests pooling the variance estimate at a voxel with those of its neighbors to give a locally pooled variance estimate as a better estimate of the actual variance. Since the model is of the same form at all voxels, the voxel variance estimates have the same degrees of freedom, and the locally pooled variance estimate is simply the average of the variance estimates in the neighbourhood of the voxel in question. More generally, weighted locally pooled voxel variance estimates can be obtained by smoothing the raw variance image. The filter kernel then specifies the weights and neighbourhood for the local pooling. The *Pseudo* t-statistic images formed with smoothed variance estimators are smooth. In essence the noise (from the variance image) has been smoothed, but not the signal. A derivation of the parametric distribution of the pseudo t requires knowledge of the variance-covariances of the voxel-level variances, and has so far proved elusive. This precludes parametric analyses using a pseudo t-statistic, but poses no problems for a nonparametric approach.

Number of relabellings & test size

A constraint on the permutation test is the number of possible relabellings. Since the observed labelling is always one of the N possible labellings, the smallest p-value attainable is 1/N. Thus, for a level $\alpha = 0.05$ test to potentially reject the null hypothesis, there must be at least twenty possible relabellings.

More generally, the permutation distribution is *discrete*, consisting of a finite set of possibilities corresponding to the N possible relabellings. Hence, any pvalues produced will be multiples of 1/N. Further, the $100(1-\alpha)^{\text{th}}$ percentile of the permutation distribution, the critical threshold for a level α test, may lie between two values. Equivalently, α may not be a multiple of 1/N, such that a p-value of exactly α cannot be attained. In these cases, an exact test with size exactly α is not possible. It is for this reason that the critical threshold is computed as the (c + 1)th largest member of the permutation distribution, where $c = \lfloor \alpha N \rfloor$, αN rounded down. The test can be described as *almost* exact, since the size is at most 1/N less than α .

Approximate tests

A large number of possible relabellings is also problematic, due to the computations involved. In situations where it is not feasible to compute the statistic images for all the relabellings, a subsample of relabellings can be used (Dwass, 1957) (see also Edgington (1969a) for a less mathematical description). The set of N possible relabellings is reduced to a more manageable N' consisting of the true labelling and N' - 1 randomly chosen from the set of N - 1 possible relabellings. The test then proceeds as before.

Such a test is sometimes known as an *approximate* permutation test, since the permutation distribution is approximated by a subsample, leading to approximate *p*-values and critical thresholds. (These tests are also known as *Monte-Carlo permutation tests* or *random permutation tests*, reflecting the random selection of permutations to consider.)

Despite the name, the resulting test is still exact. However, as might be expected from the previous section, using an approximate permutation distribution results in a test that is more conservative and less powerful than one using the full permutation distribution. Fortunately, as few as 1000 permutations can yield an effective approximate permutation test (Edgington, 1969a). However, for an approximate test with minimal loss of power in comparison to the full test (i.e. with high efficiency), one should consider rather more (Jöckel, 1686), as many as 10,000.

Power

Frequently, nonparametric approaches are less powerful than equivalent parametric approaches when the assumptions of the latter are true. The assumptions provide the parametric approach with additional information which the nonparametric approach must "discover". The more relabellings, the better the power of the nonparametric approach relative to the parametric approach. In a sense the method has more information from more relabellings, and "discovers" the null distribution assumed in the parametric approach. However, if the assumptions required for a parametric analysis are not credible, a nonparametric approach provides the only valid method of analysis.

In the current context of assessing statistic images from functional neuroimaging experiments, the prevalent Statistical Parametric Mapping techniques require a number of assumptions and involve some approximations. Experience suggests that the permutation methods described here do at least as well as the parametric methods, at least on real (PET) data (Arndt *et al.*, 1996). For noisy statistic images, such as *t*-statistic images with low degrees of freedom, the ability to consider pseudo *t*-statistics constructed with locally pooled (smoothed) variance estimates affords the permutation approach additional power (Holmes, (1994); Holmes *et al.*, (1996); & examples below).

Multi-step tests

The potential for confounds to affect the permutation distribution via the consideration of unsuitable relabellings has already been considered §2.3. Recall also the above comments regarding the potential for the multiple comparison permutation tests to be differentially sensitive across the volume of interest if the null permutation distribution varies dramatically from voxel

to voxel. In addition, there is also the prospect that departures from the null hypothesis influence the permutation distribution. Thus far, our nonparametric multiple comparisons permutation testing technique has consisted of a *single-step*: The null sampling distribution (given the data), is the permutation distribution of the maximal statistic computed over all voxels in the volume of interest, potentially including voxels where the null hypothesis is not true. A large departure from the null hypothesis will give a large statistic, not only in the actual labelling of the experiment, but also in other relabellings, similar to the true labelling. This does not affect the overall validity of the test, but may make it more conservative for voxels other than that with the maximum observed statistic.

One possibility is to consider *step-down* tests, where significant regions are iteratively identified, cut out, and the remaining volume reassessed. The resulting procedure still maintains strong control over family-wise Type I error, our criteria for a test with localizing power, but will be more powerful (at voxels other than that with the maximal statistic). However, the iterative nature of the procedure multiplies the computational burden of an already intensive procedure. Holmes *et al.* (1996), give a discussion and efficient algorithms, developed further in Holmes (1994), but find that the additional power gained was negligible for the cases studied.

Recall also the motivations for using a normalized voxel statistic, such as the *t*-statistic: An inappropriately normalized voxel statistic will yield a test differentially sensitive across the image. In these situations the step-down procedures may be more beneficial.

Further investigation of step-down methods and sequential tests more generally are certainly warranted, but are unfortunately beyond the scope of this work.

