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I INTRODUCTION

This chapter revisits hierarchical observation models (see Chapter 13: Hierarchical

models), used in functional neuroimaging, in a Bayesian light.  It emphasises the

common ground shared by classical and Bayesian methods to show that conventional

analyses of neuroimaging data can be usefully extended within an empirical Bayesian

framework.   In particular we formulate the procedures used in conventional data

analysis in terms of hierarchical linear models and establish a connection between

classical inference and parametric empirical Bayes (PEB) through covariance

component estimation.  This estimation is based on expectation maximisation or EM.

The key point is that hierarchical models not only provide for appropriate inference at

the highest level but that one can revisit lower levels suitably equipped to make

Bayesian inferences.  Bayesian inferences eschew many of the difficulties

encountered with classical inference and characterise brain responses in a way that is

more directly predicated on what one is interested in.  The motivation for Bayesian

approaches is reviewed and the theoretical background is presented in a way that

relates to conventional methods, in particular Restricted Maximum Likelihood

(ReML).

   The first section of this chapter is a theoretical prelude to subsequent sections that

deal with applications of the theory to a range of important issues in neuroimaging.

These issues include; (i) Estimating non-sphericity or variance components in fMRI

time-series that can arise from serial correlations within subject, or are induced by

multisubject (i.e. hierarchical) studies. (ii) Bayesian models for imaging data, in

which effects at one voxel are constrained by responses in others and (iii) Bayesian

estimation of nonlinear models of hemodynamic responses.  Although diverse, all

these estimation problems are accommodated by the EM framework described in this

chapter.

A Classical and Bayesian inference

Since its inception, about ten years ago, statistical parametric mapping (SPM) has

proved useful for characterising neuroimaging data sequences.  However, SPM is

limited because it is based on classical inference procedures.  In this chapter we

introduce a more general framework, which places SPM in a broader context and
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points to alternative ways of characterising and making inferences about regionally

specific effects in neuroimaging.  In particular we formulate the procedures used in

conventional data analysis in terms of hierarchical linear models and establish the

connection between classical inference and empirical Bayesian inference through

covariance component estimation.  This estimation is based on the expectation

maximisation or EM algorithm.

   Statistical parametric mapping entails the use of the general linear model and

classical statistics, under parametric assumptions, to create a statistic (usually the T

statistic) at each voxel.  Inferences about regionally specific effects are based on the

ensuing image of T statistics, the SPM{T}.  The requisite distributional

approximations for the peak height, or spatial extent, of voxel clusters, surviving a

specified threshold, are derived using Gaussian random field theory (see Chapters 14

and 15:  [Introduction to] Random Field theory).  Random field theory enables the

use of classical inference procedures, and the latitude afforded by the general linear

model, to give a powerful and flexible approach to continuous, spatially extended

data.  It does so by protecting against family-wise false positives over all the voxels

that constitute a search volume; i.e. it provides a way of adjusting the p values, in the

same way that a Bonferroni correction does for discrete data (Worsley 1994, Friston

et al 1995).

   Despite its success, statistical parametric mapping has a number of fundamental

limitations. In SPM the p value, ascribed to a particular effect, does not reflect the

likelihood that the effect is present but simply the probability of getting the observed

data in the effect's absence.  If sufficiently small, this p value can be used to reject the

null hypothesis that the effect is negligible.  There are several shortcomings of this

classical approach.  Firstly, one can never reject the alternate hypothesis (i.e. say that

an activation has not occurred) because the probability that an effect is exactly zero is

itself zero.  This is problematic, for example, in trying to establish double

dissociations or indeed functional segregation; one can never say one area responds to

colour but not motion and another responds to motion but not colour.  Secondly,

because the probability of an effect being zero is vanishingly small, given enough

scans or subjects one can always demonstrate a significant effect at every voxel.  This

fallacy of classical inference is becoming relevant practically, with the thousands of

scans entering into some fixed-effect analyses of fMRI data.  The issue here is that a

trivially small activation can be declared significant if there are sufficient degrees of
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freedom to render the variability of the activation's estimate small enough.   A third

problem, that is specific to SPM, is the correction or adjustment applied to the p

values to resolve the multiple comparison problem.  This has the somewhat

nonsensical effect of changing the inference about one part of the brain in a way that

is contingent on whether another part is examined.  Put simply, the threshold

increases with search volume, rendering inference very sensitive to what that

inference encompasses.  Clearly the probability that any voxel has activated does not

change with the search volume and yet the classical p value does.

   All these problems would be eschewed by using the probability that a voxel had

activated, or indeed its activation was greater than some threshold.  This sort of

inference is precluded by classical approaches, which simply give the likelihood of

getting the data, given no activation.  What one would really like is the probability

distribution of the activation given the data.  This is the posterior probability used in

Bayesian inference.  The posterior distribution requires both the likelihood, afforded

by assumptions about the distribution of errors, and the prior probability of activation.

These priors can enter as known values or can be estimated from the data, provided

we have observed multiple instances of the effect we are interested in.  The latter is

referred to as empirical Bayes.  A key point here is that in many situations we do

assess repeatedly the same effect over different subjects, or indeed different voxels,

and are in a position to adopt an empirical Bayesian approach.  This chapter describes

one such approach.  In contradistinction to other proposals, this approach is not a

novel way of analysing neuroimaging data.  The use of a Bayesian formalism in

special models for fMRI data has been usefully explored elsewhere e.g. spatio-

temporal Markov field models, Descombes et al 1998; and mixture models, Everitt

and Bullmore 1999.  See also the compelling work of Hartvig and Jensen (2000) that

combines both these approaches and Hφjen-Sφrensen et al (2000) who focus on

temporal aspects with Hidden Markov Models.  Generally these approaches assume

that voxels are either active or not and use the data to infer their status.  Because of

this underlying assumption, there is little connection with conventional models that

allow for continuous or graded hemodynamic responses.  The aim here is to highlight

the fact that the conventional models, we use routinely, conform to hierarchical

observation models that can be treated in a Bayesian fashion.  The importance of this

rests on: (i) the connection between classical and Bayesian inference that ensues and
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(ii) the potential to apply Bayesian procedures that are overlooked from a classical

perspective.  For example, random-effect analyses of fMRI data (Holmes and Friston

1998, Chapter 12: Random effects analysis) adopt two-level hierarchical models.

In this context, people generally focus on classical inference at the second level,

unaware that the same model can support Bayesian inference at the first.  Revisiting

the first level, within a Bayesian framework, provides for a much better

characterisation of single-subject responses, both in terms of the estimated effects and

the nature of the inference.

B Overview

The aim of the first section below is to describe hierarchical observation models and

establish the relationship between classical maximum likelihood (ML) and empirical

Bayes estimators.  Parametric empirical Bayes can be formulated classically in terms

of covariance component estimation (e.g. within subject vs. between subject

contributions to error).  The covariance component formulation is important because

it is ubiquitous in fMRI.  Different sources of variability in the data induce non-

sphericity that has to be estimated before any inferences about an effect can be made.

Important sources of non-sphericity in fMRI include serial or temporal correlations

among the errors in single-subject studies, or in multisubject studies, the differences

between within and between-subject variability.  These issues are used the second

section to emphasise both the covariance component estimation and Bayesian

perspectives, in terms of the difference between response estimates based on classical

maximum likelihood estimators and the conditional means from a Bayesian approach.

   In the third section we use the same theory to elaborate hierarchical models that

allow the construction of Posterior Probability Maps (PPMs).  Again this employs

two-level models but focuses on Bayesian inference at the first level.  It complements

the preceding fMRI application by showing how priors can be estimated using

observations over voxels at the second level.  The final section addresses the Bayesian

identification of dynamic systems where empirical Bayesian priors are replaced by

knowledge about the biophysics that underlies hemodynamic responses (see Chapter

11: Hemodynamic Modelling).  This approach will be can be used to characterise

hemodynamic responses at a single voxel or, indeed, the response of a network of

coupled brain regions (see Chapter 22: Dynamic Causal Modelling).
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II. THEORY

In this section we focus on theory and procedures.  The key points are reprised in

subsequent sections where they are illustrated using real and simulated data. This

section describes how the parameters and hyperparameters of a hierarchical model

can be estimated jointly given some data. The distinction between a parameter and a

hyperparameter depends on the context established by the estimation or inference in

question.  Here parameters are quantities that determine the expected response, that is

observed.  Hyperparameters pertain to the probabilistic behaviour of the parameters.

Perhaps the simplest example is provided by a single-sample t test.  The parameter of

interest is the true effect causing the observations to differ from zero.  The

hyperparameter corresponds to the variance of the observation error (usually denoted

by 2σ ).  Note that one can estimate the parameter, with the sample mean, without

knowing the hyperparameter.  However, if one wanted to make an inference about

that estimate it is necessary to know (or estimate using the residual sum of squares)

the hyperparameter.  In this chapter all the hyperparameters are simply variances of

different quantities that cause the measured response (e.g. within-subject variance and

between-subject variance).  The estimation procedure described below is Bayesian in

nature.  Because the hyperparameters are estimated from the data it represents an

empirical Bayesian approach.  However, the aim of this section is to show the close

relationship between Bayesian and maximum likelihood estimation implicit in

conventional analyses of imaging data, using the general linear model.  Furthermore,

we want to place classical and Bayesian inference within the same framework.  In this

way we show that conventional analyses are special cases of the more general PEB

approach.

   First we reprise hierarchical linear observation models that form the cornerstone of

the ensuing estimation procedures.  These models are then reviewed from the classical

perspective of estimating the model parameters using maximum likelihood and

statistical inference using the T statistic.  The same model is then considered in a

Bayesian light to make an important point: The estimated error variances, at any level,
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play the role of priors on the variability of the parameters in the level below. At the

highest level, the ML and Bayes estimators are the same, as are their standard error

and conditional standard deviation.  Both classical and Bayesian approaches rest upon

covariance component estimation that rests on expectation maximisation (EM).  This

is described briefly and presented in detail in the appendix.  The EM algorithm is

related to that described in Dempster et al (1981) but extended to cover hierarchical

models with any number of levels.  The final part of this section addresses Bayesian

inference in classical terms of sensitivity and specificity. To do this we ‘convert’

Bayesian inference into a classical one by thresholding the posterior probability to

label a region as ‘activated’ or not.  This device opens up some interesting questions

that are especially relevant to neuroimaging.  In classical approaches the same

threshold is applied to all voxels in a SPM, to ensure uniform specificity over the

brain.  Thresholded PPMs, on the other hand, adapt their specificity according to the

behaviour of local error terms, engendering a uniform confidence in activations of a

given size.  This complementary aspect of SPMs and PPMs highlights the relative

utility of both approaches in making inferences about regional responses.

   For an introduction to EM algorithms in generalised linear models, see Fahrmeir

and Tutz (1994).  This text provides an exposition of EM algorithm and PEB in linear

models, usefully relating EM to classical methods (e.g. ReML p225).  For an

introduction to Bayesian statistics see Lee (1997).  This text adopts a more explicit

Bayesian perspective and again usefully connects empirical Bayes with classical

approaches, e.g. the Stein “Shrinkage” estimator and empirical Bayes estimators used

below (p232).  In most standard texts the hierarchical models considered in the next

section are referred to as random effects models.

A Hierarchical Linear observation models

We will deal with hierarchical linear observation models of the form
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under Gaussian assumptions about the errors },0{~ )()( ii CN εε .  y is the response

variable, usually observed both within units over time and over several units (e.g.

subject or voxels). )(iX are specified [design] matrices containing explanatory

variables or constraints on the parameters )1( −iθ  of the level below.  If the hierarchical

model has only one level it reduces to the familiar general linear model employed in

conventional data analysis (see Chapter 7: The General Linear Model).  Two-level

models will be familiar to readers who use mixed or random-effect analyses.  In this

instance the first-level design matrix models the activation effects, over scans within

subjects, in a subject-separable fashion (i.e. in partitions constituting the blocks of a

block diagonal matrix).  The second-level design matrix models the subject-specific

effects over subjects.  Usually, but not necessarily, design matrices at all levels are

block diagonal matrices with each partition modelling the observations in each unit at

that level (e.g. session, subject or group).
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Some examples are shown in Figure 1 (these examples are used in next Section).  The

design matrix at any level has as many rows as the number of columns in the design

matrix of the level below.  One can envisage three-level models, which embody

activation effects in scans modelled for each session, effects expressed in each session

modelled for each subject and finally effects over subjects.

   The Gaussian or parametric assumptions implicit in these models imply that all the

random sources of variability, in the observed response variable, have a Gaussian

distribution.  This is appropriate for most models in neuroimaging and makes the

relationship between classical approaches and Bayesian treatments (that can be

generalised to non-Gaussian densities) much more transparent.

Figure 1 about here
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Technically, models that conform to (1) fall into the class of conditionally

independent hierarchical models when the response variables and parameters are

independent across units, conditionally on the hyperparameters controlling the error

terms (Kass and Steffey 1989).  These models are also called parametric empirical

Bayes (PEB) models because the obvious interpretation of the higher-level densities

as priors led to the development of PEB methodology (Efron and Morris 1973).

Although the procedures considered in this chapter accommodate general models, that

are not conditionally independent, we refer to the Bayesian procedures below as PEB

because the motivation is identical and most of the examples assume conditional

independence.  Having posited a model with a hierarchical form, the aim is to

estimate its parameters and make some inferences about these estimates using their

estimated variability, or more generally their probability distribution.  In classical

inference one is, usually, only interested in inference about the parameters at the

highest level to which the model is specified.  In a Bayesian context the highest level

is regarded as providing constraints or empirical priors that enable posterior

inferences about the parameters in lower levels.  Identifying the system of equations

in (1) can proceed under two perspectives that are formally identical; a classical

statistical perspective and a Bayesian one.

