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1 Introduction

The statistical analyses of functional mapping experiments usually proceeds
at the voxel level, involving the formation and assessment of a statistic im-
age: at each voxel a statistic indicating evidence of the experimental effect
of interest, at that voxel, is computed, giving an image of statistics, a statis-
tic image or Statistical Parametric Map (spm). In the absence of a priori
anatomical hypotheses, the entire statistic image must be assessed for sig-
nificant experimental effects, using a method that accounts for the inherent
multiplicity involved in testing at all voxels simultaneously.

Traditionally, this has been accomplished in a classical parametric statistical
framework. In the methods discussed in Chapters 7 and 8 of this book, the
data are assumed to be normally distributed, with mean parameterized by a
general linear model. This flexible framework encompasses t-tests, F -tests,
paired t-tests, Anova(see eg. Chapter 7), correlation, linear regression, mul-
tiple regression, and AnCova, amongst others. The estimated parameters of
this model are contrasted to produce a test statistic at each voxel, which have
a Student’s t-distribution under the null hypothesis. The resulting t-statistic
image is then assessed for statistical significance, using distributional results
for continuous random fields to identify voxels or regions where there is sig-
nificant evidence against the null hypothesis (Worsley, 1996; Worsley et al.,
1995; Friston et al., 1994; Poline et al., 1997; Friston et al., 1996).

Holmes et al. (1996) introduced a nonparametric alternative based on permu-
tation test theory. This method is conceptually simple, relies only on minimal
assumptions, deals with the multiple comparisons issue, and can be applied
when the assumptions of a parametric approach are untenable. Further, in
some circumstances, the permutation method outperforms parametric ap-
proaches. Arndt (1996), working independently, also discussed the advan-
tages of similar approaches. Subsequently, Grabrowski et al. (1996) demon-
strated empirically the potential power of the approach in comparison with
other methods. Halber et al. (1997), discussed further by Holmes et al. (1998),
also favour the permutation approach. Nichols & Holmes (2001) review the
nonparametric theory and demonstrate how multisubject f mri can be ana-
lyzed. Applications of permutation testing methods to single subject f mri
require modelling the temporal auto-correlation in the f mri time series.
Bullmore et al. (1996) develop permutation based procedures for periodic
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f mri activation designs using a simple arma model for temporal autocor-
relations, though they eschew the problem of multiple comparisons. Bull-
more et al. (2001) use a wavelet transformation to account for more general
forms of fMRI correlation. Locascio et al. (1997) describe an application
to f mri combining the general linear model (Friston et al., 1995b), arma
modelling (Bullmore et al., 1996), and a multiple comparisons permutation
procedure (Holmes et al., 1996). (Liu et al., 1998) consider an alternative
approach, permuting labels. Bullmore et al. (1999) apply nonparametric
methods to compare groups of structural MR images.

The aim of this chapter is to present the theory of the multiple comparisons
nonparametric permutation for independent data (e.g. PET or intersub-
ject fMRI), including detailed examples. While the traditional approach to
multiple comparisons controls the familywise error rate, the chance of any
false positives, another perspective has recently been introduced. The new
approach controls the False Discovery Rate (FDR), the fraction of false pos-
itives among all detected voxels (Genovese et al., 2001) (see Chapter 15 for
a brief description). While this chapter only considers the familywise er-
ror rate, we note that a permutation approach to FDR has been proposed
(Yekutieli & Benjamini, 1999).

We begin with an introduction to nonparametric permutation testing, re-
viewing experimental design and hypothesis testing issues, and illustrating
the theory by considering testing a functional neuroimaging dataset at a
single voxel. The problem of searching the brain volume for significant ac-
tivations is then considered, and the extension of the permutation methods
to the multiple comparisons problem of simultaneously testing at all vox-
els is described. With appropriate methodology in place, we conclude with
three annotated examples illustrating the approach. Software implementing
the approach, called Statistical Nonparametric Mapping, is available as an
extension of the matlab based spm package.

2 Permutation tests

Permutation tests are one type of nonparametric test. They were proposed in
the early twentieth century, but have only recently become popular with the
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availability of inexpensive, powerful computers to perform the computations
involved.

The essential concept of a permutation test is relatively intuitive: For ex-
ample, consider a simple single subject pet activation experiment, where a
single subject is scanned repeatedly under “rest” and “activation” conditions.
Considering the data at a particular voxel, if there is really no difference be-
tween the two conditions, then we would be fairly surprised if most of the
“activation” observations were larger than the “rest” observations, and would
be inclined to conclude that there was evidence of some activation at that
voxel. Permutation tests simply provide a formal mechanism for quantifying
this “surprise” in terms of probability, thereby leading to significance tests
and p-values.

If there is no experimental effect, then the labelling of observations by the cor-
responding experimental condition is arbitrary, since the same data would
have arisen whatever the condition. These labels can be any relevant at-
tribute: condition “tags”, such as “rest” or “active”; a covariate, such as
task difficulty or response time; or a label, indicating group membership.
Given the null hypothesis that the labellings are arbitrary, the significance of
a statistic expressing the experimental effect can then be assessed by compar-
ison with the distribution of values obtained when the labels are permuted.

The justification for exchanging the labels comes from either weak distri-
butional assumptions, or by appeal to the randomization scheme used in
designing the experiment. Tests justified by the initial randomization of con-
ditions to experimental units (e.g. subjects or scans), are sometimes referred
to as randomization tests, or re-randomization tests. Whatever the theoreti-
cal justification, the mechanics of the tests are the same. Many authors refer
to both generically as permutation tests, a policy we shall adopt unless a
distinction is necessary.

In this section, we describe the theoretical underpinning for randomization
and permutation tests. Beginning with simple univariate tests at a single
voxel, we first present randomization tests (§2.1), describing the key concepts
at length, before turning to permutation tests (§2.2). These two approaches
lead to exactly the same test, which we illustrate with a simple worked ex-
ample (§2.3), before describing how the theory can be applied to assess an
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entire statistic image (§2.4). For simplicity of exposition, the methodology
is developed using the example of a simple single subject pet activation ex-
periment. However, the approach is not limited to activation experiments,
nor to pet.

2.1 Randomization test

We first consider randomization tests, using a single subject activation ex-
periment to illustrate the thinking: Suppose we are to conduct a simple
single subject pet activation experiment, with the regional cerebral blood
flow (rcbf) in “active” (a) condition scans to be compared with that in scans
acquired under an appropriate “baseline” (b) condition. The fundamental
concepts are of experimental randomization, the null hypothesis, exchanga-
bility, and the randomization distribution.

Randomization

To avoid unexpected confounding effects, suppose we randomize the alloca-
tion of conditions to scans prior to conducting the experiment. Using an
appropriate scheme, we label the scans as a or b according to the conditions
under which they will be acquired, and hence specify the condition presen-
tation order. This allocation of condition labels to scans is randomly chosen
according to the randomization scheme, and any other possible labelling of
this scheme was equally likely to have been chosen.

Null hypothesis

In the randomization test, the null hypothesis is explicitly about the acquired
data. For example: H0:“Each scan would have been the same whatever the
condition, a or b”. The hypothesis is that the experimental conditions did
not affect the data differentially, such that had we run the experiment with
a different condition presentation order, we would have observed exactly the
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same data. In this sense we regard the data as fixed, and the experimental
design as random. (In contrast to regarding the design as fixed, and the
data as a realization of a random process.) Under this null hypothesis, the
labellings of the scans as a or b is arbitrary; since these labellings arose from
the initial random allocation of conditions to scans, and any initial allocation
would have given the same data. Thus, we may re-randomize the labels on
the data, effectively permuting the labels, subject to the restriction that each
permutation could have arisen from the initial randomization scheme. The
observed data is equally likely to have arisen from any of these permuted
labellings.

Exchangeability

This leads to the notion of exchangeability. Consider the situation before the
data is collected, but after the condition labels have been assigned to scans.
Formally, a set of labels on the data (still to be collected) are exchangeable
if the distribution of the statistic (still to be evaluated) is the same what-
ever the labelling (Good, 1994). For our activation example, we would use a
statistic expressing the difference between the “active” and “baseline” scans.
Thus under the null hypothesis of no difference between the a & b con-
ditions, the labels are exchangeable, provided the permuted labelling could
have arisen from the initial randomization scheme. The initial randomization
scheme gives us the probabilistic justification for permuting the labels, the
null hypothesis asserts that the data would have been the same.