Generalizability

Questions often arise about the scope of inference, or generalizability of nonparametric procedures. For parametric tests, when a collection of subjects have been randomly selected from a population of interest and intersubject variability is considered, the inference is on the sampled population and not just the sampled subjects. The randomization test, in contrast, only makes inference on the data at hand: A randomization test regards the data as fixed and uses the randomness of the experimental design to justify exchangeability. A permutation test, while operationally identical to the randomization test, *can* make inference on a sampled population: A permutation test also regards the data as fixed but it additionally assumes the presence of a population distribution to justify exchangeability, and hence can be used for population inference. The randomization test is truly assumption free, but has a limited scope of inference.

In practice, since subjects rarely constitute a random sample of the population of interest, we find the issue of little practical concern. Scientists routinely generalize results, integrating prior experience, other findings, existing theories, and common sense in a way that a simple hypothesis test does not admit.

3 Worked examples

The following sections illustrate the application of the techniques described above to three common experimental designs: single subject PET "parametric", multi-subject PET activation, and multi-subject fMRI activation. In each example we will illustrate the key steps in performing a permutation analysis:

1. Null Hypothesis

Specify the null hypothesis

- 2. Exchangeability Specify exchangeability of observations under the null hypothesis
- 3. Statistic

Specify the statistic of interest, usually broken down into specifying a voxel-level statistic and a summary statistic.

4. Relabelings

Determine all possible relabelings given the exchangeability scheme under the null hypothesis

5. Permutation Distribution

Calculate the value of the statistic for each relabeling, building the permutation distribution

6. Significance

Use the permutation distribution to determine significance of correct labeling and threshold for statistic image.

The first three items follow from the experimental design and must be specified by the user; the last three are computed by the software, though we will still address them here. When comparable parametric analyses are available (within SPM) we will compare the permutation results to the parametric results.

3.1 Single subject PET: Parametric design

The first study will illustrate how covariate analyses are implemented and how the suprathreshold cluster size statistic is used. This example also shows how randomization in the experimental design dictates the exchangeability of the observations.

Study Description

The data come from a study of Silbersweig *et al.* (1994). The aim of the study was to validate a novel PET methodology for imaging transient, randomly occurring events, specifically events that were shorter than the duration of a PET scan. This work was the foundation for later work imaging hallucinations in schizophrenics (Silbersweig et al., 1995). We consider one subject from the study, who was scanned 12 times. During each scan the subject was presented with brief auditory stimuli. The proportion of each scan over which stimuli were delivered was chosen randomly, within three randomization blocks of size four. A score was computed for each scan, indicating the proportion of activity infused into the brain during stimulation. This scan activity score is our covariate of interest, which we shall refer to as DURATION. This is a type of parametric design, though in this context parametric refers not to a set of distributional assumptions, but rather an experimental design where an experimental parameter is varied continuously. This is in contradistinction to a factorial design where the experimental probe is varied over a small number of discrete levels.

We also have to consider the global cerebral blood flow (gCBF), which we account for here by including it as a nuisance covariate in our model. This gives a multiple regression, with the slope of the DURATION effect being of interest. Note that regressing out gCBF like this requires an assumption that there is no linear dependence between the score and global activity; examination of a scatter plot and a correlation coefficient of 0.09 confirmed this as a tenable assumption (see Chapter 7 for further discussion of global effects in PET).

Null hypothesis

Since this is a randomized experiment, the test will be a randomization test, and the null hypothesis pertains directly to the data, and no assumptions are required:

 \mathcal{H}_0 : "The data would be the same whatever the DURATION"

Exchangeability

Since this experiment was randomized, our choice of EB matches the randomization blocks of the experimental design, which was chosen with temporal effects in mind. The values of DURATION were grouped into 3 blocks of four, such that each block had the same mean and similar variability, and then randomized within block. Thus we have three EBs of size four.

Statistic

We decompose our statistic of interest into two statistics: one voxel-level statistic that generates a statistic image, and a maximal statistic that summarizes that statistic image in a single number. An important consideration will be the degrees of freedom. We have one parameter for the grand mean, one parameter for the slope with DURATION, and one parameter for confounding covariate gCBF. Hence 12 observations less three parameters leaves just nine degrees of freedom to estimate the error variance at each voxel.

Voxel-level statistic: With only 9 degrees of freedom, this study shows the characteristic noisy variance image (Figure 2). The high frequency noise from poor variance estimates propagates into the *t*-statistic image, when one would expect an image of evidence against \mathcal{H}_0 to be smooth (as is the case for studies with greater degrees of freedom) since the raw images are smooth.

We address this situation by smoothing the variance images (see §2.5, Pseudo t-statistics), replacing the variance estimate at each voxel with a weighted average of its neighbors. We use weights from an 8mm spherical Gaussian smoothing kernel. The statistic image consisting of the ratio of the slope and the square root of the smoothed variance estimate is smoother than that computed with the raw variance. At the voxel level the resulting statistic does not have a Student's t-distribution under the null hypothesis, so we refer to it as a *pseudo t*-statistic.

Figure 3 shows the effect of variance smoothing. The smoothed variance image creates a smoother statistic image, the pseudo t-statistic image. The key here is that the parametric t-statistic introduces high spatial frequency noise via the poorly estimated standard deviation – by smoothing the variance image we are making the statistic image more like the "signal".

Summary Statistic: We summarize evidence against \mathcal{H}_0 for each relabeling with the maximum statistic (see §2.4), and in this example consider the maximum suprathreshold cluster size (max STCS).

Clusters are defined by connected suprathreshold voxels. Under \mathcal{H}_0 , the statistic image should be random with no features or structure, hence large clusters are unusual and indicate the presence of an activation. A primary threshold is used to define the clusters. The selection of the primary threshold is crucial. If set too high there will be no clusters of any size; if set too low the clusters will be too large to be useful.

Relabeling enumeration

Each of the three previous sections correspond to a choice that a user of the permutation test has to make. Those choices and the data are sufficient for an algorithm to complete the permutation test. This and the next two sections describe the ensuing computational steps.