   After recursive substitution, to eliminate all but the final level parameters, (1) can be

written in an alternative form

)()()1()()1()1()2()1()1( nnnn XXXXXy θεεε ��� ++++= − 3

In this non-hierarchical form the components of the response variable comprise

linearly separable contributions from all levels.  Those components that embody error

terms are referred to as random effects where the last-level parameters enter as fixed
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where }{ )(i(i)
ε CovC ε= .  If only one level is specified the random effects vanish and a

fixed-effect analysis ensues.  If n is greater than one, the analysis corresponds to a

random-effect analysis (or more exactly a mixed-effect analysis that includes random

terms).  (3) can be interpreted in two ways that form respectively the basis for a

classical
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In the first, classical formulation (5) the random effects are lumped together and

treated as a composite error, rendering the last-level parameters the only ones to

appear explicitly.  Inferences about nth level parameters are obtained by simply

specifying the model to the order required.  In contradistinction, the second

formulation (6) treats the error terms as parameters, so that θ  comprises the errors at

all levels and the final-level parameters.  Here we have effectively collapsed the

hierarchical model into a single level by treating the error terms as parameters (see

Figure 1 for a graphical depiction).

B A Classical perspective

From a classical perceptive (5) represents an observation model with response

variable y, design matrix X~  and parameters )(nθ .  The objective is to estimate these

parameters and make some inference about how large they are based upon an estimate

of their standard error.  Classically, estimation proceeds using the maximum
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likelihood (ML) estimator of the final-level parameters.  Under our model

assumptions this is the Gauss-Markov estimator
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where M is an estimator-forming matrix that projects the data onto the estimate.

Inferences about this estimate are based upon its covariance, against which any

contrast (i.e. linear compound specified by the contrast weight vector c) of the

estimates can be compared using the T statistic

cCovccT ML
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where, from (5) and (7)
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The covariance of the ML estimator represents a mixture of covariances offered up to

the highest level by the error at all previous levels.  To implement this classical

procedure we need the covariance of the composite errors }~{~ εε CovC = , from all

levels, projected down the hierarchy onto the response variable or observation space.

In other words, we need the error covariance components of the model.  In fact to

proceed, in the general case, one has to turn to the second formulation (6) and some

iterative procedure to estimate these covariance components, in our case an EM

algorithm.  This dependence, on the same procedures used by PEB methods, reflects

the underlying equivalence between classical and empirical Bayes methods.

   There are special cases where one does not need to resort to iterative covariance

component estimation.  For example, single-level models.  With balanced designs,

where )()(
1

i
j

i XX =  for all i and j, one can replace the response variable with the ML

estimates at the penultimate level and proceed as if one had a single-level model.

This is the trick harnessed by multi-stage implementations of random-effect analyses
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(Holmes and Friston 1998, Chapter 12: Random effects analysis). Although the

ensuing variance estimator is not the same as equation (9), its expectation is.

   In summary, parameter estimation and inference, in hierarchical models, can

proceed given estimates of the appropriate covariance components.  The reason for

introducing inference based on the ML estimate is to motivate the importance of

covariance component estimation.  In the next section we take a Bayesian approach to

the same issue.

C A Bayesian perspective

Bayesian inference is based on the conditional probability of the parameters given the

data )|( )( yp iθ .  Under the assumptions above, this posterior density is Gaussian and

the problem reduces to finding its first two moments, the conditional mean )(i
yθη  and

conditional covariance )(i
yCθ .  These posterior or conditional distributions can be

determined for all levels enabling, in contradistinction to classical approaches,

inferences at any level using the same hierarchical model.  Given the posterior density

we can work out the maximum a posteriori (MAP) estimate of the parameters (a point

estimator equivalent to )(i
yθη  for the linear systems considered here) or the probability

that the parameters exceed some specified value.  Consider (1) from a Bayesian point

of view.  Here level i can be thought of as providing prior constraints on the

expectation and covariances of the parameters below
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In other words, the parameters at level i play the role of supraordinate parameters for

level i - 1 that control the prior expectation under the constraints specified by )(iX .

Similarly the prior covariances are simply specified by the error covariances of the

level above.  For example, given several subjects we can use information about the

distribution of activations, over subjects, to inform an estimate pertaining to any

single subject.  In this case the between-subject variability, from the second level,

enters as a prior on the parameters of the first level.   In many instances we measure

the same effect repeatedly in different contexts.  The fact that we have some handle
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on this effect's inherent variability means that the estimate for a single instance can be

constrained by knowledge about others.  At the final level we can treat the parameters

as; (i) unknown, in which case their priors are flat1 (c.f. fixed effects) giving an

empirical Bayesian approach, or (ii) known.  In the latter case the connection with the

classical formulation is lost because there is nothing to make an inference about, at

the final level.

   The objective is to estimate the conditional means and covariances such that the

parameters at lower levels can be estimated in a way that harnesses the information

available from higher levels.  All the information we require is contained in the

conditional mean and covariance of θ  from (6).  From Bayes rule the posterior

probability is proportional to the likelihood of obtaining the data, conditional on θ ,

times the prior probability of θ ,

)()|()|( θθθ pypyp ∝ 11

where the Gaussian priors )(θp are specified in terms of their expectation and

covariance
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Under Gaussian assumptions the likelihood and priors are given by
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1 Flat or uniform priors denote a probability distribution that is the same everywhere, reflecting a lack
of any predilection for specific values.  In the limit of very high variance a Gaussian distribution
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Substituting (12) into (10) gives a posterior density with a Gaussian form
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Note that when we adopt an empirical Bayesian scheme ∞=)(nCθ and 01 =−
θθ ηC  (see

Eq 12).  This means we never have to specify the prior expectation at the last level

because it never appears explicitly in (14).

   The solution (14) is ubiquitous in the estimation literature and is presented under

various guises in different contexts.  If the priors are flat, i.e. 01 =−
θC , the expression

for the conditional mean reduces to the minimum variance linear estimator, referred to

as the Gauss-Markov estimator.  The Gauss-Markov estimator is identical to the

ordinary least square (OLS) estimator that obtains after pre-whitening.  If the errors

are assumed to be independently and identically distributed, i.e. IC =)1(
ε , then (14)

reduces to the ordinary least square estimator.  With non-flat priors the form of (14) is

identical to that employed by ridge regression and [weighted] minimum norm

solutions (e.g. Tikhonov and Arsenin 1977) commonly found in the inverse problem

literature.  The Bayesian perspective is useful for minimum norm formulations

because it motivates plausible forms for the constraints that can be interpreted in

terms of priors.

   Equation (14) can be expressed in an exactly equivalent but more compact [Gauss-

Markov] form by augmenting the design matrix with an identity matrix and

augmenting the data matrix with the prior expectations such that
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becomes flat.
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where
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See Figure 2 for schematic illustration of the linear model implied by this

augmentation.  If the priors at the last level are flat, the last-level prior expectation can

be set to zero.  Note from (12) the remaining prior expectations are zero.  This

augmented form is computationally more efficient to deal with and simplifies the

exposition of the EM algorithm.  Furthermore, it highlights the fact that a Bayesian

scheme of this sort can be reformulated as the simple weighted least square or ML

problem that (15) represents.  The problem now reduces to estimating the error

covariances εC  that determine the weighting.  This is exactly where we ended up in

the classical approach, namely reduction to a covariance component estimation

problem.

Figure 2 about here

D Covariance component estimation

The classical approach was portrayed above, as using the error covariances to

construct an appropriate statistic.  The PEB approach was described as using the error

covariances as priors to estimate the conditional means and covariances, recall from

(10) that )()1( ii CC εθ =− .  Both approaches rest on estimating the covariance

components.  This estimation depends upon some parameterisation of these

components; in this chapter we use )()()( i
j

i
j

i QC �= λε  where )(i
jλ  are some

hyperparameters and )(i
jQ  represent a basis set for the covariance matrices.  The bases
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can be construed as constraints on the prior covariance structures in the same way as

the design matrices )(iX specify constraints on the prior expectations.  )(i
jQ  embodies

the form of the jth covariance component at the ith level and can model different

variances for different levels and different forms of correlations within levels.  The

bases or constraints jQ are chosen to model the sort of non-sphericity anticipated.  For

example, they could specify serial correlations within-subject or correlations among

the errors induced hierarchically, by repeated measures over subjects (Figure 3

illustrates both these examples).  We will illustrate a number of forms for jQ  in the

subsequent sections.

Figure 3 about here.

One way of thinking about these covariance constraints is in terms of the Taylor

expansion of any function of hyperparameters that produced the actual covariance

structure
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where the basis set corresponds to the partial derivatives of the covariances with

respect to the hyperparameters.  In variance component estimation the high-order

terms in (16) are generally zero.  In this context a linear decomposition of )(iCε  is a

natural parameterisation because the different sources of conditionally independent

variance add linearly and the constraints can be specified directly in terms of these

components.  There are other situations where a different parameterisation may be

employed.  For example, if the constraints were implementing several independent

priors in a non-hierarchical model a more natural expansion might be in terms of the

precision jjQC �=− λθ
1 .  The precision is simply the inverse of the covariance

matrix.  Here jQ  correspond to precisions specifying the form of independent prior

densities.  However, in this chapter, we deal only with priors that are engendered by

the observation model that induces hierarchically organised, linearly mixed, variance
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components.  See Harville (1977, p322) for comments on the usefulness of making

the covariances linear in the hyperparameters.

   The augmented form of the covariance constraints obtains by placing them in the

appropriate partition in relation to the augmented error covariance matrix
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where the subscript k runs over both levels and the constraints within each level.

Having framed the covariance estimation in terms of estimating hyperparameters, we

can now use an EM algorithm to estimate them.

E Expectation-Maximisation

EM or expectation-maximisation is a generic, iterative parameter re-estimation

procedure that encompasses many iterative schemes devised to estimate the

parameters and hyperparameters of a model (Dempster et al 1977, 1981). It was

original introduced as an iterative method to obtain maximum likelihood estimators in

incomplete data situations (Hartley 1958) and was generalised by Dempster et al

(1977).  More recently, it has been formulated (e.g. Neal and Hinton 1998) in a way

that highlights its elegant nature using a statistical mechanical interpretation.  This

formulation considers the EM algorithm as a coordinate descent on the free energy of

a system.  The descent comprises an E-step, that finds the conditional Expectation of

the parameters, holding the hyperparameters fixed and an M-step, which updates the

Maximum likelihood estimate of the hyperparameters, keeping the parameters fixed.
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   In brief, EM provide a way to estimate both the parameters and hyperparameters

from the data.  In other words, it estimates the model parameters when the exact

densities of the observation error and priors are unknown.  For linear models under

Gaussian assumptions the EM algorithm returns: (i) the posterior density of the

parameters, in terms of their expectation and covariance and (ii) Restricted ML

estimates of the hyperparameters.  The EM algorithm described in the appendix (A.1)

is depicted schematically in Figure 4.  In the context of the linear observation models

discussed in this chapter, the EM scheme is the same as using restricted maximum

likelihood (ReML) estimates of the hyperparameters, that properly account for the

loss of degrees of freedom, incurred by parameter estimation.  The operational

equivalence between ReML and EM has been established for many years (see

Fahrmeir and Tutz, 1994, p226).  However, it is useful to understand their

equivalence because EM algorithms are usually employed to estimate the conditional

densities of model parameters when the hyperparameters of the likelihood and prior

densities are not known.  In contradistinction, ReML is generally used to estimate

unknown variance components without explicit reference to the parameters.  In the

hierarchical linear observation model considered here the unknown hyperparameters

become variance components which means they can be estimated using ReML.  It

should be noted that EM algorithms are not restricted to linear observation models or

Gaussian priors, and have found diverse applications in the machine learning

community.  On the other hand ReML was developed explicitly for linear observation

models under Gaussian assumptions.

   In the appendix we have made an effort to reconcile the free energy formulation

based on statistical mechanics (Neal and Hinton 1998) with classical ReML (Harville

1977).  This might be relevant for understanding ReML in the context of extensions to

the free energy formulation, afforded by the use of hyperpriors (priors on the

hyperparameters).  One key insight into the EM approach is that the M-step returns,

not simply the ML estimate of the hyperparameters, but the Restricted ML that is

properly restricted from a classical perspective.

   Having computed the conditional mean and covariances of the parameters we are

now in a position to make inferences about the effects at any level using their

posterior density.
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Figure 4 about here

F Conditional and classical estimators

Given an estimate of the error covariance of the augmented form εC and implicitly the

priors that are embedded in it, one can compute the conditional mean and covariance

at each level where
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The conditional means for each level obtain recursively with )()()()1( i
y

i
y

ii
y X εθθ ηηη +=− .

The conditional covariances are simply )()1( i
y

i
y CC εθ =−  up to the penultimate level and

)(n
yCθ  at the final level.   The conditional means represent a better ‘collective’

characterisation of the model parameters than the equivalent ML estimates because

they are constrained by prior information from higher levels (see discussion below).

At the last level the conditional mean and ML estimators are the same.  In PEB,

inferences about the parameters at subordinate levels are enabled through having an

estimate of their posterior density.  At the last level the posterior density reduces to

the likelihood distribution and inference reverts to a classical one based on the

standardised conditional mean.

   The standardised conditional mean, or a contrast of means, is the mean normalised

by its conditional error.  This conditional error is larger than the standard error of the

conditional mean with equivalence when the priors are flat (i.e. the conditional

variability of a parameter is greater than the estimate of its mean, except at the last

level where they are the same).
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This statistic indicates the number of standard deviations by which the mean of the

conditional distribution of the contrast deviates from zero.  The critical thing, we want

to emphasise here, is that this statistic is identical to the classical T statistic at the last

level.  This means that the ML estimate and the conditional mean are the same and the

conditional covariance is exactly the same as the covariance of the ML estimate.  The

convergence of classical and Bayesian inference at the last level rests on this identity

and depends on adopting an empirical Bayesian approach.  This establishes a close

connection between classical random effect analyses and hierarchical Bayesian

models.  However, the two approaches diverge if we consider that the real power of

Bayesian inference lies in (i) coping with incomplete data or unbalanced designs and

(ii) looking at the conditional or posterior distributions at lower levels.  The

relationship between classical and empirical Bayesian inference is developed in the

next section.

G Classical and Bayesian inference compared

In this subsection we establish a relationship between classical and Bayesian

inference by applying Bayes in a classical fashion.  As noted above, at the last level,

PEB inference based on the standardised conditional mean is identical to classical

inference based on the T statistic.  In this context the ML estimators and the

conditional means are the same, as are the conditional covariance and the covariance

of the ML estimator.  What about inference at intermediate levels?  Bayesian

inference is based on the conditional or posterior densities (means and covariances) to

give the posterior probability that a compound of parameters (i.e. contrast) is greater

than some value say γ.  How does this relate to the equivalent classical inference?