So with a randomization test, the randomization scheme prescribes the pos-
sible labellings, and the null hypothesis asserts that the labels are exchange-
able within the constraints of this scheme. Thus we define an exchangeability
block (eb) as a block of scans within which the labels are exchangeable, a
definition which mirrors that of randomization blocks, blocks of observations
within which condition order is randomized.

6



Randomization distribution

Consider now some statistic expressing the experimental effect of interest at a
particular voxel. For the current example of a pet single subject activation,
this could be the mean difference between the a and the b condition scans,
a two-sample t-statistic, a t-statistic from an AnCova, or any appropriate
statistic. We are not restricted to the common statistics of classical paramet-
ric hypothesis whose null distributions are known under specific assumptions,
because the appropriate distribution will be derived from the data.

The computation of the statistic depends on the labelling of the data. For
example, with a two-sample t-statistic, the labels a & b specify the groupings.
Thus, permuting the labels leads to an alternative value of the statistic.

Given exchangeability under the null hypothesis, the observed data is equally
likely to have arisen from any of the possible labellings. Hence, the statistics
associated with each of the possible labellings are also equally likely. Thus,
we have the permutation (or randomization) distribution of our statistic: The
permutation distribution is the sampling distribution of the statistic under
the null hypothesis, given the data observed. Under the null hypothesis, the
observed statistic is randomly chosen from the set of statistics corresponding
to all possible relabellings. This gives us a way to formalize our “surprise” at
an outcome: The probability of an outcome as or more extreme than the one
observed, the p-value, is the proportion of statistic values in the permutation
distribution greater or equal to that observed. The actual labelling used in
the experiment is one of the possible labellings, so if the observed statistic is
the largest of the permutation distribution, the p-value is 1/N , where N is the
number of possible labellings of the initial randomization scheme. Since we
are considering a test at a single voxel, these would be uncorrected p-values
in the language of multiple comparisons (see below, Section 2.4).

Randomization test: Summary

To summarise, the null hypothesis asserts that the scans would have been the
same whatever the experimental condition, a or b. Under this null hypothesis
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the initial randomization scheme can be regarded as arbitrarily labelling scans
as a or b, under which the experiment would have given the same data, and
the labels are exchangeable. The statistic corresponding to any labelling from
the initial randomization scheme is as likely as any other, since the permuted
labelling could equally well have arisen in the initial randomization. The
sampling distribution of the statistic (given the data) is the set of statistic
values corresponding to all the possible labellings of the initial randomization
scheme, each value being equally likely.

Randomization test: Mechanics

Let N denote the number of possible relabellings, ti the statistic correspond-
ing to relabelling i. (After having performed the experiment, we refer to
relabellings for the data, identical to the labellings of the randomization
scheme). The set of ti for all possible relabellings constitutes the permu-
tation distribution. Let T denote the value of the statistic for the actual
labelling of the experiment. As usual in statistics, we use a capital letter
for a random variable. T is random, since under H0 it is chosen from the
permutation distribution according to the initial randomization.

Under H0, all of the ti are equally likely, so we determine the significance
of our observed statistic T by counting the proportion of the permutation
distribution as or more extreme than T , giving us our p-value. We reject the
null hypothesis at significance level α if the p-value is less than α. Equiva-
lently, T must be greater or equal to the 100(1− α)%ile of the permutation
distribution. Thus, the critical value is the (c + 1)th largest member of the
permutation distribution, where c = bαNc, αN rounded down. If T exceeds
this critical value then the test is significant at level α.

2.2 Permutation test

In many situations it is impractical to randomly allocate experimental con-
ditions, or perhaps we are presented with data from an experiment that was
not randomized. For instance, we can not randomly assign subjects to be
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patients or normal controls. Or, for example, consider a multisubject fMRI
second level analysis where a covariate is measured for each subject, and we
seek brain regions whose activation appears to be related to the covariate
value.

In the absence of an explicit randomization of conditions to scans, we must
make weak distributional assumptions to justify permuting the labels on
the data. Typically, all that is required is that distributions have the same
shape, or are symmetric. The actual permutations that are performed again
depend on the degree of exchangeability, which in turn depend on the actual
assumptions made. With the randomization test, the experimenter designs
the initial randomization scheme carefully to avoid confounds. The random-
ization scheme reflects an implicitly assumed degree of exchangeability. With
the permutation test, the degree of exchangeability must be assumed post
hoc. Usually, the reasoning that would have led to a particular randomization
scheme can be applied post-hoc to an experiment, leading to a permutation
test with the same degree of exchangeability. Given exchangeability, compu-
tation proceeds as for the randomization test.

Permutation test: Summary

Weak distributional assumptions are made, which embody the degree of ex-
changeability. The exact form of these assumptions depends on the exper-
iment at hand, as illustrated in the following section and in the examples
section.

For a simple single subject activation experiment, we might typically assume
the following: For a particular voxel, “active” and “baseline” scans within a
given block have a distribution with the same shape, though possibly different
means. The null hypothesis asserts that the distributions for the “baseline”
and “active” scans have the same mean, and hence are the same. Then the
labels are arbitrary within the chosen blocks, which are thus the exchange-
ability blocks. Any permutation of the labels within the exchangeability
blocks leads to an equally likely statistic.

The mechanics are then the same as with the randomization test: For each
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of the possible relabellings, compute the statistic of interest; for relabelling
i, call this statistic ti. Under the null hypothesis each of the ti are equally
likely, so the p-value is the proportion of the ti’s greater than or equal to the
statistic T corresponding to the correctly labelled data.

2.3 Single voxel example

To make these concepts concrete, consider assessing the evidence of an ac-
tivation effect at a single voxel of a single subject pet activation experi-
ment consisting of six scans, three in each of the “active” (a) and “base-
line” (b) conditions. Suppose that the conditions were presented alter-
nately, starting with rest, and that the observed data at this voxel are
{90.48, 103.00, 87.83, 99.93, 96.06, 99.76} to 2 decimal places. (These data
are from a voxel in the primary visual cortex of the second subject in the
pet visual activation experiment presented in the examples section.)

As mentioned before, any statistic can be used, so for simplicity of illustration
we use the “mean difference,” i.e. T = 1

3

∑3
j=1(aj − bj) where bj and aj

indicate the value of the jth scan at the particular voxel of interest, under
the baseline and active conditions respectively. Thus, we observe statistic
T = 9.45

Randomization test

Suppose that the condition presentation order was randomized, the actual
ordering of bababa having being randomly selected from all allocations of
three A’s and three B’s to the six available scans, a simple balanced random-
ization within a single randomization block of size six. By combinatorics, or
some counting, we find that this randomization scheme has twenty (6C3 = 20)
possible outcomes.

Then we can justify permuting the labels on the basis of this initial random-
ization. Under the null hypothesis H0:“The scans would have been the same
whatever the experimental condition, a or b”, the labels are exchangeable,
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and the statistics corresponding to the twenty possible labellings are equally
likely. The twenty possible labellings are:

1: aaabbb 6: ababab 11: baaabb 16: babbaa
2: aababb 7: ababba 12: baabab 17: bbaaab
3: aabbab 8: abbaab 13: baabba 18: bbaaba
4: aabbba 9: abbaba 14: babaab 19: bbabaa
5: abaabb 10: abbbaa 15: bababa 20: bbbaaa

Permutation test

Suppose there was no initial randomization of conditions to scans, and that
the condition presentation order ababab was simply chosen. With no ran-
domization, we must make weak distributional assumptions to justify per-
muting the labels, effectively prescribing the degree of exchangeability.

For this example, consider permuting the labels freely amongst the six scans.
This corresponds to full exchangeability, a single exchangeability block of size
six. For this to be tenable, we must either assume the absence of any temporal
or similar confounds, or model their effect such that they do not affect the
statistic under permutations of the labels. Consider the former. This gives
twenty possible permutations of the labels, precisely those enumerated for
the randomization justification above. Formally, we’re assuming that the
voxel values for the “baseline” and “active” scans come from distributions
that are the same except for a possible difference in location, or mean. Our
null hypothesis is that these distributions have the same mean, and therefore
are the same.