To create the labeling used in the experiment, the labels were divided into

three blocks of four, and randomly ordered within blocks. There are $4! = 4 \times 3 \times 2 \times 1 = 24$ ways to permute 4 labels, and since each block is independently randomized, there are a total of $4!^3 = 13,824$ permutations of the labels.

Computations for 13,824 permutations would be burdensome, so we use an approximate test. We randomly select 999 relabellings to compute the statistic, giving 1,000 relabellings including the actual labelling used in the experiment. Recall that while the p-values are approximate, the test is still exact.

Permutation distribution

For each of the 1,000 relabellings, the statistic image is computed and thresholded, and the maximal suprathreshold cluster size is recorded. For each relabeling this involves model fitting at each voxel, smoothing the variance image, and creating the pseudo *t*-statistic image. This is the most computationally intensive part of the analysis, but is not onerous on modern computing hardware. (See §3.4 for computing times.)

Selection of the primary threshold is a quandary. For the results to be valid we need to pick the threshold before the analysis is performed. With a parametric voxel-level statistic we could use its null distribution to specify a threshold from the uncorrected p-value (e.g. by using a t table). Here we cannot take this approach since we are using a nonparametric voxel-level statistic whose null distribution is not known *a priori*. Picking several thresholds is not valid, as this introduces a new multiple comparisons problem. We suggest gaining experience with similar datasets from *post hoc* analyses: apply different thresholds to get a feel for an appropriate range and then apply such a threshold to the data on hand. Using data from other subjects in this study we found 3.0 to be a reasonable primary threshold.

Significance threshold

The distribution of max STCS is used to assess the overall significance of the experiment and the significance of individual clusters: The significance is

the proportion of relabellings that had max STCS greater than or equal to the maximum STCS of the correct labelling. Put another way, if max STCS of the correct labelling is at or above the 95th percentile of the max STCS permutation distribution, the experiment is significant at $\alpha = 0.05$. Also, any cluster in the observed image with size greater than the 95th percentile is the significant at $\alpha = 0.05$. Since we have 1000 relabellings, $1000 \times 0.95 = 950$, so the 950th largest max STCS will be our significance threshold.

Results

The permutation distribution of max STCS under \mathcal{H}_0 is shown in Figure 4a. Most relabellings have max STCS less than 250 voxels. The vertical dotted line indicates the 95th percentile: the top 5% are spread from about 500 to 3000 voxels.

For the correctly labelled data the max STCS was 3101 voxels. This is unusually large in comparison to the permutation distribution. Only five relabellings yield max STCS equal to or larger than 3101, so the *p*-value for the experiment is 5/1000 = 0.005. The 95th percentile is 462, so any suprathreshold clusters with size greater than 462 voxels can be declared significant at level 0.05, accounting for the multiple comparisons implicit in searching over the brain.

Figure 4b, is a maximum intensity projection (MIP) of the significant suprathreshold clusters. Only these two clusters are significant, that is, there are no other suprathreshold clusters larger than 462 voxels. These two clusters cover the bilateral auditory (primary and associative) and language cortices. They are 3101 and 1716 voxels in size, with p-values of 0.005 and 0.015 respectively. Since the test concerns suprathreshold clusters it has no localising power: Significantly large suprathreshold clusters contain voxels with a significant experimental effect, but the test does not identify them.

Discussion

The nonparametric analysis presented here uses maximum STCS on a pseudo t-statistic image. Since the distribution of the pseudo t-statistic is not known, the corresponding primary threshold for a parametric analysis using a standard t-statistic cannot be computed. This precludes a straightforward comparison of this nonparametric analysis with a corresponding parametric analysis such as that of Friston *et al.* (1994).

While the necessity to choose the primary threshold for suprathreshold cluster identification is a problem, the same is true for parametric approaches. The only additional difficulty occurs with pseudo t-statistic images, when specification of primary thresholds in terms of upper tail probabilities from a Students' t-distribution is impossible. Further, parametric suprathreshold cluster size methods (Friston *et al.*, 1994; Poline *et al.*, 1997) utilise asymptotic distributional results, and therefore require high primary thresholds. The nonparametric technique is free of this constraint, giving exact p-values for any primary threshold (although very low thresholds are undesirable due to the large suprathreshold clusters expected and consequent poor localization of an effect).

Although only suprathreshold cluster size has been considered, any statistic summarizing a suprathreshold cluster could be considered. In particular an exceedance mass statistic could be employed (see §2.4).

3.2 Multi-subject PET: Activation

For the second example we consider a multi-subject, two condition activation experiment. Here we will use a standard *t*-statistic with a single threshold test, enabling a direct comparison with the standard parametric random field approach.

Study Description

Watson *et al.* (1993) localized the region of visual cortex sensitive to motion, area MT/V5, using high resolution 3D PET imaging of twelve subjects. These the data were analyzed by Holmes *et al.* (1996), using proportional scaling global flow normalization and a repeated measures pseudo *t*-statistic. Here we consider the same data, but use a standard repeated measures *t*-statistic, allowing direct comparison of parametric and nonparametric approaches.

The visual stimulus consisted of randomly placed squares. During the baseline condition the pattern was stationary, whereas during the active condition the squares smoothly moved in independent directions. Prior to the experiment, the twelve subjects were randomly allocated to one of two scan condition presentation orders in a balanced randomization. Thus six subjects had scan conditions ABABABABABAB, the remaining six having BABABABABABABA, which we'll refer to as AB and BA orders respectively.

Null hypothesis

In this example the labels of the scans as A & B are allocated by the initial randomization, so we have a randomization test, and the null hypothesis concerns the data directly:

 \mathcal{H}_0 : For each subject, the experiment would have yielded the same data were the conditions reversed.