Clearly the essence of both inferences are quite distinct.  The p value in classical

inference pertains to the probability of getting the data under the null hypothesis,

whereas in Bayesian inference it is the probability that, given the data, the contrast

exceeds γ.  However, we can demonstrate the connection between Bayesian and

classical inference by taking a classical approach to the former:

   Consider the following heuristic argument.  Take an observation model with a

single parameter and assume that the error and prior covariance of the parameter are
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known.  Classical inference is characterised in terms of specificity and sensitivity

given the null 0=θ  and alternate A=θ  hypotheses.  Specificity is the probability of

correctly accepting the null hypothesis and is α−1 , where α is a small false positive

rate.  The sensitivity β or power is the probability of correctly rejecting the null

hypothesis.  Classically, one rejects the null hypothesis whenever the standardised

ML estimator exceeds some specified statistical threshold v.  The probability of this

happening is based on its distribution whose standard deviation is given by (9).
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where (.)Φ  is the cumulative density function of the unit normal distribution.  Note

that one would use the Student's T distribution if the error covariance had to be

estimated but here we are treating the error variance as known.  α  and β  are the

probabilities that the ML estimator divided by its standard deviation would exceed v,

under the null and alternative hypotheses respectively.  Note that this classical

inference disregards any priors on the parameter's variance, assuming them to be

infinite.  We can now pursue an identical analysis for Bayesian inference.  By

thresholding the posterior probability (or PPM) a specified confidence (say 95%) one

could declare the surviving voxels as showing a significant effect.  This corresponds

to thresholding the conditional mean at yCu θγ +  where u is a standard Gaussian

deviate specifying the level of confidence required.  For example u = 1.64 for 95%

confidence.  One can regard u as a Bayesian threshold.  Although thresholding the

posterior probability to declare a voxel 'activated' is, of course, unnecessary, it is used

here as a device to connect Bayesian and classical inference.

  Under the null and alternate hypotheses the expectation and variance of the

conditional mean are
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where ηθ CC y ≥ , with equality when the priors are flat.  Comparing  (20) and (21)

reveals a fundamental difference and equivalence between classical and Bayesian

inference.  The first thing to note is that the expressions for power and sensitivity have

exactly the same form, such that if we chose a threshold u that gave the same

specificity as a classical test, then the same sensitivity would ensue.  In other words

there is no magical increase in power afforded by a Bayesian approach.  The classical

approach is equally as sensitive given the same specificity.

   The essential difference emerges when we consider that the relationship between the

posterior probability threshold u and the implied classical threshold w depends on

quantities (i.e. error and prior variance) that inconstant over voxels.  In a classical

approach we would choose some fixed threshold v, say for all voxels in an SPM.  This

ensures that the resulting inference has the same specificity everywhere because

specificity depends on, and only on, v.  To emulate this uniform specificity, when

thresholding a PPM, we would have to keep w constant.  The critical thing here is that

if the prior covariance or observation error changes from voxel to voxel then either

γ or u must change to maintain the same specificity.  This means that the nature of the

inference changes fundamentally, either in terms of the size of the inferred activation
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γ or the confidence about that effect u.  In short, one can either have a test with

uniform specificity (the classical approach) or one can infer an effect of uniform size

with uniform confidence (the Bayesian approach) but not both at the same time.  For

example, given a confidence level determined by u, as the prior variance gets smaller

γ must also decrease to maintain the same specificity.  Consequently, in some regions

a classical inference corresponds to a Bayesian inference about a big effect and in

other regions, where the estimate is intrinsically less variable, the inference is about a

small effect.  In the limit of estimates that are very reliable the classical inference

pertains to trivially small effects.  This is a fallacy of classical inference alluded to in

the introduction.  There is nothing statistically invalid about this: One might argue

that a very reliable activation that is exceedingly small is interesting.  However, in

many contexts, including neuroimaging, we are generally interested in activations of a

non-trivial magnitude and this speaks to the usefulness of Bayesian inference.

   In summary, classical inference uses a criterion that renders the specificity fixed.

However, this is at the price that the size of the effect, subtending the inferred

activation, will change from voxel to voxel or brain region to brain region.  By

explicitly framing the inference in terms of the posterior probability, Bayesian

inference sacrifices a constant specificity to ensure the inference is about the same

thing at every voxel.  Intuitively one can regard Bayesian inference as adjusting the

classical threshold according to the inherent variability of the effect one is interested

in.  In regions with high prior variability the classical threshold is relaxed to ensure

type II errors are avoided.  In this context the classical specificity represents the lower

bound for Bayesian inference.  In other words, Bayesian inference is generally much

more specific than classical inference (by several orders of magnitude in the empirical

examples presented later) with equivalence when the prior variance becomes very

large.

   In concluding, it should be noted one does not usually consider issues like

specificity from a Bayesian point of view (the null hypothesis plays no role because

the real world behaviour is already specified by the priors).  From a purely Bayesian

perspective the specificity and sensitivity of an inference are meaningless because at

no point is an activation declared significant (correctly or falsely).  It is only when we

impose a categorical classification (activated vs. not activated) by thresholding on the

posterior probability that specificity and sensitivity become an issue.  Ideally, one
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would report ones inferences in terms of the conditional density of the activation at

every voxel.  This is generally impractical in neuroimaging and the posterior

probability (that is a function of the conditional density and γ) becomes a useful

characterisation.  This characterisation is, and should be, the same irrespective of

whether we have analysed just one voxel or the entire brain.  To threshold the

posterior probabilities is certainly tenable for summary or display purposes, but to

declare the surviving voxels as 'activated' represents a category error.  This is because

the inherent nature of the inference already specifies that the voxel is probably active

with a non-trivial probability of not being activated.  However, it is comforting to note

that, by enforcing a classical take on Bayesian inference, we do not have to worry too

much about the multiple comparison problems because the ensuing inference has an

intrinsically high specificity.

H Conceptual issues

This section has introduced three key components that play a role in the estimation of

the linear models; Bayesian estimation, hierarchical models and EM.  The summary

points below attempt to clarify the relationships among these components.  It is worth

while keeping in mind there are essentially three sorts of estimation. (i) Fully

Bayesian, when the priors are known. (ii) Empirical Bayesian, when the priors are

unknown but they can be parameterised in terms of some hyperparameters estimated

from the data and (iii) maximum likelihood estimation, when the priors are assumed

to be flat.  In the final instance the ML estimators correspond to weighted least square

or minimum norm solutions.  All these procedures can be implemented with an EM

algorithm (see Figure 5).

Figure 5 about here

• Model estimation and inference are greatly enhanced by being able to make

probabilistic statements about the model parameters given the data, as opposed to

probabilistic statements about the data, under some arbitrary assumptions about the

parameters (e.g. the null hypothesis), as afforded by classical statistics.  The former is

predicated on the posterior or conditional distribution of the parameters that is derived

using Bayes rule.
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• Bayesian estimation and inference require priors.  If the priors are known then a

fully Bayesian estimation can proceed.  In the absence of known priors there may be

constraints on the form of the model that can be harnessed using empirical Bayes

estimates of the associated hyperparameters.

• A model with a hierarchical form embodies implicit constraints on the form of the

prior distributions.  Hyperparameters that, in conjunction with these constraints,

specify the priors can then be estimated with PEB.  In short, a hierarchical form for

the observation model enables an empirical Bayesian approach.

• If the observation model does not have a hierarchical structure then one knows

nothing about the form of the priors, and they are assumed to be flat.  Bayesian

estimation with flat priors reduces to maximum likelihood estimation.

• In the context of an empirical Bayesian approach the priors at the last level are

generally unknown and enter as flat priors.  This is equivalent to treating the

parameters at the last level as fixed effects (i.e. effects with no intrinsic or random

variability).  One consequence of this is that the conditional mean and the ML

estimate, at the last level, are identical.

• In terms of inference, at the last level, PEB and classical approaches are formally

identical.  At subordinate levels PEB can use the posterior densities to provide for

Bayesian inference about the effects of interest.  This is precluded from a classical

perspective because there are no priors.

• EM provides a generic framework in which fully Bayes, PEB or ML estimation can

proceed.  Its critical utility is the estimation of covariance components, given some

data, through the ReML estimation of hyperparameters mixing these covariance

components. An EM algorithm can be used to estimate the error covariance in the

context of known priors or to estimate both the error and priors by embedding the

latter in the former. This embedding is achieved by augmenting the design matrix and

data (see Figures 2 and 4).
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•  In the absence of priors, or hierarchical constraints on their form, EM can be used

in a ML setting to estimate the error covariance to enable Gauss-Markov estimates

(see Figure 5).  These estimators are the optimum weighted least square estimates in

the sense they have the minimum variance of all unbiased linear estimators.  In the

limiting case that the covariance constraints reduce to a single basis (synonymous

with known correlations or a single hyperparameter) the EM algorithm converges in a

single iteration and emulates a classical sum of square estimation of error variance.

When this single basis is the identity matrix (i.e. i.i.d. errors), an EM algorithm simply

implements an ordinary least square estimation.

 In this section we have reviewed hierarchical observation models of the sort

commonly encountered in neuroimaging.  Their hierarchical nature induces different

sources of variability in the observations at different levels (i.e. variance components)

that can be estimated using EM.  The use of EM, for variance component estimation,

is not limited to hierarchical models but finds a useful application whenever non-

sphericity of the errors is specified with more than one hyperparameter (e.g. serial

correlations in fMRI).  This application will be illustrated next.  The critical thing,

about hierarchical models, is that they conform to a Bayesian scheme where variance

estimates at higher levels can be used as constraints on the estimation of effects at

lower levels.  This perspective rests upon exactly the same mathematics that pertains

to variance component estimation in non-hierarchical models but allows one to frame

the estimators in conditional or Bayesian terms.  An intuitive understanding of the

conditional estimators, at a given level, is that they ‘shrink’ towards their average, in

proportion to the error variance at that level, relative to their intrinsic variability (error

variance at the supraordinate level). See Lee (1997, p232) for a discussion of PEB and

Stein “Shrinkage” estimators.

   In what sense are these Bayes predictors a better characterization of the model

parameters than the equivalent ML estimates?  In other words, what are the gains in

using a shrinkage estimator?  This is a topic that has been debated at great length in

the statistics literature and even in the popular press.  See the Scientific American

article “Stein’s paradox in statistics” (Efron and Morris 1977).  The answer depends
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on ones definition of ‘better’, or in technical terms, the loss function.  If the aim is to

find the best predictor for a specific subject, then one can do no better than the ML

estimator for that subject.  Here the loss function is simply the squared difference

between the estimated and real effects for the subject in question.  Conversely, if the

loss function is averaged over subjects then the shrinkage estimator is best.  This has

been neatly summarised in a discussion chapter read before the Royal Statistical

Society entitled “Regression, prediction and shrinkage” by Copas (1983).  The vote of

thanks was given by Dunsmore, who said:

“Suppose I go to the doctor with some complaint and ask him to predict the

time y to remission.  He will take some explanatory measurements x and

provide some prediction for y.  What I am interested in is a prediction for my

x, not for any other x that I might have had – but did not.  Nor am I really

interested in his necessarily using a predictor which is “best” over all possible

x’s.  Perhaps rather selfishly, but I believe justifiably, I want the best predictor

for my x.  Does it necessarily follow that the best predictor for my x should

take the same form as for some other x?  Of course this can cause problems for

the esteem of the doctor or his friendly statistician.  Because we are concerned

with actual observations the goodness or otherwise of the prediction will

eventually become apparent.  In this case the statistician will not be able to

hide behind the screen provided by averaging over all possible future x’s.”

Copas then replied:

“Dr. Dunsmore raises two general points that repay careful thought.  Firstly,

he questions the assumption made at the very start of the chapter that

predictions are to be judged in the context of a population of future x’s and not

just at some specific x.  To pursue the analogy of the doctor and the patient, all

I can say is that the chapter is written from the doctor’s point of view and not

from the patients!  No doubt the doctor will feel he is doing a better job if he

cures 95% of patients rather than only 90%, even though a particular patient

(Dr. Dunsmore) might do better in the latter situation than the former.  As

explained in the chapter, pre-shrunk predictors do better than least squares for

most x’s at the expense of doing worse at a minority of x’s.  Perhaps if we
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think our symptoms are unusual we should seek a consultant who is prepared

to view our complaint as an individual research problem rather than rely on

the blunt instrument of conventional wisdom.”

The implication for Bayesian estimators, in the context of neuroimaging, is that they

are the best for each subject [or voxel] on average over subjects [or voxels].  In this

sense Bayesian or conditional estimates of individual effects are only better on

average, over the individual effects estimated.  The issues, framed by Keith Worsley

above, speak to the important consideration that Bayesian estimates, of the sort

discussed in this chapter, are only ‘better’ in collective sense.  One example of this

collective context is presented below, where between-voxel effects are used to

‘shrink’ within-voxel estimates that are then reported together in a PPM.

   The estimators and inference from a PEB approach do not inherently increase the

sensitivity or specificity of the analysis.  The most appropriate way to do this would

be to simply increase sample size. PEB methodology can be better regarded as

providing a set of estimates or predictors that are internally consistent within and over

hierarchies of the observation model.  Furthermore, they enable Bayesian inference

(comments about the likelihood of an effect given the data) that complement classical

inference (comments about the likelihood of the data).  Bayesian inference does not

necessarily decide whether an activation is present or not, it simply estimates the

probability of an activation, specified in terms of the size of the effect.  Conversely,

classical inference is predicated on a decision (is the null hypothesis true or is the size

of the effect different from zero?).  The product of classical inference is a decision or

declaration, which induces a sensitivity and specificity of the inference.  In this

section we have used classical notions of sensitivity and specificity to link the two

sorts of inference by thresholding the posterior probability.  However, one is not

compelled to threshold maps of posterior probability. Indeed, one of the motivations,

behind Bayesian treatments, is to eschew the difficult compromise between sensitivity

and specificity engendered by classical inference in neuroimaging.
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III EM AND VARIANCE COMPONENT ESTIMATION

In this section we present a series of models that exemplify the diversity of problems

that can be addressed with EM.  In hierarchical linear observation models, both

classical and empirical Bayesian approaches can be framed in terms of covariance

component estimation (e.g. variance partitioning).  To illustrate the use of

Expectation-Maximisation (EM) in covariance component estimation we focus on

two important problems in fMRI: non-sphericity induced by (i) serial or temporal

correlations among errors and (ii) variance components caused by the hierarchical

nature of multi-subject studies.  In hierarchical observation models, variance

components at higher levels can be used as constraints on the parameter estimates of

lower levels.  This enables the use of parametric empirical Bayesian (PEB) estimators,

as distinct from classical maximum likelihood (ML) estimates.  We develop this

distinction to address the difference between response estimates based on ML and the

conditional means.