Clearly the mean difference statistic under consideration in the current exam-
ple is confounded with time for labellings such as aaabbb (#1) and bbbaaa
(#20), where a time effect will result in a large mean difference between the
a and the b labelled scans. The test is still valid, but possibly conserva-
tive. The actual condition presentation order of bababa is relatively un-
confounded with time, but the contribution of confounds to the statistics for
alternative labellings such as #1 & #20 will potentially increase the number
of statistics greater than the observed statistic.
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Computation

Let ti be the mean difference for labelling i, as enumerated above. Computing
for each of the twenty relabellings:

t1 = +4.82 t6 = +9.45 t11 = −1.48 t16 = −6.86
t2 = −3.25 t7 = +6.97 t12 = +1.10 t17 = +3.15
t3 = −0.67 t8 = +1.38 t13 = −1.38 t18 = +0.67
t4 = −3.15 t9 = −1.10 t14 = −6.97 t19 = +3.25
t5 = +6.86 t10 = +1.48 t15 = −9.45 t20 = −4.82.

This is our permutation distribution for this analysis, summarized as a his-
togram in figure 1. Each of the possible labellings was equally likely. Under
the null hypothesis the statistics corresponding to these labellings are equally
likely. The p-value is the proportion of the permutation distribution greater
or equal to T . Here the actual labelling #6 with t6 = +9.4 gives the largest
mean difference of all the possible labellings, so the p-value is 1/20 = 0.05.
For a test at given α level, we reject the null hypothesis if the p-value is
less than α, so we conclude that there is significant evidence against the null
hypothesis of no activation at this voxel at level α = 0.05.

2.4 Multiple comparisons permutation tests

Thus far we have considered using a permutation test at a single voxel: For
each voxel we can produce a p-value, pk, for the null hypothesis Hk

0 , where the
superscript k indexes the voxels. If we have an a priori anatomical hypothesis
concerning the experimentally induced effect at a single voxel, then we can
simply test at that voxel using an appropriate α level test. If we don’t
have such precise anatomical hypotheses, evidence for an experimental effect
must be assessed at each and every voxel. We must take account of the
multiplicity of testing. Clearly 5% of voxels are expected to have p-values
less than α = 0.05. This is the essence of the multiple comparisons problem.
In the language of multiple comparisons, these p-values are uncorrected p-
values. Type I errors must be controlled overall, such that the probability of
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falsely declaring any region as significant is less than the nominal test level
α. This is known as controlling the familywise error rate, the family being
the collection of tests performed over the entire brain. Formally, we require
a test procedure maintaining strong control over familywise Type I error,
giving adjusted p-values, p-values corrected for multiple comparisons.

The construction of suitable multiple comparisons procedures for the prob-
lem of assessing statistic images from functional mapping experiments within
parametric frameworks has occupied many authors (Friston et al. (1991);
Worsley et al. (1992; 1994; 1995); Poline et al. (1993; 1997); Roland et al. (1993);
Forman et al. (1995); (Friston et al., 1994; Friston et al., 1996); (Cao, 1999)
. . . amongst others). In contrast to these parametric and simulation based
methods, a nonparametric resampling based approach provides an intuitive
and easily implemented solution (Westfall & Young, 1993). The key realiza-
tion is that the reasoning presented above for permutation tests at a single
voxel rely on relabelling entire images, so the arguments can be extended
to image level inference by considering an appropriate maximal statistic. If,
under the omnibus null hypothesis, the labels are exchangeable with respect
to the voxel statistic under consideration, then the labels are exchangeable
with respect to any statistic summarizing the voxel statistics, such as their
maxima.

We consider two popular types of test, single threshold and suprathreshold
cluster size tests, but note again the flexibility of these methods to consider
any statistic.

Single threshold test

With a single threshold test, the statistic image is thresholded at a given
critical threshold, and voxels with statistic values exceeding this threshold
have their null hypotheses rejected. Rejection of the omnibus hypothesis
(that all the voxel hypotheses are true) occurs if any voxel value exceeds
the threshold, a situation clearly determined by the value of the maximum
value of the statistic image. Thus, consideration of the maximum voxel
statistic deals with the multiple comparisons problem. For a valid omnibus
test, the critical threshold is such that the probability that it is exceeded
by the maximal statistic is less than α. Thus, we require the distribution of
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the maxima of the null statistic image. Approximate parametric derivations
based on the theory of strictly stationary continuous random fields are given
by Friston et al. (1991) and Worsley et al. (1992; 1994; 1995).

The permutation approach can yield the distribution of the maximal statistic
in a straightforward manner: Rather than compute the permutation distri-
bution of the statistic at a particular voxel, we compute the permutation
distribution of the maximal voxel statistic over the volume of interest. We
reject the omnibus hypothesis at level α if the maximal statistic for the actual
labelling of the experiment is in the top 100α% of the permutation distribu-
tion for the maximal statistic. The critical value is the (c+1)th largest mem-
ber of the permutation distribution, where c = bαNc, αN rounded down.
Furthermore, we can reject the null hypothesis at any voxel with a statistic
value exceeding this threshold: The critical value for the maximal statistic
is the critical threshold for a single threshold test over the same volume of
interest. This test can be shown to have strong control over experiment-wise
Type I error. A formal proof is given by Holmes et al. (1996).

The mechanics of the test are as follows: For each possible relabelling i =
1, . . . , N , note the maximal statistic tmax

i , the maximum of the voxel statis-
tics for relabelling i: tmax

i = max {ti}N
i=1. This gives the permutation distri-

bution for Tmax, the maximal statistic. The critical threshold is the c + 1
largest member of the permutation distribution for Tmax, where c = bαNc,
αN rounded down. Voxels with statistics exceeding this threshold exhibit
evidence against the corresponding voxel hypotheses at level α. The corre-
sponding corrected p-value for each voxel is the proportion of the permu-
tation distribution for the maximal statistic that is greater or equal to the
voxel statistic.

Suprathreshold cluster tests

Suprathreshold cluster tests start by thresholding the statistic image at a
predetermined primary threshold, and then assess the resulting pattern of
suprathreshold activity. Suprathreshold cluster size tests assess the size of
connected suprathreshold regions for significance, declaring regions greater
than a critical size as activated. Thus, the distribution of the maximal
suprathreshold cluster size (for the given primary threshold) is required.
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Simulation approaches have been presented by Poline & Mazoyer (1993)
and Roland et al. (1993) for PET, Forman et al. (1995) for fMRI. Fris-
ton et al. (1994) give a theoretical parametric derivation for Gaussian statis-
tic images based on the theory of continuous Gaussian random fields, Cao
(1999) gives results for χ2, t and F fields.

Again, as noted by Holmes et al. (1996), a nonparametric permutation ap-
proach is simple to derive. Simply construct the permutation distribution of
the maximal suprathreshold cluster size. For the statistic image correspond-
ing to each possible relabelling, note the size of the largest suprathreshold
cluster above the primary threshold. The critical suprathreshold cluster size
for this primary threshold is the (bαNc + 1)th largest member of this per-
mutation distribution. Corrected p-values for each suprathreshold cluster
in the observed statistic image are obtained by comparing their size to the
permutation distribution.

In general such suprathreshold cluster tests are more powerful for functional
neuroimaging data then the single threshold approach (see Friston et al. (1995b)
for a fuller discussion). However, it must be remembered that this additional
power comes at the price of reduced localizing power: The null hypotheses
for voxels within a significant cluster are not tested, so individual voxels can-
not be declared significant. Only the omnibus null hypothesis for the cluster
can be rejected. Further, the choice of primary threshold dictates the power
of the test in detecting different types of deviation from the omnibus null
hypothesis. With a low threshold, large suprathreshold clusters are to be ex-
pected, so intense focal “signals” will be missed. At higher thresholds these
focal activations will be detected, but lower intensity diffuse “signals” may
go undetected below the primary threshold.