Exchangeability

Given the null hypothesis, exchangeability follows directly from the initial randomization scheme: The experiment was randomized at the subject level, with six AB and six BA labels randomly assigned to the twelve subjects. Correspondingly, the labels are exchangeable subject to the constraint that they could have arisen from the initial randomization scheme. Thus we consider all permutations of the labels that result in six subjects having scans labelled AB, and the remaining six BA. The initial randomization could have resulted in any six subjects having the AB condition presentation order (the remainder being BA), and under the null hypothesis the data would have been the same, hence exchangeability.

Statistic

We are interested in the activation magnitude relative to the intersubject variability in activation, hence we use the statistic associated with a *random effects* model which incorporates a random subject by condition interaction term.

Voxel-level Statistic: A random effects analysis is easily effected by collapsing the data within subject and computing the statistic across subjects (Worsley *et al.*, 1991; Holmes & Friston, 1999). In this case the result is a repeated measures *t*-statistic after proportional scaling global flow normalization: Each scan is proportionally scaled to a common global mean of 50; each subjects data is collapsed into two average images, one for each condition; a paired *t*-statistic is computed across the subjects' "rest"-"active" pairs of average images. By computing this paired *t*-statistic on the collapsed data, both the inter-subject and intra-subject (error) components of variance are accounted for appropriately. Since there are twelve subjects there are twelve pairs of average condition images, and the *t*-statistic has 11 degrees of freedom. With just 11 degrees of freedom we anticipate the same problems with noisy variance images as in the previous examples, but in order to make direct comparisons with a parametric approach, we will not consider variance smoothing and pseudo *t*-statistics for this example.

Summary Statistic: To consider a single threshold test over the entire brain, the appropriate summary statistic is the maximum *t*-statistic.

Relabeling enumeration

This example is different from the previous one in that we permute across subjects instead of across replications of conditions. Here our EB is not in units of scans, but subjects. The EB size here is twelve subjects, since the six AB and six BA labels can be permuted freely amongst the twelve subjects. There are $\binom{12}{6} = \frac{12!}{6!(12-6)!} = 924$ ways of choosing six of the twelve subjects to have the AB labelling. This is a sufficiently small number of permutations to consider a complete enumeration.

One may consider permuting labels within subjects, particularly in the permutation setting when there is no initial randomization dictating the exchangeability. However, the bulk of the permutation distribution is specified by these between-subject permutations, and any within-subject permutations just flesh out this framework, yielding little practical improvement in the test at considerable computational cost.

Permutation distribution

For each of 924 relabellings we calculate the maximum repeated measures t-statistic, resulting in the permutation distribution shown in Figure 5a. Note that for each possible relabelling and t-statistic image, the opposite relabelling is also possible, and gives the negative of the t-statistic image. Thus, it is only necessary to compute t-statistic images for half of the relabellings, and retain their maxima and minima. The permutation distribution is then that of the maxima for half the relabellings concatenated with the negative of the corresponding minima.

Significance threshold

As before, the 95th percentile of the maximum t distribution provides both a threshold for omnibus experimental significance and a voxel-level significance threshold appropriate for the multiple comparisons problem. With 924 permutations, the 95th percentile is at $924 \times 0.05 = 46.2$, so the critical threshold is the 47th largest member of the permutation distribution. Any voxel with intensity greater than this threshold can be declared significant at the 0.05 level.

Results

Figure 5a shows the permutation distribution of the maximum repeated measures t-statistic. Most maxima lie between about 4 and 9, though the distribution is skewed in the positive direction.

The outlier at 29.30 corresponds to the observed t-statistic, computed with correctly labelled data. Since no other relabellings are higher, the p-value is 1/924 = 0.0011. The 47th largest member of the permutation distribution is 8.40, the critical threshold (marked with a dotted vertical line on the permutation distribution). The t-statistic image thresholded at this critical value is shown in figure 5b. There is a primary region of 1424 significant voxels covering the V1/V2 region, flanked by two secondary regions of 23 and 25 voxels corresponding to area V5, plus six other regions of 1 or 2 voxels.

For a t-statistic image of 43,724 voxels of size $2 \times 2 \times 4$ mm, with an estimated smoothness of $7.8 \times 8.7 \times 8.7$ mm FWHM, the parametric theory gives a 5% level critical threshold of 11.07, substantially higher than the corresponding 4.61 of the nonparametric result. The thresholded image is shown in figure 6b; the image is very similar to the nonparametric image (figure 5b), with the primary region having 617 voxels, with two secondary regions of 7 and 2 voxels. Another parametric result is the well-known, but conservative Bonferroni correction; here it specifies a 5% threshold of 8.92 which yields a primary region of 1,212 voxels and 5 secondary regions with a total of 48 voxels. In figure 6a we compare these three approaches by plotting the significance level versus the threshold. The critical threshold based on the expected Euler characteristic (Worsley et al., 1995) for a t-statistic image is shown as a dashed line and the critical values for the permutation test is shown as a solid line. For a given test level (a horizontal line), the test with the smaller threshold has the greater power. At all thresholds in this plot the nonparametric threshold is below the random field threshold, though it closely tracks the Bonferroni threshold below the 0.05 level. Thus random field theory (see Chapters 14 and 15) appears to be quite conservative here.

Discussion

This example again demonstrates the role of the permutation test as a reference for evaluating other procedures, here the parametric analysis of Friston *et al.* (1995b). The *t* field results are conservative for low degrees of freedom and low smoothness (Keith Worsley, personal communication); the striking difference between the nonparametric and random field thresholds makes this clear.

Figure 6a provides a very informative comparison between the two methods. For all typical test sizes ($\alpha \leq 0.05$), the nonparametric method specifies a lower threshold than the parametric method: For these data, this is exposing the conservativeness of the t field results. For lower thresholds the difference between the methods is even greater, though this is anticipated since the parametric results are based on high threshold approximations.