   Empirical Bayes enables the joint estimation of an observation model’s parameters

(e.g. activations) and its hyperparameters that specify the observation’s variance

components (e.g. within- and between subject-variability).  The estimation procedures

conform to EM, which, considering just the hyperparameters in linear observation

models, is formally identical to restricted maximum likelihood (ReML).  If there is

only one variance component these iterative schemes simplify to conventional, non-

iterative sum of squares variance estimates.  However, there are many situations when

a number of hyperparameters have to be estimated.  For example, when the

correlations among errors are unknown but can be parameterised with a small number

of hyperparameters (c.f. serial correlations in fMRI time-series).  Another important

example, in fMRI, is the multi-subject design in which the hierarchical nature of the

observation induces different variance components at each level.  The aim of this

section is to illustrate how variance component estimation, with EM, can proceed in

both single-level and hierarchical contexts.  In particular, the examples emphasise that

although the mechanisms inducing non-sphericity can be very different, the variance

component estimation problems they represent, and the analytic approaches called for,

are identical.

   We will use two fMRI examples.  In the first we deal with the issue of variance

component estimation using serial correlations in single-subject fMRI studies.
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Because there is no hierarchical structure to this problem there is no Bayesian aspect.

However, in the second example we add a second level to the observation model for

the first to address inter-subject variability.  Endowing the model with a second level

affords the opportunity to use empirical Bayes.  This enables a quantitative

comparison of classical and conditional single-subject response estimates.

A Variance component estimation in fMRI: A single-level model

In this section we review serial correlations in fMRI and use simulated data to

compare ReML estimates, obtained with EM, to estimates of correlations based

simply on the model residuals.  The importance of modelling temporal correlations,

for classical inference based on the T statistic, is discussed in terms of correcting for

non-sphericity in fMRI time-series.  This section concludes with a quantitative

assessment of serial correlations within and between subjects.

1 Serial correlations in fMRI

In this section we restrict ourselves to a single-level model and focus on the

covariance component estimation afforded by EM.  We have elected to use a simple

but important covariance estimation problem to illustrate one of the potential uses of

the scheme described in the appendix. Namely, serial correlations in fMRI embodied

in the error covariance matrix for the first (and only) level of this observation model
)1(

εC .  Serial correlations have a long history in the analysis of fMRI time-series.

fMRI time-series can be viewed as a linear admixture of signal and noise.  Noise has

many contributions that render it rather complicated in relation to other

neurophysiological measurements.  These include neuronal and non-neuronal sources.

Neuronal noise refers to neurogenic signal not modelled by the explanatory variables

and has the same frequency structure as the signal itself.  Non-neuronal components

have both white (e.g. R.F. noise) and coloured components (e.g. pulsatile motion of

the brain caused by cardiac cycles and local modulation of the static magnetic field B0

by respiratory movement).  These effects are typically low frequency or wide-band

and induce long range correlations in the errors over time.  These serial correlations

can either be used to whiten the data (Bullmore et al 1996, Purdon and Weisskoff

1998) or are entered into the non-sphericity corrections described in previous chapters

(Worsley and Friston 1995).  Both approaches depend upon an accurate estimation of
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the serial correlations.  In order to estimate correlations among the errors ελ)(C , in

terms of some hyperparameters λ , one needs both the residuals of the model r and

the conditional covariance of the parameter estimates that produced those residuals.

These combine to give the required error covariance (c.f. Equation A.4 in Appendix

A.1).

T
y

T XXCrrC θελ +=)( 22

T
y XXCθ  represents the conditional covariance of the parameter estimates yCθ

‘projected’ onto the measurement space, by the design matrix X.  The problem is that

the covariance of the parameter estimates is itself a function of the error covariance.

This circular problem is solved by the recursive parameter re-estimation implicit in

EM.  It is worth noting that estimators of serial correlations based solely on the

residuals (produced by any estimator) will be biased.  This bias results from ignoring

the second term in (22), which accounts for the component of error covariance due to

uncertainty about the parameter estimates themselves.  It is likely that any valid

recursive scheme for estimating serial correlations in fMRI time-series conforms to

EM (or ReML) even if the connection is not made explicit.  See Worsley et al (2002)

for a non-iterative approach to AR(p) models.

   In summary, the covariance estimation afforded by EM can be harnessed to estimate

serial correlations in fMRI time series that coincidentally provide the most efficient

(i.e. Gauss-Markov) estimators of the effect one is interested in.  In this section we

apply the EM algorithm described in Friston et al (2002a) to simulated fMRI data

sequences and take the opportunity to establish the connections among some

commonly employed inference procedures based upon the T statistic.  This example

concludes with an application of EM to empirical data to demonstrate quantitatively

the relative variability in serial correlations over voxels and subjects.

2 Estimating serial correlations

For each fMRI session we have a single-level observation model that is specified by

the design matrix )1(X  and constraints on the observation’s covariance structure )1(
iQ ,

in this case serial correlations among the errors.
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y is the measured response with errors },0{~ )1()1(
εε CN .  I is the identity matrix.  Here

)1(
1Q  and )1(

2Q  represent covariance components of )1(
εC  that model a white noise and

an autoregressive AR(1) process with an AR coefficient of 3679.01 =e .  Notice that

this is a very simple model of autocorrelations; by fixing the AR coefficient there are

just two hyperparameters that allow for different mixtures of an AR(1) process and

white noise (c.f. the 3 hyperparameters needed for a full AR(1) plus white noise

model).  The AR(1) component is modelled as an exponential decay of correlations

over non-zero lag.

   These bases were chosen given the popularity of AR plus white noise models in

fMRI (Purdon and Weisskoff 1998).  Clearly this basis set can be extended in any

fashion using Taylor expansions to model deviations of the AR coefficient from 1/e or

indeed model any other form of serial correlations.  Non-stationary autocorrelations

can be modelled by using non-Toeplitz forms for the bases that allow the elements in

the diagonals of )1(
iQ  to vary over observations.  This might be useful, for example, in

the analysis of event-related potentials, where the structure of errors may change with

peri-stimulus time.

   In the examples below the covariance constraints were scaled to a maximum of one.

This means that the second hyperparameter can be interpreted as the covariance

between one scan and the next.  The basis set enters, along with the data, into the EM

algorithm (see appendix A.1) to provide ML estimates of the parameters )1(θ and

ReML estimates of the hyperparameters )1(λ .

   An example, based on simulated data, is shown in Figure 6.  In this example the

design matrix comprised a boxcar regressor and the first 16 components of a discrete

cosine set.  The simulated data corresponded to a compound of this design matrix (see
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figure legend) plus noise, coloured using hyperparameters of 1 and 0.5 for the white

and AR(1) components respectively.  The top panel shows the data (dots), the true and

fitted effects (broken and sold lines).  For comparison, fitted responses based on both

ML and OLS (ordinary least squares) are provided.  The insert in the upper panel

shows these estimators are very similar but not identical.  The lower panel shows the

true (dashed) and estimated (solid) auto-correlation function based on
)1(

2
)1(

2
)1(

1
)1(

1
)1( QQC λλε += .  They are nearly identical.  For comparison the sample

autocorrelation function (dotted line) and an estimate based directly on the residuals

[i.e. ignoring the second term of (1)] (dot-dash line) are provided.  The

underestimation, that ensues using the residuals, is evident in the insert that shows the

true hyperparameters (black), those estimated properly using ReML (white) and those

based on the residuals alone (grey).  By failing to account for the uncertainty about

the parameter estimates, the hyperparameters based only on the residuals are severe

underestimates.  The sample autocorrelation function even shows negative

correlations.  This is a result of fitting the low frequency components of the design

matrix.  One way of understanding this is to note that the autocorrelations among the

residuals are not unbiased estimators of )1(
εC  but TRRC )1(

ε , where R is the residual-

forming matrix.  In other words, the residuals are not the true errors but what is left

after projecting them onto the null space of the design matrix.

   The full details of this simulated single-session, boxcar design fMRI study are

provided in the figure legend.

Figure 6 about here

3 Inference in the context of non-sphericity2

This subsection explains why covariance component estimation is so important for

inference.  In short, although the parameter estimates may not depend on sphericity,

the standard error, and ensuing statistics do.  The impact of serial correlations on

inference was noted early in the fMRI analysis literature (Friston et al 1994) and led

to the generalised least squares (GLS) scheme described in Worsley and Friston

                                                          
2 An  i.i.d. process is identically and independently distributed and has a probability distribution whose
iso-contours conform to a sphere. Any departure from this is referred to as non-sphericity.
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(1995).  In this scheme one starts with any observation model that is pre-multiplied by

some weighting or convolution matrix S to give

)1()1()1( εθ SSXSy += 24

The GLS parameter estimates and their covariance are

( ) SySXL

LLCCov
Ly

T
LS
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=

=
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)1(}{ εη
η
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These estimators minimise the generalised least square index

)()( )1()1(
LS

TT
LS XySSXy ηη −−  This family of estimators are unbiased but not

necessarily ML estimates.  The Gauss-Markov estimator is the minimum variance and

ML estimator that obtains as a special case when 2/1)1( −= εCS .  The T statistic

corresponding to the GLS estimator is distributed with v degrees of freedom where

(Worsley and Friston 1995)

LXR
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The effective degrees of freedom are based on an approximation due to Satterthwaite

(1941).  This formulation is formally identical to the non-sphericity correction

elaborated by Box (1954) which is commonly known as the Geisser-Greenhouse

correction in classical analysis of variance, ANOVA (Geisser and Greenhouse 1958).

   The key point here is that EM can be employed to give ReML estimates of

correlations among the errors that enter into (26) to enable classical inference,

properly adjusted for non-sphericity, about any GLS estimator.  EM finds a special

role in enabling inferences about GLS estimators in statistical parametric mapping.

When the relative values of hyperparameters can be assumed to be stationary over
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voxels, ReML estimates can be obtained using the sample covariance of the data over

voxels, in a single EM (see equation A.7 appendix A.2).  After re-normalisation, the

ensuing estimate of the non-sphericity �==Σ )1()1(
kk QQ λ specifies the serial

correlations in terms of a single basis.  Voxel-specific hyperparameters can now be

estimated in a non-iterative fashion in the usual way, because there is only one

hyperparameter to estimate.

4 Application to empirical data

In this subsection we address the variability of serial correlations over voxels within

subject and over subjects within the same voxel.  Here we are concerned only with the

form of the correlations The next subsection addresses between-subject error variance

per se.

    Using the model specification in (23) serial correlations were estimated using EM

in 12 randomly selected voxels from the same slice from a single subject.  The results

are shown in Figure 7 (left panel) and show that the correlations from one scan to the

next can vary between about 0.1 and 0.4.  The data sequences and experimental

paradigm are described in the figure legend.  Briefly these data came from an event-

related study of visual word processing in which new and old words (i.e. encoded

during a pre-scanning session) were presented in a random order with a stimulus onset

asynchrony (SOA) of about 4 seconds.  Although the serial correlations within subject

vary somewhat there is an even greater variability from subject to subject at the same

voxel.  The right hand panel of Figure 7 shows the autocorrelation functions estimated

separately for 12 subjects at a single voxel.  In this instance, the correlations between

one scan and the next range from about -0.1 to 0.3 with a greater dispersion relative to

the within-subject autocorrelations.

Figure 7 about here

5 Summary

These results are provided to illustrate one potential application of covariance

component estimation, not to provide an exhaustive characterisation of serial

correlations.  This sort of application may be important when it comes to making

assumptions about models for serial correlations at different voxels or among
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subjects.  We have chosen to focus on a covariance estimation problem that requires

an iterative parameter re-estimation procedure in which the hyperparameters

controlling the covariances depend on the variance of the parameter estimates and

vice versa.  There are other important applications of covariance component

estimation we could have considered (although not all require an iterative scheme).

One example is the estimation of condition-specific error variances in PET and fMRI.

In conventional SPM analyses one generally assumes that the error variance

expressed in one condition is the same as that in another.  This represents a sphericity

assumption over conditions and allows one to pool several conditions when

estimating the error variance.  Assumptions of this sort, and related sphericity

assumptions in multi-subject studies, can be easily addressed in unbalanced designs,

or even in the context of missing data, using EM.

B Variance component estimation in fMRI: Two-level models

In this subsection we augment the model above with a second level.  This engenders a

number of important issues, including the distinction between fixed- and random-

effect inferences about the subjects’ responses and the opportunity to make Bayesian

inferences about single-subject responses.  As above, we start with model

specification, proceed to simulated data and conclude with an empirical example.  In

this example the second level represents observations over subjects.  Analyses of

simulated data are used to illustrate the distinction between fixed- and random-effect

inferences by looking at how their respective T values depend on the variance

components and design factors.  The fMRI data are the same as used above and

comprise event-related time-series from 12 subjects.  We chose a data set that would

be difficult to analyse rigorously using software available routinely.  These data not

only evidence serial correlations but also the number of trial-specific events varied

from subject to subject, giving an unbalanced design.

1 Model specification

The observation model here comprises two levels with the opportunity for subject-

specific differences in error variance and serial correlations at the first level and

parameter-specific variance at the second.  The estimation model here is simply an
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extension of that used in the previous subsection to estimate serial correlations.  Here

it embodies a second level that accommodates observations over subjects.
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for s subjects each scanned on t occasions and p parameters.  The Kronecker tensor

product BA ⊗  simply replaces the element of A with BAij .  An example of these

design matrices and covariance constraints were shown, respectively, in Figures 1 and

3.  Note that there are 2s error covariance constraints, one set for the white noise

components and one for AR(1) components.  Similarly, there are as many prior

covariance constraints as there are parameters at the second level.