Poline et al. (1997) addressed these issues within a parametric framework
by considering the suprathreshold cluster size and height jointly. A nonpara-
metric variation could be to consider the exceedance mass, the excess mass of
the suprathreshold cluster, defined as the integral of the statistic image above
the primary threshold within the suprathreshold cluster (Holmes, 1994; Bull-
more et al., 1999). Calculation of the permutation distribution and p-values
proceeds exactly as before.
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2.5 Considerations

Before turning to example applications of the nonparametric permutation
tests described above, we note some relevant theoretical issues. The sta-
tistical literature (referenced below) should be consulted for additional the-
oretical discussion. For issues related to the current application to func-
tional neuroimaging, see also Holmes (1994), Holmes et al. (1996), and
Arndt et al. (1996).

Nonparametric statistics

Firstly, it should be noted that these methods are neither new nor con-
tentious: Originally expounded by Fisher (1935), Pitman (1937a; 1937b;
1937c), and later Edgington (1964; 1969b; 1969a), these approaches are en-
joying a renaissance as computing technology makes the requisite compu-
tations feasible for practical applications. Had R.A. Fisher and his peers
had access to similar resources, it is possible that large areas of parametric
statistics would have gone undeveloped! Modern texts on the subject in-
clude Good’s Permutation Tests (Good, 1994), Edgington’s Randomization
Tests (Edgington, 1995), and Manly’s Randomization, Bootstrap and Monte-
Carlo Methods in Biology (1997). Recent interest in more general resampling
methods, such as the bootstrap, has further contributed to the field. For a
treatise on resampling based multiple comparisons procedures, see Westfall
& Young (1993).

Many standard statistical tests are essentially permutation tests: The “clas-
sic” nonparametric tests, such as the Wilcoxon and Mann-Whitney tests,
are permutation tests with the data replaced by appropriate ranks, such
that the critical values are only a function of sample size and can there-
fore be tabulated. Fisher’s exact test (Fisher & Bennett, 1990), and tests
of Spearman and Kendall correlations (Kendall & Gibbons, 1990), are all
permutation/randomization based.
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Assumptions

The only assumptions required for a valid permutation test are those to jus-
tify permuting the labels. Clearly the experimental design, model, statistic
and permutations must also be appropriate for the question of interest. For
a randomization test the probablistic justification follows directly from the
initial randomization of condition labels to scans. In the absence of an initial
randomization, permutation of the labels can be justified via weak distribu-
tional assumptions. Thus, only minimal assumptions are required for a valid
test. (The notable case when exchangeability under the null hypothesis is
not tenable is fMRI time series, due to temporal autocorrelation.)

In contrast to parametric approaches where the statistic must have a known
null distributional form, the permutation approach is free to consider any
statistic summarizing evidence for the effect of interest at each voxel. The
consideration of the maximal statistic over the volume of interest then deals
with the multiple comparisons problem.

However, there are additional considerations when using the non-parametric
approach with a maximal statistic to account for multiple comparisons. In
order for the single threshold test to be equally sensitive at all voxels, the
(null) sampling distribution of the chosen statistic should be similar across
voxels. For instance, the simple mean difference statistic used in the sin-
gle voxel example (§2.3) could be considered as a voxel statistic, but areas
where the mean difference is highly variable will dominate the permutation
distribution for the maximal statistic. The test will still be valid, but will
be less sensitive at those voxels with lower variability. So, although for an
individual voxel a permutation test on group mean differences is equivalent
to one using a two-sample t-statistic (Edgington, 1995), this not true in the
multiple comparisons setting using a maximal statistic.

One approach to this problem is to consider multi-step tests, which iteratively
identify activated areas, cut them out, and continue assessing the remaining
volume. These are described below, but are additionally computationally
intensive. Preferable is to use a voxel statistic with approximately homoge-
neous null permutation distribution across the volume of interest, such as an
appropriate t-statistic. A t-statistic is essentially a mean difference normal-
ized by a variance estimate, effectively measuring the reliability of an effect.
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Thus, we consider the same voxel statistics for a non-parametric approach
as we would for a comparable parametric approach.

Pseudo t-statistics

Nonetheless, we can still do a little better than a straight t-statistic, par-
ticularly at low degrees of freedom. A t-statistic is a change divided by the
square root of the estimated variance of that change. When there are few
degrees of freedom available for variance estimation, say, less than 20, this
variance is estimated poorly. Errors in estimation of the variance from voxel
to voxel appear as high (spatial) frequency noise in images of the estimated
variance or near-zero variance estimates, which in either case cause noisy
t-statistic images. Given that pet and f mri measure (indicators of) blood
flow, physiological considerations would suggest that the variance be roughly
constant over small localities. This suggests pooling the variance estimate
at a voxel with those of its neighbors to give a locally pooled variance esti-
mate as a better estimate of the actual variance. Since the model is of the
same form at all voxels, the voxel variance estimates have the same degrees
of freedom, and the locally pooled variance estimate is simply the average of
the variance estimates in the neighbourhood of the voxel in question. More
generally, weighted locally pooled voxel variance estimates can be obtained
by smoothing the raw variance image. The filter kernel then specifies the
weights and neighbourhood for the local pooling. The Pseudo t-statistic im-
ages formed with smoothed variance estimators are smooth. In essence the
noise (from the variance image) has been smoothed, but not the signal. A
derivation of the parametric distribution of the pseudo t requires knowledge
of the variance-covariances of the voxel-level variances, and has so far proved
elusive. This precludes parametric analyses using a pseudo t-statistic, but
poses no problems for a nonparametric approach.

Number of relabellings & test size

A constraint on the permutation test is the number of possible relabellings.
Since the observed labelling is always one of the N possible labellings, the
smallest p-value attainable is 1/N . Thus, for a level α = 0.05 test to po-
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tentially reject the null hypothesis, there must be at least twenty possible
relabellings.

More generally, the permutation distribution is discrete, consisting of a finite
set of possibilities corresponding to the N possible relabellings. Hence, any p-
values produced will be multiples of 1/N . Further, the 100(1−α)th percentile
of the permutation distribution, the critical threshold for a level α test, may
lie between two values. Equivalently, α may not be a multiple of 1/N , such
that a p-value of exactly α cannot be attained. In these cases, an exact
test with size exactly α is not possible. It is for this reason that the critical
threshold is computed as the (c + 1)th largest member of the permutation
distribution, where c = bαNc, αN rounded down. The test can be described
as almost exact, since the size is at most 1/N less than α.

Approximate tests

A large number of possible relabellings is also problematic, due to the com-
putations involved. In situations where it is not feasible to compute the
statistic images for all the relabellings, a subsample of relabellings can be
used (Dwass, 1957) (see also Edgington (1969a) for a less mathematical de-
scription). The set of N possible relabellings is reduced to a more manageable
N ′ consisting of the true labelling and N ′ − 1 randomly chosen from the set
of N − 1 possible relabellings. The test then proceeds as before.

Such a test is sometimes known as an approximate permutation test, since
the permutation distribution is approximated by a subsample, leading to
approximate p-values and critical thresholds. (These tests are also known as
Monte-Carlo permutation tests or random permutation tests, reflecting the
random selection of permutations to consider.)

Despite the name, the resulting test is still exact. However, as might be
expected from the previous section, using an approximate permutation dis-
tribution results in a test that is more conservative and less powerful than
one using the full permutation distribution.
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Fortunately, as few as 1000 permutations can yield an effective approximate
permutation test (Edgington, 1969a). However, for an approximate test with
minimal loss of power in comparison to the full test (i.e. with high efficiency),
one should consider rather more (Jöckel, 1686), as many as 10,000.

Power

Frequently, nonparametric approaches are less powerful than equivalent para-
metric approaches when the assumptions of the latter are true. The assump-
tions provide the parametric approach with additional information which the
nonparametric approach must “discover”. The more relabellings, the better
the power of the nonparametric approach relative to the parametric approach.
In a sense the method has more information from more relabellings, and “dis-
covers” the null distribution assumed in the parametric approach. However,
if the assumptions required for a parametric analysis are not credible, a non-
parametric approach provides the only valid method of analysis.