A randomization test applied to a random effects statistic presents an interesting contradiction. While we use a statistic corresponding to a model with a random subject by condition interaction, we are performing a randomization test that technically excludes inference on a population. However, if we assume that the subjects of this study constitute a random sample of the population of interest, we can ignore the experimental randomization and perform a permutation test, as we do in the next example.

3.3 Multi-subject fMRI: Activation

For this third and final example, consider a multi-subject fMRI activation experiment. Here we will perform a permutation test so that we can make inference on a population. We will use a smoothed variance *t*-statistic with a single threshold test and will make qualitative and quantitative comparisons with the parametric results. Before discussing the details of this example, we note that fMRI data presents a special challenge for nonparametric methods. Since fMRI data exhibits temporal autocorrelation (Smith *et al.*, 1999), an assumption of exchangeability of scans within subject is not tenable. However, to analyze a group of subjects for population inference we need only assume exchangeability of subjects. Hence, while intrasubject fMRI analyses are not straightforward with the permutation test, multisubject analyses are.

Study Description

Marshuetz *et al.* (2000) studied order effects in working memory using fMRI. The data were analyzed using a random effects procedure (Holmes & Friston, 1999), as in the last example. For fMRI, this procedure amounts to a generalization of the repeated measures t-statistic.

There were 12 subjects, each participating in eight fMRI acquisitions. There were two possible presentation orders for each block, and there was randomization across blocks and subjects. The RT was two seconds, a total of 528 scans collected per condition. Of the study's three conditions we consider only two, item recognition and control. For item recognition, the subject was presented with five letters and, after a two second interval, presented with a probe letter. They were to respond "yes" if the probe letter was among the five letters and "no" if it was not. In the control condition they were presented with five X's and, two seconds later, presented with either a "y" or a "n"; they were to press "yes" for y and "no" for n.

Each subject's data was analyzed, creating a difference image between the item recognition and control effects. These images were analyzed with a one-sample t-test, yielding a random effects analysis that accounts for intersubject differences.

Null hypothesis

While this study used randomization within and across subject and hence permits the use of a randomization test, we will use a permutation approach to generalize the results to a population (See §2.5 above).

Again using a random effects statistic, we only analyze each subject's item vs. control difference image. We make the weak distributional assumption that the values of the subject difference images at any given voxel (across subjects) are drawn from a symmetric distribution. (The distribution may be different at different voxels, as long as it is symmetric). The null hypothesis is that these distributions are centred on zero:

 \mathcal{H}_0 : The symmetric distributions of the (voxel values of the) subjects' difference images have zero mean.

Exchangeability

The conventional assumption of independent subjects implies exchangeability, and hence a single EB consisting of all subjects.

Exchanging the item and control labels has exactly the effect of flipping the sign of the difference image. So we consider subject labels of "+1" and "-1", indicating an unflipped or flipped sign of the data. Under the null hypothesis, we have data symmetric about zero, and hence can randomly flip the sign's of subject's difference images.

Statistic

In this example we focus on statistic magnitude.

Voxel-level Statistic: As noted above, this analysis amounts to a one-sample *t*-test on the first level difference images, testing for a zero-mean effect across subjects. We use a pseudo *t*-test, with a variance smoothing of 4mm FWHM, comparable to the original within subject smoothing. In our experience, the use of *any* variance smoothing is more important than the particular magnitude (FWHM) of the smoothing.

Summary Statistic: Again we are interested in searching over the whole brain for significant changes, hence we use the maximum pseudo t.

Relabeling enumeration

Based on our exchangeability under the null hypothesis, we can flip the sign on some or all of our subjects' data. There are $2^{12} = 4,096$ possible ways of assigning either "+1" or "-1" to each subject. We consider all 4,096 relabelings.

Permutation distribution

For each relabeling we found the maximum pseudo-t statistic, yielding the distribution in Figure 7a. As in the last example, we have a symmetry in these labels; we need only compute 2,048 statistic images and save both the maxima and minima.

Significance threshold

With 4,096 permutations the 95th percentile is $4,096 \times 0.05 = 452.3$, and hence the 453rd largest maxima defines the 0.05 level corrected significance threshold.

Results

The permutation distribution of the maximum pseudo-t statistic under \mathcal{H}_0 is shown in Figure 7a. It is centered around 4.5 and is slightly positively skewed; all maxima found were between about 3 and 8.

The correctly labeled data yielded the largest maximum, 8.471. Hence the overall significance of the experiment is 1/4,096 = 0.0002. The dotted line indicates the 0.05 corrected threshold, 5.763. Figure 7b shows the thresholded MIP of significant voxels. There are 312 voxels in 8 distinct regions; in particular there is a pair of bilateral posterior parietal regions, a left thalamus region and an anterior cingulate region; these are typical of working memory studies (Marshuetz *et al.*, 2000).

It is informative to compare this result to the traditional t statistic, using both a nonparametric and parametric approach to obtain corrected thresholds. We reran this nonparametric analysis using no variance smoothing. The resulting thresholded data is shown in Figure 7c; there are only 58 voxels in 3 regions that exceeded the corrected threshold of 7.667. Using standard parametric random field methods produced the result in Figure 7d. For 110,776 voxels of size $2 \times 2 \times 2$ mm, with an estimated smoothness of $5.1 \times 5.8 \times 6.9$ mm FWHM, the parametric theory finds a threshold of 9.870; there are only 5 voxels in 3 regions above this threshold. Note that only the pseudo-t statistic detects the bilateral parietal regions. Table 1 summarises the three analyses along with the Bonferroni result.

Discussion

In this example we have demonstrated the utility of the nonparametric method for intersubject fMRI analyses. Based soley on independence of the subjects and symmetric distribution of difference images under the null hypothesis, we can create a permutation test that yields inferences on a population.