2 Simulations

In the simulations we used 128 scans for each of 12 subjects.  The design matrix

comprised three effects, modelling an event-related hemodynamic response to

frequent but sporadic trials (in fact the instances of correctly identified 'old' words

from the empirical example below) and a constant term.  Activations were modelled

with two regressors, constructed by convolving a series of delta functions with a
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canonical hemodynamic response function (HRF)3 and the same function delayed by

three seconds.  The delta functions indexed the occurrence of each event.  These

regressors model event-related responses with two temporal components, which we

will refer to as 'early' and 'late' (c.f. Henson et al 2000).  Each subject-specific design

matrix therefore comprised three columns giving a total of 36 parameters at the first

level and three at the second (the third being a constant term).  The HRF basis

functions were scaled so that a parameter estimate of one corresponds to a peak

response of unity.  After division by the grand mean, and multiplication by 100, the

units of the response variable and parameter estimates were rendered adimensional

and correspond to percent whole brain mean over all scans.  The simulated data were

generated using (27) with unit Gaussian noise coloured using a temporal, convolution

matrix ( ) 2/1)1()1(
� kk Qλ with first-level hyperparameters =)1(

jλ  0.5 and –0.1 for each

subject's white and AR(1) error covariance components respectively.  The second

level parameters and hyperparameters were TT ]0,006.0,02.0[  ,]0,0,5.0[ )2()2( == λθ .

These model substantial early responses with an expected value of 0.5% and a

standard deviation over subjects of 0.14% (i.e. square root of 0.02).  The late

component was trivial with zero expectation and a standard deviation of 0.077%.  The

third or constant terms were discounted with zero mean and variance.  These values

were chosen because they are typical of real data (see below).

Figures 8 and 9 about here

Figures 8 and 9 show the results after subjecting the simulated data to EM to estimate

the conditional mean and covariances of the subject-specific evoked responses.

Figure 8 shows the estimated hyperparameters and parameters (black) alongside the

true values (white).  The first-level hyperparameters controlling within subject error

(i.e. scan to scan variability) are estimated in a reasonably reliable fashion but note

that these estimates show a degree of variation about the veridical values (see

Conclusion).  In this example the second-level hyperparameters are over-estimated

but remarkably good, given only 12 subjects.  The parameter estimates at the first and

second levels are again very reasonable, correctly attributing the majority of the
                                                          
3 The canonical HRF was the same as that employed by SPM.  It comprises a mixture of two gamma
variates modelling peak and undershoot components and is based on a principal component analysis of
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experimental variance to an early effect.  Figure 8 should be compared with Figure 10

that shows the equivalent estimates for real data.

   The top panel in Figure 9 shows the ML estimates that would have been obtained if

we had used a single-level model.  These correspond to response estimates from a

conventional fixed-effects analysis.  The insert shows the classical fixed-effect T

values, for each subject, for contrasts testing early and late response components.

Although these T values properly reflect the prominence of early effects, their

variability precludes any threshold that could render the early components significant

and yet exclude false positives pertaining to the late component.  The lower panel

highlights the potential of revisiting the first level, in the context of a hierarchical

model.  It shows the equivalent responses based on the conditional mean and the

posterior inference (insert) based on the conditional covariance.  This allows us to

reiterate some points made in the previous section.  Firstly, the parameter estimates

and ensuing response estimates are informed by information abstracted from higher

levels.  Second, this prior information enables Bayesian inference about the

probability of an activation that is specified in neurobiologically meaningful terms.

   In Figure 9 the estimated responses are shown (solid lines) with the actual responses

(broken lines).  Note how the conditional estimates show a regression or ‘shrinkage’

to the conditional mean.  In other words, their variance shrinks to reflect, more

accurately, the variability in real responses.  In particular the spurious variability in

the apparent latency of the peak response in the ML estimates disappears when using

the conditional estimates.  This is because the contribution of the late component, that

induces latency differences, is suppressed in the conditional estimates.  This, in turn,

reflects the fact that the variability in its expression over subjects is small relative to

that induced by the observation error.  Simulations like these suggest that

characterisations of inter-subject variability using ML approaches can severely

overestimate the true variability.  This is because the ML estimates are unconstrained

and simply minimise observation error without considering how likely the ensuing

inter-subject variability is.

   The posterior probabilities (insert) are a function of the conditional mean )1(
yθη  and

covariance )1(
yCθ  and a size threshold 1.0=γ  that specifies an ‘activation’.

                                                                                                                                                                     
empirically determined hemodynamic responses, over voxels, as described in Friston et al (1998)
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The contrast weight vectors were T
earlyc ]0,0,1[= and T

latec ]0,1,0[= .  As expected, the

probability of the early response being greater than γ  was uniformly high for all 12

subjects, whereas the equivalent probability for the late component was negligible.

Note that, in contradistinction to the classical inference, there is now a clear indication

that each subject expressed an early response but no late response.

3 Empirical analyses

Here the analysis is repeated using real data and the results are compared to those

obtained using simulated data.  The empirical data are described in Henson et al

(2000).  Briefly, they comprised 128+ scans in 12 subjects.  Only the first 128 scans

were used below.  The experimental design was stochastic and event-related, looking

for differential responses evoked by new relative to old (studied prior to the scanning

session) words.  Either a new or old word was presented every 4 seconds or so (SOA

varied between 2.5 and 5.5 seconds).  In this design one is interested only in the

differences between evoked responses to the two stimulus types.  This is because the

efficiency of the design to detect the effect of stimuli per se is negligible with such a

short SOA.  Subjects were required to make an old vs. new judgement for each word.

Drift (the first 8 components of a discrete cosine set) and the effects of incorrect trials

were treated as confounds and removed using linear regression4.  The first-level

subject-specific design matrix partitions comprised four regressors with early and late

effects for both old and new words.

   The analyses proceeded in exactly the same way as for the simulated data.  The only

difference was that the contrast tested for differences between the two word types (i.e.
Tc ]0,1,0,1[ −=  for an old minus new early effect).  The hyperparameter and parameter

estimates, for a voxel in the cingulate gyrus (BA 31; -3, -33, 39mm), are shown in

Figure 10, adopting the same format as in Figure 8.  Here we see that the within-

                                                          
4 Strictly speaking the projection matrix implementing this adjustment should also be applied to the
covariance constraints but this would (i) render the constraints singular and (ii) ruin their sparsity
structure. We therefore omitted this and ensured, in simulations, that the adjustment had a negligible
effect on the hyperparameter estimates.
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subject error varies much more in the empirical data with the last subject showing

almost twice the error variance of the first subject.  As above, the serial correlations

vary considerably from subject to subject and are not consistently positive or

negative.  The second-level hyperparameters showed the early component of the

differential response to be more reliable over subjects than the late component (0.007

and 0.19 respectively).  All but two subjects had a greater early response, relative to

late, which on average was about 0.28%.  In other words, activation differentials, in

the order of 0.3%, occurred in the context of an observation error with a standard

deviation of 0.5% (see Figure 10).  The inter-subject variability was about 30% of the

mean response amplitude.  A component of the variability in within-subject error is

due to uncertainty in the ReML estimates of the hyperparameters (see below) but this

degree of inhomogeneity is substantially more than in the simulated data (where

subjects had equal error variances).  It is interesting to note that, despite the fact that

the regressors for the early and late components had exactly the same form, the

between-subject error for one was less than half that of the other.  Results of this sort

speak to the prevalence of non-sphericity (in this instance heteroscedasticity or

unequal variances) and a role for the analyses illustrated here.

Figures 10 and 11 about here

The response estimation and inference are shown in Figure 11.  Again we see the

characteristic 'shrinkage' when comparing the ML to the conditional estimates.  It can

be seen that all subjects, apart from the first and third, had over a 95% chance of

expressing an early differential of 0.1% or more.  The late differential response was

much less consistent, although one subject expressed a difference with about 84%

confidence.

C Summary

The examples presented above allow us to reprise a number of important points made

in the previous section (see also Friston et al 2002a). In conclusion the main points

are:
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• There are many instances when an iterative parameter re-estimation scheme is

required (e.g. dealing with serial correlations or missing data).  These schemes are

generally variants of EM.

• Even before considering the central role of covariance component estimation in

hierarchical or empirical Bayes models it is an important aspect of model estimation

in its own right, particularly in estimating non-sphericity among observation errors.

Parameter estimates can either be obtained directly from an EM algorithm, in which

case they correspond to the ML or Gauss-Markov estimates, or the hyperparameters

can be used to determine the error correlations which re-enter a generalised least

square scheme, as a non-sphericity correction.

• Hierarchical models enable a collective improvement in response estimates by using

conditional, as opposed to maximum-likelihood, estimators.  This improvement

ensues from the constraints derived from higher levels that enter as priors at lower

levels.

In the next section we revisit two-level models but consider hierarchical observations

over voxels as opposed to subjects.

IV POSTERIOR PROBABILITY MAPPING AND PPMS

A Introduction

This section describes the construction of posterior probability maps that enable

conditional or Bayesian inferences about regionally-specific effects in neuroimaging.

Posterior probability maps are images of the probability or confidence that an

activation exceeds some specified threshold, given the data.  Posterior probability

maps (PPMs) represent a complementary alternative to statistical parametric maps

(SPMs) that are used to make classical inferences.  However, a key problem in

Bayesian inference is the specification of appropriate priors.  This problem can be

finessed using empirical Bayes in which prior variances are estimated from the data,

under some simple assumptions about their form.  Empirical Bayes requires a
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hierarchical observation model, in which higher levels can be regarded as providing

prior constraints on lower levels.  In neuroimaging, observations of the same effect

over voxels provide a natural, two-level hierarchy that enables an empirical Bayesian

approach.  In this section we present the motivation and the operational details of a

simple empirical Bayesian method for computing posterior probability maps.  We

then compare Bayesian and classical inference through the equivalent PPMs and

SPMs testing for the same effect in the same data.

   To date, inference in neuroimaging has been restricted largely to classical inferences

based upon statistical parametric maps (SPMs).  The alternative approach is to use

Bayesian or conditional inference based upon the posterior distribution of the

activation given the data (Holmes & Ford 1993).  This necessitates the specification

of priors (i.e. the probability distribution of the activation).  Bayesian inference

requires the posterior distribution and therefore rests upon a posterior density analysis.

A useful way to summarise this posterior density is to compute the probability that the

activation exceeds some threshold.  This computation represents a Bayesian inference

about the effect, in relation to the specified threshold.  We now describe an approach

to computing posterior probability maps for activation effects, or more generally

treatment effects in imaging data sequences.  This approach represents, probably, the

most simple and computationally expedient way of constructing PPMs.

   As established in the previous sections, the motivation for using conditional or

Bayesian inference is that it has high face validity.  This is because the inference is

about an effect, or activation, being greater than some specified size that has some

meaning in relation to underlying neurophysiology.  This contrasts with classical

inference, in which the inference is about the effect being significantly different than

zero.  The problem for classical inference is that trivial departures from the null

hypothesis can be declared significant, with sufficient data or sensitivity.

Furthermore, from the point of view of neuroimaging, posterior inference is especially

useful because it eschews the multiple-comparison problem.  Posterior inference does

not have to contend with the multiple-comparison problem because there are no false-

positives.  The probability that activation has occurred, given the data, at any

particular voxel is the same, irrespective of whether one has analysed that voxel or the

entire brain.  For this reason, posterior inference using PPMs may represent a

relatively more powerful approach than classical inference in neuroimaging.  The

reason that there is no need to adjustment the p-values is that we assume independent
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prior distributions for the activations over voxels.  In this simple Bayesian model the

Bayesian perspective is similar to that of the frequentist who makes inferences on a

per-comparison basis (see Berry and Hochberg 1999 for a detailed discussion).

1 Priors and Bayesian inference

PPMs require the posterior distribution or conditional distribution of the activation (a

contrast of conditional parameter estimates) given the data.  This posterior density can

be computed, under Gaussian assumptions, using Bayes rules.  Bayes rule requires the

specification of a likelihood function and the prior density of the model’s parameters.

The models used to form PPMs, and the likelihood functions, are exactly the same as

in classical SPM analyses.  The only extra bit of information that is required is the

prior probability distribution of the parameters of the general linear model employed.

Although it would be possible to specify these in terms of their means and variances

using independent data, or some plausible physiological constraints, there is an

alternative to this fully Bayesian approach.  The alternative is empirical Bayes in

which the variances of the prior distributions are estimated directly from the data.

Empirical Bayes requires a hierarchical observation model where the parameters and

hyper-parameters at any particular level can be treated as priors on the level below.

There are numerous examples of hierarchical observation models.  For example, the

distinction between fixed- and mixed-effects analyses of multi-subject studies relies

upon a two-level hierarchical model.  However, in neuroimaging there is a natural

hierarchical observation model that is common to all brain mapping experiments.

This is the hierarchy induced by looking for the same effects at every voxel within the

brain (or grey matter).  The first level of the hierarchy corresponds to the

experimental effects at any particular voxel and the second level of the hierarchy

comprises the effects over voxels.  Put simply, the variation in a particular contrast,

over voxels, can be used as the prior variance of that contrast at any particular voxel.

.  The model used here is one in which the spatial relationship among voxels is

discounted.  The advantage of treating an image like a ‘gas’ of unconnected voxels is

that the estimation of between-voxel variance in activation can be finessed to a

considerable degree (see Eq. A.7 in the Appendix and following discussion).  This

renders the estimation of posterior densities tractable because the between-voxel

variance can then be used as a prior variance at each voxel.  We therefore focus on

this simple and special case and on the ‘pooling’ of voxels to give precise [ReML]
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estimates of the variance components required for Bayesian inference.  The main

focus of this section is the pooling procedure that affords a computational saving

necessary to produce PPMs of the whole brain.  In what follows we describe how this

approach is implemented and provide some examples of its application.

B Theory

1 Conditional estimators and the posterior density

In this subsection we describe how the posterior distribution of the parameters of any

general linear model can be estimated at each voxel from imaging data sequences.