In the current context of assessing statistic images from functional neu-
roimaging experiments, the prevalent Statistical Parametric Mapping tech-
niques require a number of assumptions and involve some approximations.
Experience suggests that the permutation methods described here do at least
as well as the parametric methods, at least on real (pet) data (Arndt et al.,
1996). For noisy statistic images, such as t-statistic images with low degrees
of freedom, the ability to consider pseudo t-statistics constructed with locally
pooled (smoothed) variance estimates affords the permutation approach ad-
ditional power (Holmes, (1994); Holmes et al.,(1996); & examples below).

Multi-step tests

The potential for confounds to affect the permutation distribution via the
consideration of unsuitable relabellings has already been considered §2.3.
Recall also the above comments regarding the potential for the multiple com-
parison permutation tests to be differentially sensitive across the volume of
interest if the null permutation distribution varies dramatically from voxel
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to voxel. In addition, there is also the prospect that departures from the null
hypothesis influence the permutation distribution. Thus far, our nonpara-
metric multiple comparisons permutation testing technique has consisted of
a single-step: The null sampling distribution (given the data), is the per-
mutation distribution of the maximal statistic computed over all voxels in
the volume of interest, potentially including voxels where the null hypothe-
sis is not true. A large departure from the null hypothesis will give a large
statistic, not only in the actual labelling of the experiment, but also in other
relabellings, similar to the true labelling. This does not affect the overall
validity of the test, but may make it more conservative for voxels other than
that with the maximum observed statistic.

One possibility is to consider step-down tests, where significant regions are
iteratively identified, cut out, and the remaining volume reassessed. The
resulting procedure still maintains strong control over family-wise Type I
error, our criteria for a test with localizing power, but will be more powerful
(at voxels other than that with the maximal statistic). However, the iterative
nature of the procedure multiplies the computational burden of an already
intensive procedure. Holmes et al. (1996), give a discussion and efficient
algorithms, developed further in Holmes (1994), but find that the additional
power gained was negligible for the cases studied.

Recall also the motivations for using a normalized voxel statistic, such as
the t-statistic: An inappropriately normalized voxel statistic will yield a test
differentially sensitive across the image. In these situations the step-down
procedures may be more beneficial.

Further investigation of step-down methods and sequential tests more gener-
ally are certainly warranted, but are unfortunately beyond the scope of this
work.

Generalizability

Questions often arise about the scope of inference, or generalizability of non-
parametric procedures. For parametric tests, when a collection of subjects
have been randomly selected from a population of interest and intersubject
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variability is considered, the inference is on the sampled population and not
just the sampled subjects. The randomization test, in contrast, only makes
inference on the data at hand: A randomization test regards the data as fixed
and uses the randomness of the experimental design to justify exchangeabil-
ity. A permutation test, while operationally identical to the randomization
test, can make inference on a sampled population: A permutation test also
regards the data as fixed but it additionally assumes the presence of a pop-
ulation distribution to justify exchangeability, and hence can be used for
population inference. The randomization test is truly assumption free, but
has a limited scope of inference.

In practice, since subjects rarely constitute a random sample of the pop-
ulation of interest, we find the issue of little practical concern. Scientists
routinely generalize results, integrating prior experience, other findings, ex-
isting theories, and common sense in a way that a simple hypothesis test
does not admit.
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3 Worked examples

The following sections illustrate the application of the techniques described
above to three common experimental designs: single subject PET “paramet-
ric”, multi-subject PET activation, and multi-subject fMRI activation. In
each example we will illustrate the key steps in performing a permutation
analysis:

1. Null Hypothesis
Specify the null hypothesis

2. Exchangeability
Specify exchangeability of observations under the null hypothesis

3. Statistic
Specify the statistic of interest, usually broken down into specifying
a voxel-level statistic and a summary statistic.

4. Relabelings
Determine all possible relabelings given the exchangeability scheme
under the null hypothesis

5. Permutation Distribution
Calculate the value of the statistic for each relabeling, building the
permutation distribution

6. Significance
Use the permutation distribution to determine significance of correct
labeling and threshold for statistic image.

The first three items follow from the experimental design and must be speci-
fied by the user; the last three are computed by the software, though we will
still address them here. When comparable parametric analyses are avail-
able (within spm) we will compare the permutation results to the parametric
results.

3.1 Single subject PET: Parametric design

The first study will illustrate how covariate analyses are implemented and
how the suprathreshold cluster size statistic is used. This example also shows
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how randomization in the experimental design dictates the exchangeability
of the observations.

Study Description

The data come from a study of Silbersweig et al. (1994). The aim of the study
was to validate a novel pet methodology for imaging transient, randomly
occurring events, specifically events that were shorter than the duration of a
pet scan. This work was the foundation for later work imaging hallucinations
in schizophrenics (Silbersweig et al., 1995). We consider one subject from the
study, who was scanned 12 times. During each scan the subject was presented
with brief auditory stimuli. The proportion of each scan over which stimuli
were delivered was chosen randomly, within three randomization blocks of
size four. A score was computed for each scan, indicating the proportion of
activity infused into the brain during stimulation. This scan activity score is
our covariate of interest, which we shall refer to as duration. This is a type
of parametric design, though in this context parametric refers not to a set
of distributional assumptions, but rather an experimental design where an
experimental parameter is varied continuously. This is in contradistinction
to a factorial design where the experimental probe is varied over a small
number of discrete levels.

We also have to consider the global cerebral blood flow (gcbf), which we
account for here by including it as a nuisance covariate in our model. This
gives a multiple regression, with the slope of the duration effect being of
interest. Note that regressing out gcbf like this requires an assumption
that there is no linear dependence between the score and global activity;
examination of a scatter plot and a correlation coefficient of 0.09 confirmed
this as a tenable assumption (see Chapter 7 for further discussion of global
effects in PET).
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Null hypothesis

Since this is a randomized experiment, the test will be a randomization test,
and the null hypothesis pertains directly to the data, and no assumptions
are required:

H0: “The data would be the same whatever the duration”

Exchangeability

Since this experiment was randomized, our choice of eb matches the random-
ization blocks of the experimental design, which was chosen with temporal
effects in mind. The values of duration were grouped into 3 blocks of four,
such that each block had the same mean and similar variability, and then
randomized within block. Thus we have three ebs of size four.

Statistic

We decompose our statistic of interest into two statistics: one voxel-level
statistic that generates a statistic image, and a maximal statistic that sum-
marizes that statistic image in a single number. An important consideration
will be the degrees of freedom. We have one parameter for the grand mean,
one parameter for the slope with duration, and one parameter for con-
founding covariate gcbf. Hence 12 observations less three parameters leaves
just nine degrees of freedom to estimate the error variance at each voxel.

Voxel-level statistic: With only 9 degrees of freedom, this study shows
the characteristic noisy variance image (Figure 2). The high frequency noise
from poor variance estimates propagates into the t-statistic image, when one
would expect an image of evidence against H0 to be smooth (as is the case
for studies with greater degrees of freedom) since the raw images are smooth.
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We address this situation by smoothing the variance images (see §2.5, Pseudo
t-statistics), replacing the variance estimate at each voxel with a weighted
average of its neighbors. We use weights from an 8mm spherical Gaussian
smoothing kernel. The statistic image consisting of the ratio of the slope
and the square root of the smoothed variance estimate is smoother than that
computed with the raw variance. At the voxel level the resulting statistic
does not have a Student’s t-distribution under the null hypothesis, so we
refer to it as a pseudo t-statistic.

Figure 3 shows the effect of variance smoothing. The smoothed variance im-
age creates a smoother statistic image, the pseudo t-statistic image. The key
here is that the parametric t-statistic introduces high spatial frequency noise
via the poorly estimated standard deviation – by smoothing the variance
image we are making the statistic image more like the “signal”.

Summary Statistic: We summarize evidence against H0 for each relabel-
ing with the maximum statistic (see §2.4), and in this example consider the
maximum suprathreshold cluster size (max stcs).

Clusters are defined by connected suprathreshold voxels. Under H0, the
statistic image should be random with no features or structure, hence large
clusters are unusual and indicate the presence of an activation. A primary
threshold is used to define the clusters. The selection of the primary threshold
is crucial. If set too high there will be no clusters of any size; if set too low
the clusters will be too large to be useful.