Multiple subject fMRI studies often have few subjects, many fewer than

Statistic	Inference	Corrected Threshold		Minimum Corrected	Number of Significant
	Method	t	Pseudo- t	p-Value	Voxels
t	Random Field	9.870		0.0062	5
t	Bonferroni	9.802		0.0025	5
t	Permutation	7.667		0.0002	58
Pseudo- t	Permutation		5.763	0.0002	312

Table 1: Comparison of four inference methods for the item recognition fMRI data. The minimum corrected p-value and number of significant voxels give an overall measure of sensitivity; corrected thresholds can only be compared within statistic type. For this data, the Bonferroni and random field results are very similar, and the nonparametric methods are more powerful; the nonparametric t method detects 10 times as many voxels as the parametric method, and the nonparametric pseudo-t detects 60 times as many.

20 subjects. By using the smoothed variance t statistic we have gained sensitivity relative to the standard t statistic. Even with the standard tstatistic, the nonparametric test proved more powerful, detecting 5 times as many voxels as active. Although the smoothed variance t is statistically valid, it does not overcome any limitations of *face* validity of an analysis based on only 12 subjects.

We note that this relative ranking of sensitivity (nonparametric pseudo-t, nonparametric t, parametric t) is consistent with the other second level datasets we have analyzed. We believe this is due to a conservativeness of the random t field results under low degrees of freedom, not just low smoothness.

3.4 Discussion of Examples

These examples have demonstrated the nonparametric permutation test for PET and fMRI with a variety of experimental designs and analyses. We have addressed each of the steps in sufficient detail to follow the algorithmic steps that the SnPM software performs. We have shown that the ability to utilise smoothed variances via a pseudo *t*-statistic can offer an approach

with increased power over a corresponding standard t-statistic image. Using standard t-statistics, we have seen how the permutation test can be used as a reference against which parametric results can be validated.

However, note that the comparison between parametric and nonparametric results must be made very carefully. Comparable models and statistics must be used, and multiple comparisons procedures with the same degree of control over image-wise Type I error used. Further, since the permutation distributions are derived from the data, critical thresholds are specific to the data set under consideration. Although the examples presented above are compelling, it should be remembered that these are only a few specific examples and further experience with many data sets is required before generalizations can be made. However, the points noted for these specific examples are indicative of our general experience with these methods.

Finally, while we have noted that the nonparametric method has greater computational demands than parametric methods, they are reasonable on modern hardware. The PET examples took 35 minutes and 20 minutes, respectively, on a 176 Mhz Sparc Ultra 1. The fMRI example took 2 hours on a 440 Mhz Sparc Ultra 10. The fMRI data took longer due to more permutations (2048 vs. 500) and larger images.

4 Conclusions

In this chapter the theory and practicalities of multiple comparisons nonparametric randomization and permutation tests for functional neuroimaging experiments have been presented and illustrated with worked examples.

As has been demonstrated, the permutation approach offers various advantages. The methodology is intuitive and accessible. By consideration of suitable maximal summary statistics, the multiple comparisons problem can easily be accounted for; only minimal assumptions are required for valid inference, and the resulting tests are almost exact, with size at most 1/N less than the nominal test level α , where N is the number of relabelings.

The nonparametric permutation approaches described give results similar to those obtained from a comparable Statistical Parametric Mapping approach using a general linear model with multiple comparisons corrections derived from random field theory. In this respect these nonparametric techniques can be used to verify the validity of less computationally expensive parametric approaches. When the assumptions required for a parametric approach are not met, the non-parametric approach described provides a viable alternative analysis method.

In addition, the approach is flexible. Choice of voxel and summary statistic are not limited to those whose null distributions can be derived from parametric assumptions. This is particularly advantageous at low degrees of freedom, when noisy variance images lead to noisy statistic images and multiple comparisons procedures based on the theory of continuous random fields are conservative. By assuming a smooth variance structure, and using a pseudo *t*-statistic computed with smoothed variances, the permutation approach gains considerable power.

Therefore we propose that the nonparametric permutation approach is preferable for experimental designs implying low degrees of freedom, including small sample size problems, such as single subject PET/SPECT, but also PET/SPECT & fMRI multi-subject and between group analyses involving small numbers of subjects, where analysis must be conducted at the subject level to account for inter-subject variability. It is our hope that this chapter, and the accompanying software, will encourage appropriate application of these non-parametric techniques.

Acknowledgments

We thank the authors of the three example data sets analyzed for permission to use their data.

References

- Arndt, S, Cizadlo, T, Andreasen, NC, Heckel, D, Gold, S, & O'Leary, DS. 1996. Tests for comparing images based on randomization and permutation methods. J Cereb Blood Flow Metab, 16(6), 1271–1279.
- Bullmore, E, Long, C, & Suckling, J. 2001. Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. *Human Brain Mapping*, **12**, 61– 78.
- Bullmore, Edward, Brammer, Michael, Williams, Steve CR, Rabe-Hesketh, Sophia, Janot, Nicolas, David, Anthony, Mellers, John, Howard, Robert, & Sham, Pak. 1996. Statistical Methods of Estimation and Inference for Functional MR Image Analysis. *Magnetic Resonance in Medicine*, 35, 261–277.
- Bullmore, ET, Suckling, J, Overmeyer, S, Rabe-Hesketh, S, Taylor, E, & Brammer, MJ. 1999. Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. *IEEE Transactions on Medical Imaging*, 18(1), 32–42.
- Cao, J. 1999. The size of the connected components of excursion sets of χ^2 , t and F fields. Advances in Applied Probability, accepted.
- Dwass, Meyer. 1957. Modified Randomization Tests for Nonparametric Hypotheses. Annals of Mathematical Statistics, 28, 181–187.
- Edgington, Eugene S. 1964. Randomization Tests. J Psychol, 57, 445–449.
- Edgington, Eugene S. 1969a. Approximate Randomization Tests. J Psychol, 72, 143–149.
- Edgington, Eugene S. 1969b. *Statistical Inference: The Distribution Free* Approach. McGraw-Hill.
- Edgington, Eugene S. 1995. *Randomization Tests (Third Edition)*. New York: Marcel Dekker.
- Fisher, R. A. (Auth), & Bennett, J. H. (Ed). 1990. Statistical Methods, Experimental Design, and Scientific Inference. Oxford University Press.
- Fisher, RA. 1935. The Design of Experiments. Edinburgh: Oliver, Boyd.