Under Gaussian assumptions about the errors },0{~ εε CN  of a general linear model

with design matrix X the responses are modelled as

εθ += Xy 29

The conditional or posterior covariances and mean of the parameters θ are given by

(Friston et al 2002a).
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where θC is the prior covariance and assuming a prior expectation of zero.  Once

these moments are known, the posterior probability that a particular effect or contrast

specified by a contrast weight vector c exceeds some threshold γ  is easily computed
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( ).Φ is the cumulative density function of the unit normal distribution.  An image of

these posterior probabilities constitutes a PPM.
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2 Estimating the error covariance with ReML

Clearly, to compute the conditional moments in (30) one needs to know the error and

prior covariances εC  and θC .  In the next section we will describe how the prior

covariance θC  can be estimated.  For the moment, assume the prior covariance is

known.  In this case the error covariance can be estimated in terms of a

hyperparameter ελ  where VC εε λ= , and V is the correlation or non-sphericity matrix

of the errors (see below).  This hyperparameter is estimated simply using Restricted

Maximum Likelihood (ReML) as described in the appendix5.

Until convergence { E-Step
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In brief, P represents the residual forming matrix, pre-multiplied by the inverse of the

error covariance.  It is this projector matrix that ‘restricts’ the estimation of variance

components to the null space of the design matrix.  g and H are the first- and expected

second-order derivatives (i.e. gradients and expected negative curvature) of the ReML

objective function.  The M-Step can be regarded as a Fisher Scoring scheme that

maximises the ReML objective function.  Given that there is only one hyperparameter

to estimate this scheme converges very quickly (2 to 3 iterations for a tolerance of 10-

6).
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3 Estimating the prior density with empirical Bayes

Simply computing the conditional moments using (30) corresponds to a fully

Bayesian analysis at each and every voxel.  However, there is an outstanding problem

in the sense that we do not know the prior covariances of the parameters.  It is at this

point that we introduce the hierarchical perspective that enables an empirical

Bayesian approach.  If we now consider (29) as the first level of the two-level

hierarchy, where the second level corresponds to observations over voxels, we have a

hierarchical observation model for all voxels that treats some parameters as random

effects and others as fixed.  The random effects 1θ  are those that we are interested in

and the fixed effects 0θ  are nuisance variables or confounds (e.g. drifts or the

constant term) modelled by the regressors in 0X  where ],[ 01 XXX = and
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This model posits that there is a voxel-wide prior distribution for the parameters 1θ

with zero mean and unknown covariance �=
i

ii
T QE λεε }{ )2()2( .  The bases iQ

specify the prior covariance structure of the interesting effects and would usually

comprise a basis for each parameter whose ith leading diagonal element was one and

zero elsewhere.  This implies that if we selected a voxel at random from the search

volume, the ith parameter at that voxel would conform to a sample from a Gaussian

distribution of zero expectation and variance iλ .  The reason this distribution can be

assumed to have zero mean is that parameters of interest reflect region-specific effects

that, by definition sum to zero over the search volume6.  By concatenating the data

from all voxels and using Kronecker tensor products of the design matrices and

covariance bases, it is possible to create a very large hierarchical observation model

                                                                                                                                                                     
5 Note that the augmentation step shown in Figure 4 is unnecessary because the prior covariance enters
explicitly into the conditional covariance.
6 In the SPM2 implementation we allow for any mean of the parameters at the second level by
subtracting the mean over voxels from the data.  This mean represents an estimate of the prior
expectation projected onto the observation space by the design matrix.



48

that could be subject to EM (see for example Friston et al 2002b, Section 3.2).

However, given the enormous number of voxels in neuroimaging this is,

computationally, prohibitive.  A mathematically equivalent but more tractable

approach is to consider the estimation of the prior hyperparameters as a variance

component estimation problem after collapsing (33) to a single-level model
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This is simply a rearrangement of (33) to give a linear model with a compound error

covariance that includes the observation error covariance and m components for each

parameter in 1θ .  These components are induced by variation of the parameters over

voxels.
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This equation says that the covariance of the compound error can be linearly

decomposed into m components (usually one for each parameter) and the error

variance.  The form of the observed covariances, due to variation in the parameters, is

determined by the design matrix X and iQ  that model variance components in

parameter space.

Equation (35) affords a computationally expedient way to estimate the prior

covariances for the parameters that then enter into (30) to provide for voxel-specific

error hyperparameter estimates and conditional moments.  In brief, the

hyperparameters are estimated by pooling the data from all voxels to provide ReML

estimates of the variance components of ξC  according to (35).  The nice thing about

this pooling is that the hyperparameters of the parameter covariances are, of course,

the same for all voxels.  This is not the case for the error covariance hyperparameters

that may change from voxel to voxel.  The pooled estimate of ελ can be treated as an
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estimate of the average ελ  over voxels.  The hyperparameters are estimated by

iterating

Until convergence { E-Step
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It can be seen that this has exactly the form as (32) used for the analysis at each voxel.

The differences are (i) Tyy has been replaced by its sample mean over voxels nYY T

and (ii) there are no priors because the parameters controlling the expression of

confounding effects or nuisance variables are treated as fixed effects.  This is

equivalent to setting their prior variance to infinity (i.e. flat priors) so that 01
0

→−
θC .

Finally, (iii) the regressors in 1X  have disappeared from the design matrix because

these effects are embodied in the covariance components of the compound error.  As

above, the inclusion of confounds restricts the hyperparameter estimation to the null

space of 0X , hence restricted maximum likelihood (ReML).  In the absence of

confounds the hyperparameters would simply be maximum likelihood (ML) estimates

that minimise the difference between the estimated and observed covariance of the

data, averaged over voxels.  The ensuing ReML estimates are very high precision

estimators.  Their precision increases linearly with the number of voxels n and is in

fact equal to nH.  These hyperparameters now enter as priors into the voxel-specific

estimation along with the flat priors for the nuisance variables
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We now have a very precise estimate of the prior covariance that can be used to re-

visit each voxel to compute the conditional or posterior density using equations (30)

and (32).  Finally, the conditional moments enter Eq. (31) to give the posterior

probability for each voxel.  See Figure 12 for a schematic illustration of this scheme.

4 Summary

A natural hierarchy characterises all neuroimaging experiments, where the second

level is provided by variation over voxels.  Although it would be possible to form a

very large two-level observation model and estimate the conditional means and

covariances of the parameters at the first level this would involve dealing with

matrices of size (ns) x (ns) (number of voxels n times the number of scans s).  The

same conditional estimators can be computed using the two-step approach described

above.  First, the data covariance components induced by parameter variation over

voxels and observation error are computed using ReML estimates of the associated

covariance hyperparameters.  Second, each voxel is revisited to compute voxel-

specific error variance hyperparameters and the conditional moments of the

parameters, using the empirical priors from the first step (see Figure 12).  Both these

steps deal only with matrices of size n x n.  The voxel-specific estimation sacrifices

the simplicity of a single large iterative scheme for lots of quicker iterative schemes at

each voxel.  This exploits the fact that the same first-level design matrix is employed

for all voxels.

C Empirical demonstration

In this section we compare and contrast Bayesian and classical inference using PPMs

and SPMs based on real data.  The first data is the PET verbal fluency data that has

been used to illustrate methodological advances in SPM over the years.  In brief, these

data were required from five subjects each scanned 12 times during the performance

of one of two word generation tasks.  The subjects were asked to either repeat a heard
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letter or to respond with a word that began with the heard letter.  These tasks were

performed in alternation over the 12 scans and the order randomised over subjects.

The second data set comprised data from a study of attention to visual motion (Büchel

& Friston 1997).  The data used in this note came from the first subject studied.  This

subject was scanned at 2T to give a time series of 360 images comprising 10 block

epochs of different visual motion conditions.  These conditions included a fixation

condition, visual presentation of static dots, visual presentation of radially moving

dots under attention and no-attention conditions.  In the attention condition subjects

were asked to attend to changes in speed (which did not actually occur).  These data

were re-analysed using a conventional SPM procedure and using the empirical

Bayesian approach described in the previous section.  The ensuing SPMs and PPMs

are presented below for the PET and fMRI data respectively.  The contrast for the

PET data compared the word generation with the word shadowing condition and the

contrast for the fMRI data tested for the effect of visual motion above and beyond that

due to photic stimulation with stationary dots.

1 Inference for the PET data

The upper panel of Figure 13 shows the PPM for a deactivating effect of verbal

fluency.  There are two thresholds for the PPM.  The first and more important is γ in

equation 3.  This defines what we mean by “activation” and, by default, is set at one

deviation of the prior variance of the contrast, in this instance 2.2.  This corresponds

to a change in rCBF of 2.2 adimensional units (equivalent to ml/dl/min).  The second

threshold is more trivial and simply enables the use of maximum intensity projections.

This is the probability the voxel has to exceed in order to be displayed.  In the PPM

shown this was set at 95%.  This means that all voxels shown have greater than 95%

probability of being deactivated by 2.2 or more.  The PPM can be regarded as a way

of summarising ones confidence that an effect is present (c.f. the use of confidence

intervals where the lower bound on the interval is set at γ).  It should be noted that

posterior inference would normally require the reporting of the conditional probability

whether it exceeded some arbitrary threshold or not.  However, for the visual display

of posterior probability maps it is useful to remove voxels that fall below some

threshold.
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   Figure 14 provides a quantitative representation of Bayesian inference afforded by

PPMs.  In the upper panel the posterior expectation for the twelve condition-specific

effects are shown, encompassed by the 95% confidence intervals (bars) based on the

posterior covariance.  It can be seen that in the fifth condition (the third word

shadowing condition) one could be almost certain the activation is greater than zero.

The prior and posterior densities for this activation are shown in the lower panel.

These are the probability distributions before and after observing the data.  Note that

the posterior variance is always smaller than the prior variance, depending on how

noisy the data is.

   The corresponding SPM is shown in the lower panel (Figure 13b).  The SPM has

been thresholded at 0.05 adjusted for the search volume using a Gaussian field

correction.  There is a remarkable correspondence between the activation profiles

inferred by the PPM and the SPM.  The similarity between the PPM and the SPM for

these data should not be taken as characteristic.  The key difference between Bayesian

inference, based on the confidence we have about activation, and classical inference,

based on rejecting the null hypothesis, is that the latter depends on the search volume.

The classical approach, when applied in a mass univariate setting (i.e. over a family of

voxels) induces a multiple comparison problem that calls for a procedure to control

for family-wise false positives.  In the context of imaging data this procedure is a

Gaussian field adjustment to the threshold.  This adjustment depends on the search

volume.  The consequence is that if we increased the search volume the threshold

would rise and some of the voxels seen in the SPM would disappear.  Because the

PPM does not label any voxel as ‘activated’, there is no multiple comparison problem

and the 95% confidence threshold is the same irrespective of search volume.  This

difference between PPMs and SPMs is highlighted in the analysis of the fMRI data.

Here, the search volume is increased by reducing the smoothness of the data.  We do

this by switching from PET to fMRI.  Smoothness controls the ‘statistical’ search

volume, which is generally much greater for fMRI than for PET.

2 Inference for the fMRI data

The difference between the PPM and SPM for the fMRI analysis is immediately

apparent on inspection of Figures 15 and 16.  Here the default threshold for the PPM

was 0.7% (equivalent to percentage whole brain mean signal).  Again only voxels that

exceed 95% confidence are shown.  These are restricted to visual and extrastriate
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cortex involved in motion processing.  The critical thing to note here is that the

corresponding SPM identifies a smaller number of voxels than the PPM.  Indeed the

SPM appears to have missed a critical and bilaterally represented part of the V5

complex (circled cluster on the PPM in the lower panel of Figure 15).  The SPM is

more conservative because the correction for multiple comparisons in these data is

very severe, rendering classical inference relatively insensitive.  It is interesting to

note that dynamic motion in the visual field has such widespread (if small) effects at a

hemodynamic level.

3 PPMs and FDR

There is an interesting connection between false discovery rate (FDR) control and

thresholded PPMs.  Subjecting PPMs to a 95% threshold means that surviving voxels

have, at most, a 5% probability of not exceeding the default threshold γ.  In other

words, if we declared these voxels as “activated”, 5% of the voxels could be false

activations.  This is exactly the same as FDR in the sense that the FDR is the

proportion of voxels that are declared significant but are not.  It should be noted that

many voxels will have a posterior probability that is more than 95%.  Therefore, the

5% is an upper bound on the FDR.  This interpretation rests explicitly on thresholding

the PPM and labelling the excursion set as “activated”.  It is reiterated that this

declaration is unnecessary and only has any meaning in relation to classical inference.

However, thresholded PPMs do have this interesting connection to SPMs in which

false discovery rate has been controlled.

D Conclusion

In this section we looked at a simple way to construct posterior probability maps

using empirical Bayes.  Empirical Bayes can be used because of the natural hierarchy

in neuroimaging engendered by looking for the same thing over multiple voxels.  The

approach provides simple shrinkage priors based on between-voxel variation in

parameters controlling effects of interest.  A computationally expedient way of

computing these priors using ReML has been presented that pools over voxels.  This

pooling device offers an enormous computational saving through simplifying the

matrix algebra and enabling the construction of whole-brain PPMs.  The same device

has found an interesting application in the ReML estimation of prior variance
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components in space, by pooling over time bins, in the EEG source reconstruction

problem (Phillips et al 2003 - submitted).

   A key consideration, in the use of empirical Bayes in this setting is “which voxels to

include in the hierarchy?”  There is no right or wrong answer here (c.f. the search

volume in classical inference with SPMs).  The most important thing to bear in mind

is that the conditional estimators of an activation or effect are those which minimise

some cost function.  This cost function can be regarded as the ability to predict the

observed response with minimum error, on average, over the voxels included in the

hierarchical model.  In other words, the voxels over which the priors are computed

define the space one wants, on average, the best estimates for.  In this work we have

simply used potentially responsive voxels within the brain as defined by thresholding

the original images (to exclude extra-cranial regions).

   In the next section we turn to Bayesian inferences based on Full Bayes where the

priors come, not from empirical estimates based on hierarchical observations over

voxels, but from biophysical parameters mediating the response at a single voxel.