Relabeling enumeration

Each of the three previous sections correspond to a choice that a user of
the permutation test has to make. Those choices and the data are sufficient
for an algorithm to complete the permutation test. This and the next two
sections describe the ensuing computational steps.

To create the labeling used in the experiment, the labels were divided into
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three blocks of four, and randomly ordered within blocks. There are 4! = 4×
3×2×1 = 24 ways to permute 4 labels, and since each block is independently
randomized, there are a total of 4!3 = 13, 824 permutations of the labels.

Computations for 13,824 permutations would be burdensome, so we use an
approximate test. We randomly select 999 relabellings to compute the statis-
tic, giving 1,000 relabellings including the actual labelling used in the exper-
iment. Recall that while the p-values are approximate, the test is still exact.

Permutation distribution

For each of the 1,000 relabellings, the statistic image is computed and thresh-
olded, and the maximal suprathreshold cluster size is recorded. For each
relabeling this involves model fitting at each voxel, smoothing the variance
image, and creating the pseudo t-statistic image. This is the most com-
putationally intensive part of the analysis, but is not onerous on modern
computing hardware. (See §3.4 for computing times.)

Selection of the primary threshold is a quandary. For the results to be valid
we need to pick the threshold before the analysis is performed. With a
parametric voxel-level statistic we could use its null distribution to specify a
threshold from the uncorrected p-value (e.g. by using a t table). Here we can-
not take this approach since we are using a nonparametric voxel-level statistic
whose null distribution is not known a priori. Picking several thresholds is
not valid, as this introduces a new multiple comparisons problem. We sug-
gest gaining experience with similar datasets from post hoc analyses: apply
different thresholds to get a feel for an appropriate range and then apply
such a threshold to the data on hand. Using data from other subjects in this
study we found 3.0 to be a reasonable primary threshold.

Significance threshold

The distribution of max stcs is used to assess the overall significance of the
experiment and the significance of individual clusters: The significance is
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the proportion of relabellings that had max stcs greater than or equal to
the maximum stcs of the correct labelling. Put another way, if max stcs
of the correct labelling is at or above the 95th percentile of the max stcs
permutation distribution, the experiment is significant at α = 0.05. Also, any
cluster in the observed image with size greater than the 95th percentile is the
significant at α = 0.05. Since we have 1000 relabellings, 1000 × 0.95 = 950,
so the 950th largest max stcs will be our significance threshold.

Results

The permutation distribution of max stcs under H0 is shown in Figure 4a.
Most relabellings have max stcs less than 250 voxels. The vertical dotted
line indicates the 95th percentile: the top 5% are spread from about 500 to
3000 voxels.

For the correctly labelled data the max stcs was 3101 voxels. This is un-
usually large in comparison to the permutation distribution. Only five rela-
bellings yield max stcs equal to or larger than 3101, so the p-value for the
experiment is 5/1000 = 0.005. The 95th percentile is 462, so any suprathresh-
old clusters with size greater than 462 voxels can be declared significant at
level 0.05, accounting for the multiple comparisons implicit in searching over
the brain.

Figure 4b, is a maximum intensity projection (mip) of the significant suprathresh-
old clusters. Only these two clusters are significant, that is, there are no other
suprathreshold clusters larger than 462 voxels. These two clusters cover the
bilateral auditory (primary and associative) and language cortices. They are
3101 and 1716 voxels in size, with p-values of 0.005 and 0.015 respectively.
Since the test concerns suprathreshold clusters it has no localising power:
Significantly large suprathreshold clusters contain voxels with a significant
experimental effect, but the test does not identify them.
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Discussion

The nonparametric analysis presented here uses maximum stcs on a pseudo
t-statistic image. Since the distribution of the pseudo t-statistic is not known,
the corresponding primary threshold for a parametric analysis using a stan-
dard t-statistic cannot be computed. This precludes a straightforward com-
parison of this nonparametric analysis with a corresponding parametric anal-
ysis such as that of Friston et al. (1994).

While the necessity to choose the primary threshold for suprathreshold clus-
ter identification is a problem, the same is true for parametric approaches.
The only additional difficulty occurs with pseudo t-statistic images, when
specification of primary thresholds in terms of upper tail probabilities from
a Students’ t-distribution is impossible. Further, parametric suprathreshold
cluster size methods (Friston et al., 1994; Poline et al., 1997) utilise asymp-
totic distributional results, and therefore require high primary thresholds.
The nonparametric technique is free of this constraint, giving exact p-values
for any primary threshold (although very low thresholds are undesirable due
to the large suprathreshold clusters expected and consequent poor localiza-
tion of an effect).

Although only suprathreshold cluster size has been considered, any statistic
summarizing a suprathreshold cluster could be considered. In particular an
exceedance mass statistic could be employed (see §2.4).

3.2 Multi-subject PET: Activation

For the second example we consider a multi-subject, two condition activation
experiment. Here we will use a standard t-statistic with a single threshold
test, enabling a direct comparison with the standard parametric random field
approach.
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Study Description

Watson et al. (1993) localized the region of visual cortex sensitive to motion,
area MT/V5, using high resolution 3D pet imaging of twelve subjects. These
the data were analyzed by Holmes et al. (1996), using proportional scaling
global flow normalization and a repeated measures pseudo t-statistic. Here
we consider the same data, but use a standard repeated measures t-statistic,
allowing direct comparison of parametric and nonparametric approaches.

The visual stimulus consisted of randomly placed squares. During the base-
line condition the pattern was stationary, whereas during the active condition
the squares smoothly moved in independent directions. Prior to the experi-
ment, the twelve subjects were randomly allocated to one of two scan condi-
tion presentation orders in a balanced randomization. Thus six subjects had
scan conditions abababababab, the remaining six having babababababa,
which we’ll refer to as ab and ba orders respectively.

Null hypothesis

In this example the labels of the scans as a & b are allocated by the initial
randomization, so we have a randomization test, and the null hypothesis
concerns the data directly:

H0: For each subject, the experiment would have yielded the
same data were the conditions reversed.

Exchangeability

Given the null hypothesis, exchangeability follows directly from the initial
randomization scheme: The experiment was randomized at the subject level,
with six ab and six ba labels randomly assigned to the twelve subjects. Cor-
respondingly, the labels are exchangeable subject to the constraint that they
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could have arisen from the initial randomization scheme. Thus we consider
all permutations of the labels that result in six subjects having scans labelled
ab, and the remaining six ba. The initial randomization could have resulted
in any six subjects having the ab condition presentation order (the remain-
der being ba), and under the null hypothesis the data would have been the
same, hence exchangeability.

Statistic

We are interested in the activation magnitude relative to the intersubject
variability in activation, hence we use the statistic associated with a random
effects model which incorporates a random subject by condition interaction
term.

Voxel-level Statistic: A random effects analysis is easily effected by col-
lapsing the data within subject and computing the statistic across subjects
(Worsley et al., 1991; Holmes & Friston, 1999). In this case the result is a
repeated measures t-statistic after proportional scaling global flow normaliza-
tion: Each scan is proportionally scaled to a common global mean of 50; each
subjects data is collapsed into two average images, one for each condition;
a paired t-statistic is computed across the subjects’ “rest”-“active” pairs of
average images. By computing this paired t-statistic on the collapsed data,
both the inter-subject and intra-subject (error) components of variance are
accounted for appropriately. Since there are twelve subjects there are twelve
pairs of average condition images, and the t-statistic has 11 degrees of free-
dom. With just 11 degrees of freedom we anticipate the same problems with
noisy variance images as in the previous examples, but in order to make di-
rect comparisons with a parametric approach, we will not consider variance
smoothing and pseudo t-statistics for this example.

Summary Statistic: To consider a single threshold test over the entire
brain, the appropriate summary statistic is the maximum t-statistic.
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Relabeling enumeration

This example is different from the previous one in that we permute across
subjects instead of across replications of conditions. Here our eb is not in
units of scans, but subjects. The eb size here is twelve subjects, since the six
ab and six ba labels can be permuted freely amongst the twelve subjects.
There are

(
12
6

)
= 12!

6!(12−6)!
= 924 ways of choosing six of the twelve subjects

to have the ab labelling. This is a sufficiently small number of permutations
to consider a complete enumeration.