- Forman, SD, Cohen, JD, Fitzgerald, M, Eddy, WF, Mintun, MA, & Noll, DC. 1995. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. *Magn Reson Med*, **33**(5), 636–647.
- Frackowiak, RSJ, Friston, KJ, Frith, CD, Dolan, RJ, & Mazziotta, JC. 1997. Human Brain Function. San Diego: Academic Press.
- Friston, KJ, Frith, CD, Liddle, PF, & Frackowiak, RSJ. 1991. Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab, 11(4), 690–699.
- Friston, KJ, Worsley, KJ, Frackowiak, RSJ, Mazziotta, JC, & Evans, AC. 1994. Assessing the Significance of Focal Activations Using their Spatial Extent. Human Brain Mapping, 1, 214–220.
- Friston, K.J., Holmes, A.P., Poline, J-B., Grasby, P.J., Williams, S.C.R., Frackowiak, R.S.J., & Turner, R. 1995a. Analysis of fMRI time series revisited. *Neuroimage*, 2, 45–53.
- Friston, KJ, Holmes, AP, Worsley, KJ, Poline, J-B, & Frackowiak, RSJ. 1995b. Statistical parametric maps in functional imaging: A general linear approach. *Human Brain Mapping*, 2, 189–210.
- Friston, KJ, Holmes, AP, Poline, J-B, Price, CJ, & Frith, CD. 1996. Detecting activations in PET and fMRI: levels of inference and power. *NeuroImage*, 4(3 Pt 1), 223–235.
- Genovese, CR, Lazar, N, & Nichols, TE. 2001. Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate. *NeuroImage, to appear.*
- Good, Phillip. 1994. Permutation Tests. A Practical Guide to Resampling Methods for Testing Hypotheses. Springer-Verlag.
- Grabowski, TJ, Frank, RJ, Brown, CK, Damasio, H, Boles Ponto, LL, Watkins, GL, & Hichwa, RD. 1996. Reliability of PET activation across statistical methods, subject groups, and sample sizes. *Human Brain Mapping*, 4(1), 23–46.
- Halber, Marco, Herholz, Karl, Wienhard, Klaus, Pawlik, Gunter, & Heiss, Wolf-Dieter. 1997. Performance of a Randomization Test for Single-Subject 15-O-Water PET Activation Studies. Journal of Cerebral Blood Flow and Metabolism, 17, 1033–1039.

- Hochberg, Yosef, & Tamhane, Ajit C. 1987. *Multiple Comparison Procedures*. Wiley.
- Holmes, Andrew P, Watson, John DG, & Nichols, Thomas E. 1998. Holmes & Watson, on 'Sherlock'. Journal of Cerebral Blood Flow and Metabolism, 18(-), S697. Letter to the editor, with reply.
- Holmes, AP. 1994. Statistical Issues in Functional Brain Mapping. Ph.D. thesis, University of Glasgow. Available from http://www.fil.ion.ucl.ac.uk/spm/papers/APH_thesis.
- Holmes, AP, & Friston, KJ. 1999. Generalisability, Random Effects & Population Inference. *NeuroImage*, 7(4 (2/3)), S754. Proceedings of Fourth International Conference on Functional Mapping of the Human Brain, June 7-12, 1998, Montreal, Canada.
- Holmes, AP, Blair, RC, Watson, JDG, & Ford, I. 1996. Nonparametric Analysis of Statistic Images from Functional Mapping Experiments. *Journal* of Cerebral Blood Flow and Metabolism, 16(1), 7–22.
- Jöckel, Karl-Heinz. 1686. Finite Sample Properties and Asymptotic Efficiency of Monte-Carlo Tests. Annals of Statistics, 14, 336–347.
- Kendall, Maurice, & Gibbons, J. D. 1990. Rank Correlation Methods (5th Ed.). Edward Arnold.
- Liu, C, Raz, J, & Turetsky, B. 1998 (March). An Estimator and Permutation Test for Single-Trial fMRI Data. In: Abstracts of ENAR Meeting of the International Biometric Society.
- Locascio, JJ, Jennings, PJ, Moore, CI, & Corkin, S. 1997. Time Series Analysis in the Time Domain and Resampling Methods for Studies of Functional Magnetic Resonance Brain Imaging. *Human Brain Mapping*, 5, 168–193.
- Manly, BFJ. 1997. Randomization, Bootstrap and Monte-Carlo Methods in Biology. London: Chapman & Hall.
- Marshuetz, C, Smith, EE, Jonides, J, DeGutis, J, & Chenevert, TL. 2000. Order Information in Working Memory: fMRI evidence for parietal and prefrontal mechanisms. *Journal of Cognitive Neuroscience*, **12/S2**, 130– 144.