V BAYESIAN IDENTIFICATION OF DYNAMIC SYSTEMS

A Introduction

This section presents a method for estimating the conditional or posterior distribution

of the parameters of deterministic dynamical systems.  The procedure conforms to an

EM search for the maximum of the conditional or posterior density.  The inclusion of

priors in the estimation procedure ensures robust and rapid convergence and the

resulting conditional densities enable Bayesian inference about the model parameters.

The method is demonstrated using an input-state-output model of the hemodynamic

coupling between experimentally designed causes or factors in fMRI studies and the

ensuing BOLD response (see Chapter 11: Hemodynamic modelling).  This example

represents a generalisation of current fMRI analysis models that accommodates

nonlinearities and in which the parameters have an explicit physical interpretation.

   This section is about the identification of deterministic nonlinear dynamical models.

Deterministic here refers to models where the dynamics are completely determined by

the state of the system.  Random or stochastic effects enter only at the point that the
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system's outputs or responses are observed7.  We will focus on a particular model of

how changes in neuronal activity translate into hemodynamic responses.  By

considering a voxel as an input-state-output system one can model the effects of an

input (i.e. stimulus function) on some state variables (e.g. flow, volume,

deoxyhemoglobin content etc.) and the ensuing output (i.e. BOLD response).  The

scheme adopted here uses Bayesian estimation, where the aim is to identify the

posterior or conditional distribution of the parameters, given the data.  Knowing the

posterior distribution allows one to characterise an observed system in terms of the

parameters that maximise their posterior probability (i.e. those parameters that are

most likely given the data) or indeed, make inferences about whether the parameters

are bigger or smaller than some specified value.

   By demonstrating the approach using hemodynamic models, we can establish the

notion that biophysical and physiological models of evoked brain responses can be

used to make Bayesian inferences about experimentally induced regionally specific

activations.  Including parameters that couple experimentally changing stimulus or

task conditions to the system's states enables this inference.  The posterior or

conditional distribution of these parameters can then be used to make inferences about

the efficacy of experimental inputs in eliciting measured responses.  Because the

parameters we want to make an inference about have an explicit physical

interpretation, in the context of the hemodynamic model used, the face validity of the

ensuing inference is more grounded in physiology.  Furthermore, because the

'activation' is parameterised in terms of processes that have natural biological

constraints, these constraints can be used as priors in a Bayesian scheme.

   Previous sections have focussed on empirical Bayesian approaches in which the

priors were derived from the data being analysed.  In this section we use a fully

Bayesian approach, where the priors are assumed to be known and apply it to the

hemodynamic model described in Friston et al (2000) and Chapter 11

(Hemodynamic Modelling).  In Friston et al (2000) we presented a hemodynamic

model that embedded the Balloon/Windkessel (Buxton et al 1998, Mandeville et al

1999) model of flow to BOLD coupling to give a complete dynamical model of how

neuronally mediated signals cause a BOLD response.  In this work we restricted

ourselves to single input-single output (SISO) systems by considering only one input.
                                                          
7 There is another important class of models where stochastic processes enter at the level of the state
variables themselves (i.e. deterministic noise).  These are referred to as stochastic dynamical models.
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Here we demonstrate a general approach to nonlinear system identification using an

extension of these SISO models to multiple input-single output (MISO) systems.  This

allows for a response to be caused by multiple experimental effects and we can assign

a causal efficacy to any number of explanatory variables (i.e. stimulus functions).

Later (Chapter 22: Dynamic Causal Modelling) we will generalise to multiple

input-multiple output systems (MIMO) such that interactions among brain regions, at

a neuronal level can be addressed.

   An important aspect of the proposed model is that it can be reduced, exactly, to the

model used in classical SPM-like analyses, where one uses the stimulus functions,

convolved with a canonical hemodynamic response function, as explanatory variables

in a general linear model.  This classical analysis is a special case, that obtains when

the model parameters of interest (the efficacy of a stimulus) are treated as fixed

effects with flat priors and the remaining biophysical parameters enter as known

canonical values with infinitely small prior variance (i.e. high precision).  In this sense

the current approach can be viewed as a Bayesian generalisation of that normally

employed.  The advantages of this generalisation rest upon (i) the use of a nonlinear

observation model and (ii) Bayesian estimation of that model's parameters.  The

fundamental advantage, of a nonlinear MISO model over linear models, is that only

the parameters linking the various inputs to hemodynamics are input- or trial-specific.

The remaining parameters, pertaining to the hemodynamics per se, are the same for

each voxel.  In conventional analyses the hemodynamic response function, for each

input, is estimated in a linearly separable fashion (usually in terms of a small set of

temporal basis functions) despite the fact that the form of the impulse response

function to each input is likely to be the same.  In other words, a nonlinear model

properly accommodates the fact that many of the parameters shaping input-specific

hemodynamic responses are shared by all inputs.  For example, the components of a

compound trial (e.g. cue and target stimuli) might not interact at a neuronal level but

may show sub-additive effects in the measured response, due to nonlinear

hemodynamic saturation.  In contradistinction to conventional linear analyses the

analysis proposed in this section could, in principle, disambiguate between

interactions at the neuronal and hemodynamic levels.  The second advantage is that

Bayesian inferences about input-specific parameters can be framed in terms of

whether the efficacy for a particular cause exceeded some specified threshold or,

indeed the probability that it was less than some threshold (i.e. infer that a voxel did



57

not respond). The latter is precluded in classical inference.  These advantages should

be weighed against the difficulties of establishing a valid model and the

computational expense of identification.

1 Overview

This section is divided into four parts.  In the first we reprise briefly the hemodynamic

model and motivate the four differential equations that it comprises.  We will touch

on the Volterra formulation of nonlinear systems to show the output can always be

represented as a nonlinear function of the input and the model parameters.  This

nonlinear function is used as the basis of the observation model that is subject to

Bayesian identification.  This identification require priors which, here, come from the

distribution, over voxels, of parameters estimated in Friston et al (2000).  The second

part describes these priors and how they were determined.  Having specified the form

of the nonlinear observation model and the prior densities on the model's parameters,

the third section describes the estimation of their posterior densities.  The ensuing

scheme can be regarded as a Gauss-Newton search for the maximum posterior

probability (as opposed to the maximum likelihood as in conventional applications)

that embeds the EM scheme in Appendix A.1.  This description concludes with a note

on integration, required to evaluate the local gradients of the objective function.  This,

effectively generalises the EM algorithm for linear systems so that is can be applied to

nonlinear models.

   Finally we demonstrate the approach using empirical data.  First, we revisit the

same data used to construct the priors using a single input.  We then apply the

technique to  the same study of visual attention used in the previous section, to make

inferences about the relative efficacy of multiple experimental effects in eliciting a

BOLD response.

B The Hemodynamic Model

The hemodynamic model considered here was presented in detail in Friston et al

(2000).  Although relatively simple it is predicated on a substantial amount of

previous careful theoretical work and empirical validation [e.g. Buxton et al (1998),

Mandeville et al 1999, Hoge et al 1999, Mayhew et al 1998].  The model is a SISO

system with a stimulus function as input (that is supposed to elicit a neuronally

mediated flow-inducing signal) and BOLD response as output.  The model has six
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parameters and four state variables each with its corresponding differential equation.

The differential or state equations express how each state variable changes over time

as a function of the others.  These state equations and the output nonlinearly (a static

nonlinear function of the state variables that gives the output) specify the form of the

model.  The parameters determine any specific realisation of the model.  In what

follows we review the state equations, the output nonlinearity, extension to a MISO

system and the Volterra representation.

1 The state equations

Assuming that the dynamical system linking synaptic activity and rCBF is linear

(Miller et al 2000) we start with

sfin =� 38

where inf  is inflow and s is some flow inducing signal.   The signal is assumed to

subsume many neurogenic and diffusive signal sub-components and is generated by

neuronal responses to the input (the stimulus function) u(t)

)1()( −−−= inf ftus κκε s s� 39

fκκε    , ands  are parameters that represent the efficacy with which input causes an

increase in signal, the rate-constant for signal decay or elimination and the rate-

constant for auto-regulatory feedback from blood flow.  The existence of this

feedback term can be inferred from; (i) post-stimulus undershoots in rCBF and (ii) the

well-characterised vasomotor signal in optical imaging (Mayhew et al 1998).  Inflow

determines the rate of change of volume through
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This says that normalised venous volume changes reflect the difference between

inflow inf  and outflow outf  from the venous compartment with a time constant
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(transit time)τ .  Outflow is a function of volume that models the balloon-like

capacity of the venous compartment to expel blood at a greater rate when distended

(Buxton et al 1998).  It can be modelled with a single parameter (Grubb et al 1974) α

based on the Windkessel model (Mandeville et al 1999).  The change in normalised

total deoxyhemoglobin voxel content q�  reflects the delivery of deoxyhemoglobin into

the venous compartment minus that expelled (outflow times concentration)
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where ( )0, EfE in  is the fraction of oxygen extracted from inflowing blood.  This is

assumed to depend on oxygen delivery and is consequently flow-dependent.  This

concludes the state equations, where there are six unknown parameters namely

efficacy ε , signal decay sκ , auto-regulation fκ , transit time τ , Grubb's exponent α

and resting net oxygen extraction by the capillary bed 0E .

2 The Output nonlinearity

The BOLD signal ),,()( 0Eqvty λ=  is taken to be a static nonlinear function of

volume (v), and deoxyhemoglobin content (q)
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where V0 is resting blood volume fraction.  This signal comprises a volume-weighted

sum of extra- and intra-vascular signals that are functions of volume and

deoxyhemoglobin content.  A critical term in (42) is the concentration term

)/1(2 vqk − , which accounts for most of the nonlinear behaviour of the hemodynamic

model.. The architecture of this model is summarised in Figure 17.
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3 Extension to a MISO

The extension to a multiple input system is trivial and involves extending Eq(39) to

cover n  inputs

)1()()( 11 −−−++= infnn ftutus κκεε s s�� 43

The model now has 5 + n parameters; five biophysical parameters 0s   ,,, and Ef ατκκ

and n efficacies nεε � ,1 .  Although all these parameters have to estimated we are

only interested in making inferences about the efficacies.  Note that the biophysical

parameters are the same for all inputs.

4 The Volterra formulation

In our hemodynamic model the state variables are { } { }T
in

T qvfsxxX ,,,,, 41 == � and

the parameters are { } { }T
nfs

T
n E εεατκκθθθ ,,,,,,,, 1051 �� == + .  The state

equations and output nonlinearity specify a multiple input-single output (MISO)

model
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This is the state-space representation.  The alternative Volterra formulation represents

the output y(t) as a nonlinear convolution of the input u(t), critically without reference

to the state variables X(t) (see Bendat 1990).  This series can be considered a

nonlinear convolution that obtains from a functional Taylor expansion of y(t) about

X(0) and u(t) = 0.  For a single input this can be expressed as
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where κi is the ith generalised convolution kernel (Fliess et al 1983).  (45) now

expresses the output as a function of the input and the parameters whose posterior

distribution we require.  The Volterra kernels are a time-invariant characterisation of

the input-output behaviour of the system and can be thought of as generalised high

order convolution kernels that are applied to a stimulus function to emulate the

observed BOLD response.  Integrating (45) and applying the output nonlinearity to

the state variables is the same as convolving the inputs with the kernels.  Both give

the system’s response in terms of the output.  In what follows, the response is

evaluated by integrating (45).  This means the kernels are not required.  However, the

Volterra formulation is introduced for several reasons.  First, it demonstrates that the

output is a nonlinear function of the inputs ),()( uhty θ= .  This is critical for the

generality of the estimation scheme below.  Secondly, it provides an important

connection with conventional analyses using the general linear model (see below).

Finally, we use the kernels to characterise evoked responses.

C The Priors

Bayesian estimation requires informative priors on the parameters.  Under Gaussian

assumptions these prior densities can be specified in terms of their expectation and

covariance.  These moments are taken here to be the sample mean and covariance,

over voxels, of the parameter estimates reported in Friston et al (2000).  Normally

priors play a critical role in inference; indeed the traditional criticism levelled at

Bayesian inference reduces to reservations about the validity of the priors employed.

However, in the application considered here, this criticism can be discounted.  This is

because the priors, on those parameters about which inferences are made, are

relatively flat.  Only the five biophysical parameters have informative priors.

   In Friston et al (2000) the parameters were identified as those that minimised the

sum of squared differences between the Volterra kernels implied by the parameters
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and those derived directly from the data. This derivation used ordinary least square

estimators, exploiting the fact that Volterra formulation is linear in the unknowns,

namely the kernel coefficients.  The kernels can be thought of as a re-parameterisation

of the model that does not refer to the underlying state representation.  In other words,

for every set of parameters there is a corresponding set of kernels (see Friston et al

2000 for the derivation of the kernels as a function of the parameters).  The data and

Volterra kernel estimation are described in detail in Friston et al (1998).  In brief, we

obtained fMRI time-series from a single subject at 2 Tesla using a Magnetom

VISION (Siemens, Erlangen) whole body MRI system, equipped with a head volume

coil. Multi-slice T2*-weighted fMRI images were obtained with a gradient echo-

planar sequence using an axial slice orientation (TE = 40ms, TR = 1.7 seconds,

64x64x16 voxels).  After discarding initial scans (to allow for magnetic saturation

effects) each time-series comprised 1200 volume images with 3mm isotropic voxels.

The subject listened to monosyllabic or bi-syllabic concrete nouns (i.e. 'dog', 'radio',

'mountain', 'gate') presented at 5 different rates (10 15 30 60 and 90 words per minute)

for epochs of 34 seconds, intercalated with periods of rest.  The presentation rates

were repeated according to a Latin Square design.

   The distribution of the five biophysical parameters, over 128 voxels, was computed

to give our prior expectation θη and covariance θC . Signal decay sκ  had a mean of

about 0.65 per sec. giving a half-life ≈= st κ2ln2/1 1sec.  Mean feedback rate fκ

was about 0.4 per sec.  Mean Transit time τ  was 0.98 seconds.  Under steady state

conditions Grubb's parameter α is about 0.38.  The mean over voxels was 0.326.