One may consider permuting labels within subjects, particularly in the per-
mutation setting when there is no initial randomization dictating the ex-
changeability. However, the bulk of the permutation distribution is specified
by these between-subject permutations, and any within-subject permutations
just flesh out this framework, yielding little practical improvement in the test
at considerable computational cost.

Permutation distribution

For each of 924 relabellings we calculate the maximum repeated measures t-
statistic, resulting in the permutation distribution shown in Figure 5a. Note
that for each possible relabelling and t-statistic image, the opposite rela-
belling is also possible, and gives the negative of the t-statistic image. Thus,
it is only necessary to compute t-statistic images for half of the relabellings,
and retain their maxima and minima. The permutation distribution is then
that of the maxima for half the relabellings concatenated with the negative
of the corresponding minima.

Significance threshold

As before, the 95th percentile of the maximum t distribution provides both
a threshold for omnibus experimental significance and a voxel-level signif-
icance threshold appropriate for the multiple comparisons problem. With
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924 permutations, the 95th percentile is at 924× 0.05 = 46.2, so the critical
threshold is the 47th largest member of the permutation distribution. Any
voxel with intensity greater than this threshold can be declared significant
at the 0.05 level.

Results

Figure 5a shows the permutation distribution of the maximum repeated mea-
sures t-statistic. Most maxima lie between about 4 and 9, though the distri-
bution is skewed in the positive direction.

The outlier at 29.30 corresponds to the observed t-statistic, computed with
correctly labelled data. Since no other relabellings are higher, the p-value is
1/924 = 0.0011. The 47th largest member of the permutation distribution
is 8.40, the critical threshold (marked with a dotted vertical line on the
permutation distribution). The t-statistic image thresholded at this critical
value is shown in figure 5b. There is a primary region of 1424 significant
voxels covering the V1/V2 region, flanked by two secondary regions of 23
and 25 voxels corresponding to area V5, plus six other regions of 1 or 2
voxels.

For a t-statistic image of 43, 724 voxels of size 2 × 2 × 4 mm, with an esti-
mated smoothness of 7.8× 8.7× 8.7 mm fwhm, the parametric theory gives
a 5% level critical threshold of 11.07, substantially higher than the corre-
sponding 4.61 of the nonparametric result. The thresholded image is shown
in figure 6b; the image is very similar to the nonparametric image (figure5b),
with the primary region having 617 voxels, with two secondary regions of 7
and 2 voxels. Another parametric result is the well-known, but conservative
Bonferroni correction; here it specifies a 5% threshold of 8.92 which yeilds
a primary region of 1,212 voxels and 5 secondary regions with a total of
48 voxels. In figure 6a we compare these three approaches by plotting the
significance level versus the threshold. The critical threshold based on the
expected Euler characteristic (Worsley et al., 1995) for a t-statistic image is
shown as a dashed line and the critical values for the permutation test is
shown as a solid line. For a given test level (a horizontal line), the test with
the smaller threshold has the greater power. At all thresholds in this plot
the nonparametric threshold is below the random field threshold, though it
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closely tracks the Bonferroni threshold below the 0.05 level. Thus random
field theory (see Chapters 14 and 15) appears to be quite conservative here.

Discussion

This example again demonstrates the role of the permutation test as a ref-
erence for evaluating other procedures, here the parametric analysis of Fris-
ton et al. (1995b). The t field results are conservative for low degrees of
freedom and low smoothness (Keith Worsley, personal communication); the
striking difference between the nonparametric and random field thresholds
makes this clear.

Figure 6a provides a very informative comparison between the two methods.
For all typical test sizes (α ≤ 0.05), the nonparametric method specifies a
lower threshold than the parametric method: For these data, this is exposing
the conservativeness of the t field results. For lower thresholds the difference
between the methods is even greater, though this is anticipated since the
parametric results are based on high threshold approximations.

A randomization test applied to a random effects statistic presents an inter-
esting contradiction. While we use a statistic corresponding to a model with
a random subject by condition interaction, we are performing a randomiza-
tion test that technically excludes inference on a population. However, if we
assume that the subjects of this study constitute a random sample of the
population of interest, we can ignore the experimental randomization and
perform a permutation test, as we do in the next example.

3.3 Multi-subject fMRI: Activation

For this third and final example, consider a multi-subject fMRI activation
experiment. Here we will perform a permutation test so that we can make
inference on a population. We will use a smoothed variance t-statistic with a
single threshold test and will make qualitative and quantitative comparisons
with the parametric results.
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Before discussing the details of this example, we note that fMRI data presents
a special challenge for nonparametric methods. Since fMRI data exhibits
temporal autocorrelation (Smith et al., 1999), an assumption of exchange-
ability of scans within subject is not tenable. However, to analyze a group
of subjects for population inference we need only assume exchangeability of
subjects. Hence, while intrasubject fMRI analyses are not straightforward
with the permutation test, multisubject analyses are.

Study Description

Marshuetz et al. (2000) studied order effects in working memory using fMRI.
The data were analyzed using a random effects procedure (Holmes & Fris-
ton, 1999), as in the last example. For fMRI, this procedure amounts to a
generalization of the repeated measures t-statistic.

There were 12 subjects, each participating in eight fMRI acquisitions. There
were two possible presentation orders for each block, and there was random-
ization across blocks and subjects . The RT was two seconds, a total of 528
scans collected per condition. Of the study’s three conditions we consider
only two, item recognition and control. For item recognition, the subject was
presented with five letters and, after a two second interval, presented with
a probe letter. They were to respond “yes” if the probe letter was among
the five letters and “no” if it was not. In the control condition they were
presented with five X’s and, two seconds later, presented with either a “y”
or a “n”; they were to press “yes” for y and “no” for n.

Each subject’s data was analyzed, creating a difference image between the
item recognition and control effects. These images were analyzed with a
one-sample t-test, yielding a random effects analysis that accounts for inter-
subject differences.
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Null hypothesis

While this study used randomization within and across subject and hence
permits the use of a randomization test, we will use a permutation approach
to generalize the results to a population (See §2.5 above).

Again using a random effects statistic, we only analyze each subject’s item
vs. control difference image. We make the weak distributional assumption
that the values of the subject difference images at any given voxel (across
subjects) are drawn from a symmetric distribution. (The distribution may be
different at different voxels, as long as it is symmetric). The null hypothesis
is that these distributions are centred on zero:

H0: The symmetric distributions of the (voxel values of the) sub-
jects’ difference images have zero mean.

Exchangeability

The conventional assumption of independent subjects implies exchangeabil-
ity, and hence a single eb consisting of all subjects.

Exchanging the item and control labels has exactly the effect of flipping the
sign of the difference image. So we consider subject labels of “+1” and “−1”,
indicating an unflipped or flipped sign of the data. Under the null hypothesis,
we have data symmetric about zero, and hence can randomly flip the sign’s
of subject’s difference images.

Statistic

In this example we focus on statistic magnitude.
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Voxel-level Statistic: As noted above, this analysis amounts to a one-
sample t-test on the first level difference images, testing for a zero-mean
effect across subjects. We use a pseudo t-test, with a variance smoothing of
4mm fwhm, comparable to the original within subject smoothing. In our
experience, the use of any variance smoothing is more important than the
particular magnitude (fwhm) of the smoothing.

Summary Statistic: Again we are interested in searching over the whole
brain for significant changes, hence we use the maximum pseudo t.

Relabeling enumeration

Based on our exchangeability under the null hypothesis, we can flip the sign
on some or all of our subjects’ data. There are 212 = 4, 096 possible ways
of assigning either “+1” or “−1” to each subject. We consider all 4,096
relabelings.

Permutation distribution

For each relabeling we found the maximum pseudo-t statistic, yielding the
distribution in Figure 7a. As in the last example, we have a symmetry in
these labels; we need only compute 2,048 statistic images and save both the
maxima and minima.

Significance threshold

With 4,096 permutations the 95th percentile is 4, 096 × 0.05 = 452.3, and
hence the 453rd largest maxima defines the 0.05 level corrected significance
threshold.
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Results

The permutation distribution of the maximum pseudo-t statistic under H0

is shown in Figure 7a. It is centered around 4.5 and is slightly positively
skewed; all maxima found were between about 3 and 8.