- Nichols, TE, & Holmes, AP. 2001. Nonparametric Permutation Tests for Functional Neuroimaging: A Primer with Examples. *Human Brain Mapping*, 15, 1–25.
- Pitman, EJG. 1937a. Significance tests which may be applied to samples from any population. J R Stat Soc [Suppl], 4, 119–130.
- Pitman, EJG. 1937b. Significance tests which may be applied to samples from any population. II. The correlation coefficient test. J R Stat Soc [Suppl], 4, 224–232.
- Pitman, EJG. 1937c. Significance tests which may be applied to samples from any population. III. The analysis of variance test. *Biometrika*, 29, 322–335.
- Poline, JB, & Mazoyer, BM. 1993. Analysis of individual positron emission tomography activation maps by detection of high signal-to-noise-ratio pixel clusters. J Cereb Blood Flow Metab, 13(3), 425–437.
- Poline, JB, Worsley, KJ, Evans, AC, & Friston, KJ. 1997. Combining spatial extent and peak intensity to test for activations in functional imaging. *NeuroImage*, 5(2), 83–96.
- Roland, PE, Levin, B, Kawashima, R, & Akerman, S. 1993. Three-Dimensional Analysis of CLustered Voxels in 15-O-Butanol Brain Activation Images. *Human Brain Mapping*, 1(1), 3–19.
- Silbersweig, DA, Stern, E, Schnorr, L, Frith, CD, Ashburner, J, Cahill, C, Frackowiak, RSJ, & Jones, T. 1994. Imaging transient, randomly occurring neuropsychological events in single subjects with positron emission tomography: an event-related count rate correlational analysis. *Journal* of Cerebral Blood Flow and Metabolism, 14, 771–782.
- Silbersweig, DA, Stern, E, Frith, C, Cahill, C, Holmes, A, Grootoonk, S, Seaward, J, McKenna, P, Chua, SE, Schnorr, L, & et al. 1995. A functional neuroanatomy of hallucinations in schizophrenia. *Nature*, **378**(6553), 176–169.
- Smith, AM, Lewis, BK, Ruttimann, UE, Ye, FQ, Sinnwell, TM, Yang, Y, Duyn, JH, & Frank, JA. 1999. Investigation of low frequency drift in fMRI signal. *NeuroImage*, 9, 526–533.
- Watson, JDG, Myers, R, Frackowiak, RSJ, Hajnal, JV, Woods, RP, Mazziotta, JC, Shipp, S, & Zeki, S. 1993. Area V5 of the human brain:

evidence from a combined study using positron emission tomography and magnetic resonance imaging. *Cerebral Cortex*, **3**, 79–94.

- Westfall, Peter H., & Young, S. Stanley. 1993. Resampling-based Multiple Testing: Examples and Methods for p-value Adjustment. Wiley.
- Worsley, K. J. 1994. Local Maxima and the Expected Euler Characteristic of Excursion Sets of χ^2 , F and t Fields. Advances in Applied Probability, **26**, 13–42.
- Worsley, K. J., Evans, A. C., Strother, S. C., & Tyler, J. L. 1991. A Linear Spatial Correlation Model, With Applications to Positron Emission Tomography. *Journal of the American Statistical Association*, 86, 55–67.
- Worsley, K.J. 1996. The geometry of random images. Chance, 9(1), 27–40.
- Worsley, K.J., & Friston, K.J. 1995. Analysis of fMRI time-series revisited again. NeuroImage, 2, 173–181.
- Worsley, KJ, Evans, AC, Marrett, S, & Neelin, P. 1992. A three-dimensional statistical analysis for CBF activation studies in human brain. *J-Cereb-Blood-Flow-Metab*, **12**(6), 1040–2. See comment in J Cereb Blood Flow Metab 1993 Nov;13(6):1040–2.
- Worsley, K.J., Marrett, S., Neelin, P., Vandal, A.C., Friston, K.J., & Evans, A.C. 1995. A unified statistical approach for determining significant signals in images of cerebral activation. *Human Brain Mapping*, 4, 58– 73.
- Yekutieli, Daniel, & Benjamini, Yoav. 1999. Resampling-based False Discovery Rate Controlling Multiple Test Procedures for Correlated Test Statistics. Journal of Statistical Planning and Inference, 82, 171–196.

Figure 1: Histogram of permutation distribution for single voxel example of §2.3, using a mean difference statistic. Note the symmetry of the histogram about the y-axis. This occurs because for each possible labelling, the opposite labelling is also possible, and yields the same mean difference but in the opposite direction. This trick can be used in many cases to halve the computational burden.

Figure 2: Mesh plots of parametric analysis, z = 0mm. Upper left: Slope estimate. Lower left: Standard deviation of slope estimate. Right: t image for DURATION. Note how the standard deviation image is much less smooth than the slope image, and how the t image is correspondingly less smooth than the slope image.

Figure 3: Mesh plots of permutation analysis, z = 0mm. Upper left: Slope estimate. Lower left: square root of smoothed variance of slope estimate. Right: pseudo t image for DURATION. Note that the smoothness of the pseudo t image is similar to that of the slope image (c.f. figure 2).

Figure 4: **a**: Distribution of Maximum Suprathreshold Cluster Size with a primary threshold of 3. Dotted line shows 95 percentile. The count axis is truncated at 100 to show low-count tail; first two bars have counts 579 and 221. **b**: Maximum Intensity Projection Image of significantly large clusters.

Figure 5: **a**: Permutation distribution of maximum repeated measures t-statistic. Dotted line indicates the 5% level corrected threshold. **b**: Maximum intensity projection of t-statistic image, thresholded at critical threshold for a 5% level permutation test analysis of 8.401.

Figure 6: **a**: Test significance (α) levels plotted against critical thresholds, for nonparametric and parametric analyses. **b** Maximum Intensity Projection of t image, thresholded at parametric 5% level critical threshold of 11.07.

Figure 7: **a**: Permutation distribution of maximum repeated measures t statistic. Dotted line indicates the 5% level corrected threshold. **b**: Maximum intensity projection of pseudo t statistic image threshold at 5% level, as determined by permutation distribution. **c**: Maximum intensity projection of t statistic image threshold at 5% level as determined by permutation distribution. **d**: Maximum intensity projection of t statistic image threshold at 5% level as determined by permutation distribution. **d**: Maximum intensity projection of t statistic image threshold at 5% level as determined by random field theory.