The correctly labeled data yielded the largest maximum, 8.471. Hence the
overall significance of the experiment is 1/4, 096 = 0.0002. The dotted line
indicates the 0.05 corrected threshold, 5.763. Figure 7b shows the thresh-
olded MIP of significant voxels. There are 312 voxels in 8 distinct regions;
in particular there is a pair of bilateral posterior parietal regions, a left tha-
lamus region and an anterior cingulate region; these are typical of working
memory studies (Marshuetz et al., 2000).

It is informative to compare this result to the traditional t statistic, using
both a nonparametric and parametric approach to obtain corrected thresh-
olds. We reran this nonparametric analysis using no variance smoothing.
The resulting thresholded data is shown in Figure 7c; there are only 58
voxels in 3 regions that exceeded the corrected threshold of 7.667. Using
standard parametric random field methods produced the result in Figure 7d.
For 110, 776 voxels of size 2 × 2 × 2 mm, with an estimated smoothness of
5.1× 5.8× 6.9 mm fwhm, the parametric theory finds a threshold of 9.870;
there are only 5 voxels in 3 regions above this threshold. Note that only the
pseudo-t statistic detects the bilateral parietal regions. Table 1 summarises
the three analyses along with the Bonferroni result.

Discussion

In this example we have demonstrated the utility of the nonparametric
method for intersubject fMRI analyses. Based soley on independence of
the subjects and symmetric distribution of difference images under the null
hypothesis, we can create a permutation test that yields inferences on a pop-
ulation.

Multiple subject fMRI studies often have few subjects, many fewer than
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Corrected Minimum Number of
Statistic

Inference
Threshold Corrected Significant

Method
t Pseudo-t p-Value Voxels

t Random Field 9.870 0.0062 5
t Bonferroni 9.802 0.0025 5
t Permutation 7.667 0.0002 58

Pseudo-t Permutation 5.763 0.0002 312

Table 1: Comparison of four inference methods for the item recognition fMRI
data. The minimum corrected p-value and number of significant voxels give
an overall measure of sensitivity; corrected thresholds can only be compared
within statistic type. For this data, the Bonferroni and random field results
are very similar, and the nonparametric methods are more powerful; the
nonparametric t method detects 10 times as many voxels as the parametric
method, and the nonparametric pseudo-t detects 60 times as many.

20 subjects. By using the smoothed variance t statistic we have gained
sensitivity relative to the standard t statistic. Even with the standard t
statistic, the nonparametric test proved more powerful, detecting 5 times
as many voxels as active. Although the smoothed variance t is statistically
valid, it does not overcome any limitations of face validity of an analysis
based on only 12 subjects.

We note that this relative ranking of sensitivity (nonparametric pseudo-t,
nonparametric t, parametric t) is consistent with the other second level
datasets we have analyzed. We believe this is due to a conservativeness of the
random t field results under low degrees of freedom, not just low smoothness.

3.4 Discussion of Examples

These examples have demonstrated the nonparametric permutation test for
pet and f mri with a variety of experimental designs and analyses. We
have addressed each of the steps in sufficient detail to follow the algorithmic
steps that the snpm software performs. We have shown that the ability
to utilise smoothed variances via a pseudo t-statistic can offer an approach
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with increased power over a corresponding standard t-statistic image. Using
standard t-statistics, we have seen how the permutation test can be used as
a reference against which parametric results can be validated.

However, note that the comparison between parametric and nonparametric
results must be made very carefully. Comparable models and statistics must
be used, and multiple comparisons procedures with the same degree of control
over image-wise Type I error used. Further, since the permutation distribu-
tions are derived from the data, critical thresholds are specific to the data set
under consideration. Although the examples presented above are compelling,
it should be remembered that these are only a few specific examples and fur-
ther experience with many data sets is required before generalizations can be
made. However, the points noted for these specific examples are indicative
of our general experience with these methods.

Finally, while we have noted that the nonparametric method has greater
computational demands than parametric methods, they are reasonable on
modern hardware. The PET examples took 35 minutes and 20 minutes,
respectively, on a 176 Mhz Sparc Ultra 1. The f mri example took 2 hours
on a 440 Mhz Sparc Ultra 10. The fMRI data took longer due to more
permutations (2048 vs. 500) and larger images.
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4 Conclusions

In this chapter the theory and practicalities of multiple comparisons non-
parametric randomization and permutation tests for functional neuroimaging
experiments have been presented and illustrated with worked examples.

As has been demonstrated, the permutation approach offers various advan-
tages. The methodology is intuitive and accessible. By consideration of
suitable maximal summary statistics, the multiple comparisons problem can
easily be accounted for; only minimal assumptions are required for valid in-
ference, and the resulting tests are almost exact, with size at most 1/N less
than the nominal test level α, where N is the number of relabelings.

The nonparametric permutation approaches described give results similar to
those obtained from a comparable Statistical Parametric Mapping approach
using a general linear model with multiple comparisons corrections derived
from random field theory. In this respect these nonparametric techniques can
be used to verify the validity of less computationally expensive parametric
approaches. When the assumptions required for a parametric approach are
not met, the non-parametric approach described provides a viable alternative
analysis method.

In addition, the approach is flexible. Choice of voxel and summary statis-
tic are not limited to those whose null distributions can be derived from
parametric assumptions. This is particularly advantageous at low degrees
of freedom, when noisy variance images lead to noisy statistic images and
multiple comparisons procedures based on the theory of continuous random
fields are conservative. By assuming a smooth variance structure, and us-
ing a pseudo t-statistic computed with smoothed variances, the permutation
approach gains considerable power.

Therefore we propose that the nonparametric permutation approach is prefer-
able for experimental designs implying low degrees of freedom, including
small sample size problems, such as single subject pet/spect, but also
pet/spect & f mri multi-subject and between group analyses involving
small numbers of subjects, where analysis must be conducted at the subject
level to account for inter-subject variability. It is our hope that this chapter,
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and the accompanying software, will encourage appropriate application of
these non-parametric techniques.
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Figure 1: Histogram of permutation distribution for single voxel example of
§2.3, using a mean difference statistic. Note the symmetry of the histogram
about the y-axis. This occurs because for each possible labelling, the op-
posite labelling is also possible, and yields the same mean difference but in
the opposite direction. This trick can be used in many cases to halve the
computational burden.
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Figure 2: Mesh plots of parametric analysis, z = 0mm. Upper left: Slope
estimate. Lower left: Standard deviation of slope estimate. Right: t image
for duration. Note how the standard deviation image is much less smooth
than the slope image, and how the t image is correspondingly less smooth
than the slope image.
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Figure 3: Mesh plots of permutation analysis, z = 0mm. Upper left: Slope
estimate. Lower left: square root of smoothed variance of slope estimate.
Right: pseudo t image for duration. Note that the smoothness of the
pseudo t image is similar to that of the slope image (c.f. figure 2).
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a b

Figure 4: a: Distribution of Maximum Suprathreshold Cluster Size with a
primary threshold of 3. Dotted line shows 95 percentile. The count axis is
truncated at 100 to show low-count tail; first two bars have counts 579 and
221. b: Maximum Intensity Projection Image of significantly large clusters.
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Figure 5: a: Permutation distribution of maximum repeated measures t-
statistic. Dotted line indicates the 5% level corrected threshold. b: Maxi-
mum intensity projection of t-statistic image, thresholded at critical threshold
for a 5% level permutation test analysis of 8.401.
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Figure 6: a: Test significance (α) levels plotted against critical thresholds, for
nonparametric and parametric analyses. b Maximum Intensity Projection of
t image, thresholded at parametric 5% level critical threshold of 11.07.
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Figure 7: a: Permutation distribution of maximum repeated measures t
statistic. Dotted line indicates the 5% level corrected threshold. b: Maxi-
mum intensity projection of pseudo t statistic image threshold at 5% level,
as determined by permutation distribution. c: Maximum intensity projec-
tion of t statistic image threshold at 5% level as determined by permutation
distribution. d: Maximum intensity projection of t statistic image threshold
at 5% level as determined by random field theory.55