Mean resting oxygen extraction 0E  was about 34% and the range observed

conformed exactly with known values for resting oxygen extraction fraction (between

20% and 55%).  Figure 18 shows the covariances among the biophysical parameters

along with the correlation matrix (left-hand panel).  The correlations suggest a high

correlation between transit time and the rate constants for signal elimination and auto-

regulation.

   The priors for the efficacies were taken to be relatively flat with an expectation of

zero and a variance of 16 per sec.  The efficacies were assumed to be independent of

the biophysical parameters with zero covariance.  A variance of 16, or standard

deviation of 4, corresponds to time constants in the range of 250ms.  In other words,

inputs can elicit flow-inducing signal over wide range of time constants from
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infinitely slowly to very fast (250ms) with about the same probability.  A 'strong'

activation usually has an efficacy in the range of 0.5 to 0.6 per sec.  Notice that from a

dynamical perspective ‘activation’ depends upon the speed of the response not the

percentage change.  Equipped with these priors we can now pursue a fully Bayesian

approach to estimating the parameters using new data sets and multiple input models:

D  System identification

This subsection describes Bayesian inference procedures for nonlinear observation

models, with additive noise, of the form

euhy += ),(θ 46

under Gaussian assumptions about the parameters θ and errors },0{~ εCNe .  These

models can be adopted for any analytic dynamical system due to the existence of the

equivalent Volterra series expansion above.  Assuming the posterior density of the

parameters is approximately Gaussian the problem reduces to finding its first two

moments, the conditional mean y|θη  and covariance yC |θ .

   The observation model can be made linear by expanding (46) about a working

estimate yθη of the conditional mean.
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such that εηθη θθ +−≈− )()( yy Jhy .  This linear model can now be placed in the

EM scheme described in Appendix A.1 to give

Until convergence {

E-step
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M-Step

λλ
λλ

λ

λ

εθεε

∂
∂

∂
∂−←

−=
∂
∂

+−=
∂
∂

−=

−

−−−

FF

PQPQtrF

yPQPyPQtrF
CJCJCCP

ji
ij

i
TT

i
i

T
y

1

2

2

2
1

2

2

2
1

2
1

1
|

11

}{

}{

)

This EM scheme is effectively a Gauss-Newton search for the posterior mode or MAP

estimate of the parameters.  The relationship between the E-step and a conventional

Gauss-Newton ascent can be seen easily in terms of the derivatives of their respective

objective functions.  For conventional Gauss-Newton this function is the log

likelihood
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This is a conventional Gauss-Newton scheme.  By simply augmenting the log

likelihood with the log prior we get the log posterior
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which is identical to the expression for the conditional expectation in the E-Step.

   In summary, the only difference between the E-step and a conventional Gauss-

Newton search is that priors are included in the objective log probability function

converting it from a log likelihood into a log posterior.  The use of an EM algorithm

rests upon the need to find not only the conditional mean but also the hyperparameters

of unknown variance components.  The E-step finds (i) the current MAP estimate that

provides the next expansion point for the Gauss-Newton search and (ii) the

conditional covariance required by the M-Step.  The M-step then updates the ReML

estimates of the covariance hyperparameters that are required to compute the

conditional moments in the E-step.  Technically (48) is a generalised EM (GEM)

because the M-step increases the log likelihood of the hyperparameter estimates, as

opposed to maximising it.

1 Relationship to established procedures

The procedure presented above represents a fairly obvious extension to conventional

Gauss-Newton searches for the parameters of nonlinear observation models.  The

extension has two components: First, maximisation of the posterior density that

embodies priors, as opposed to the likelihood.  This allows for the incorporation of

prior information into the solution and ensures uniqueness and convergence.  Second

the estimation of unknown covariance components.  This is important because it

accommodates non-sphericity in the error terms.  The overall approach engenders a

relatively simple way of obtaining Bayes estimators for nonlinear systems with

unknown additive observation error.  Technically, the algorithm represents a posterior

mode estimation for nonlinear observation models using EM.  It can be regarded as

approximating the posterior density of the parameters by replacing the conditional

mean with the mode and the conditional precision with the curvature (at the current
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expansion point).  Covariance hyperparameters are then estimated, which maximise

the expectation of the log likelihood of the data over this approximate posterior

density.

   Posterior mode estimation is an alternative to full posterior density analysis, which

avoids numerical integration (Fahrmeir and Tutz 1994, p58) and has been discussed

extensively in the context of generalised linear models (e.g. Leonard 1972, Santner

and Duffy 1989).  The departure from Gaussian assumptions in generalised linear

models comes from non-Gaussian likelihoods, as opposed to nonlinearities in the

observation model considered here, but the issues are similar.    Posterior mode

estimation usually assumes the error covariances and priors are known.  If the priors

are unknown constants then empirical Bayes can be employed to estimate the required

hyperparameters.

   It is important not to confuse this application of EM with Kalman filtering.

Although Kalman filtering can be formulated in terms of EM and, indeed, posterior

mode estimation, Kalman filtering is used with completely different observation

models - state-space models.  State space or dynamic models comprise a transition

equation and an observation equation (c.f. the state equation and output nonlinearity

above) and cover systems in which the underlying state is hidden and is treated as a

stochastic variable.  This is not the sort of model considered here, in which the inputs

(experimental design) and the ensuing states are known.  This means that the

conditional densities can be computed for the entire time-series simultaneously

(Kalman filtering updates the conditional density recursively, by stepping through the

time-series).  If we treated the inputs as unknown and random then the state equation

could be re-written as a stochastic differential equation (SDE) and a transition

equation derived from it, using local linearity assumptions.  This would form the basis

of a state-space model.  This approach may be useful for accommodating

deterministic noise in the hemodynamic model but, in this treatment, we consider the

inputs to be fixed.  This means that the only random effects enter at the level of the

observation or output nonlinearity.  In other words, we are assuming that the

measurement error in fMRI is the principal source of randomness in our

measurements and that hemodynamic responses per se are determined by known

inputs.  This is the same assumption used in conventional analyses of fMRI data.

2 A note on Integration
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To iterate Eq (48) the local gradients θ∂∂= hJ  have to be evaluated.  This involves

evaluating ),( uh θ  around the current expansion point with the generalised

convolution of the inputs for the current conditional parameter estimates according to

(45) or, equivalently, the integration of (44).  The latter can be accomplished

efficiently by capitalising on the fact that stimulus functions are usually sparse.  In

other words inputs arrive as infrequent events (e.g. event-related paradigms) or

changes in input occur sporadically (e.g. boxcar designs).  We can use this to evaluate

),()( uhty yθη= at the times the data were sampled using a bilinear approximation to

(44).  The Taylor expansion of )(tX� about TXX ]1,1,1,0[)0( 0 ==
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This bilinear approximation is important because the Volterra kernels of bilinear

systems have closed-form expressions.  This means that the kernels can be derived

analytically, and quickly, to provide a characterisation of the impulse response

properties of the system.  The integration of (51) is predicated on its solution over

periods kkk ttt −=∆ +1  within which the inputs are constant.
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This quasi-analytical integration scheme can be an order of magnitude quicker than

straightforward numerical integration, depending on the sparsity of inputs.

E Relation to conventional fMRI analyses

Note that if we treated the five biophysical parameters as known canonical values and

discounted all but the first order terms in the Volterra expansion (45) the following

linear model would result
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where * denotes convolution and the second expression is a first order Taylor

expansion around the expected values of the parameters8.  This is exactly the same as

the general linear model adopted in conventional analysis of fMRI time series, if we

elect to use just one (canonical) hemodynamic response function HRF to convolve our

stimulus functions with.  In this context the HRF plays the role of iεκ ∂∂ 1  in (53).

This partial derivative is shown in Figure 19 (upper panel) using the prior

expectations of the parameters and conforms closely to the sort of HRF used in

practice.  Now, by treating the efficacies as fixed effects (i.e. with flat priors) the

MAP and ML estimators reduce to the same thing and the conditional expectation

reduces to the Gauss-Markov estimator

( ) yCJJCJ TT
ML

111 −−−= εεη
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where J is the design matrix.  This is precisely the estimator used in conventional

analyses when whitening strategies are employed.

  Consider now the second order Taylor approximation to (53) that obtains when we

do not know the exact values of the biophysical parameters and they are treated as

unknown
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This expression9 is precisely the general linear model proposed in Friston et al (1998)

and implemented in our software.  In this instance the explanatory variables comprise

the stimulus functions, each convolved with a small temporal basis set corresponding

to the canonical iεκ ∂∂ 1 and its partial derivatives with respect to the biophysical

parameters.  Examples of these second order partial derivatives are provided in the

lower panel of Figure 19.  The unknowns in this general linear model are the

efficacies iε  and the interaction between the efficacies and the biophysical parameters

jiθε .  Of course, the problem with this linear approximation is that generalised least

squares estimates of the unknown coefficients T
211111 ]   ,,,,,,,[ ��� θεθεθεεεβ nn=

are not constrained to factorise into stimulus-specific efficacies iε  and biophysical

parameters jθ  that are the same for all inputs.  Only a nonlinear estimation procedure

can do this.

   In the usual case of using a temporal basis set (e.g. a canonical form and various

derivatives) one obtains a ML or generalised least squares estimate of [functions of]

                                                                                                                                                                     
8 Note that in this first order Taylor approximation 01 =κ  when expanding around the prior

expectations of the efficacies = 0.  Furthermore, all first order partial derivatives 01 =∂∂ iθκ  unless
they are with respect to an efficacy.
9 Note that in this second order Taylor approximation all the second order partial derivatives

01
2 =∂∂∂ ji θθκ  unless they are with respect to an efficacy and one of the biophysical parameters.
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the parameters in some subspace defined by the basis set.  Operationally this is like

specifying priors but of a very particular form.  This form can be thought of as

uniform priors over the support of the basis set and zero elsewhere.  In this sense basis

functions implement hard constraints that may not be very realistic but provide for

efficient estimation.  The soft constraints implied by the Gaussian priors in the EM

approach are more plausible but are computationally more expensive to implement.

1 Summary

This subsection has described a nonlinear EM algorithm that can be viewed as a

Gauss-Newton search for the conditional distribution of the parameters of

deterministic dynamical system, with additive Gaussian error. It was shown that

classical approaches to fMRI data analysis are special cases that ensue when

considering only first order kernels and adopting flat or uninformative priors.  Put

another way, the scheme can be regarded as a generalisation of existing procedures

that is extended in two important ways.  First, the model encompasses nonlinearities

and second; it moves the estimation from a classical into a Bayesian frame.

G An empirical illustration

1 Single input example

In this, the first of the two examples, we revisit the original data set on which the

priors were based.  This constitutes a single-input study where the input corresponds

to the aural presentation of single words, at different rates, over epochs.  The data

were subject to a conventional event-related analysis where the stimulus function

comprised trains of spikes indexing the presentation of each word.  The stimulus

function was convolved with a canonical HRF and its temporal derivative.  The data

were high pass filtered by removing low frequency components modelled by a

discrete cosine set.  The resulting SPM{T}, testing for activations due to words, is

shown in Figure 20 (left hand panel) thresholded at p = 0.05 (corrected).

   A single region in the left superior temporal gyrus was selected for analysis.  The

input comprised the same stimulus function used in the conventional analysis and the

output was the first eigenvariate of high-pass filtered time-series, of all voxels, within

a 4mm sphere, centred on the most significant voxel in the SPM{T} (marked by an

arrow in Figure 20).  The error covariance basis set Q comprised two bases; an
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identity matrix modelling white or an i.i.d. component and a second with

exponentially decaying off-diagonal elements modelling an AR(1) component (see

Friston et al 2002b and equation 23). This models serial correlations among the

errors.  The results of the estimation procedure are shown in the right hand panel in

terms of (i) the conditional distribution of the parameters and (ii) the conditional

expectation of the first and second order kernels.  The kernels are a function of the

parameters and their derivation using a bilinear approximation is described in Friston

et al (2000).  The upper right panel shows the first order kernels for the state variables

(signal, inflow, deoxyhemoglobin content and volume).  These can be regarded as

impulse response functions detailing the response to a transient input.  The first and

second order output kernels for the BOLD response are shown in the lower right

panels.  They concur with those derived empirically in Friston et al (2000).  Note the

characteristic undershoot in the first order kernel and the pronounced negativity in the

upper left of the second order kernel, flanked by two off-diagonal positivities at

around 8 seconds.  These lend the hemodynamics a degree of refractoriness when

presenting paired stimuli less than a few seconds apart and a super-additive response

with about 8 seconds separation.  The left-hand panels show the conditional or

posterior distributions.  The density for the efficacy is presented in the upper panel

and those for the five biophysical parameters are shown in the lower panel using the

same format.  The shading corresponds to the probability density and the bars to 90%

confidence intervals.  The values of the biophysical parameters are all within a very

acceptable range.  In this example the signal elimination and decay appears to be

slower than normally encountered, with the rate constants being significantly larger

than their prior expectations.  Grubb's exponent here is closer to the steady sate value

of 0.38 than the prior expectation of 0.32.  Of greater interest is the efficacy.  It can be

seen that the efficacy lies between 0.4 and 0.6 and is clearly greater than 0.  This

would be expected given we chose the most significant voxel from the conventional

analysis.  Notice there is no null hypothesis here and we do not even need a p value to

make the inference that words evoke a response in this region.  An important facility,

with inferences based on the conditional distribution and precluded in classical

analyses, is that one can infer a cause did not elicit a response.  This is demonstrated

in the second example.

2 Multiple input example
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In this example we turn to a data set used in previous sections, in which there are

three experimental causes or inputs.  This was a study of attention to visual motion.

Subjects were studied with fMRI under identical stimulus conditions (visual motion

subtended by radially moving dots) whilst manipulating the attentional component of

the task (detection of velocity changes).  The data were acquired from normal subjects

at 2 Tesla using a Magnetom VISION (Siemens, Erlangen) whole body MRI system,

equipped with a head volume coil.  Here we analyse data from the first subject.

Contiguous multi-slice T2*-weighted fMRI images were obtained with a gradient

echo-planar sequence (TE = 40ms, TR = 3.22 seconds, matrix size = 64x64x32, voxel

size 3x3x3mm).  Each subject had 4 consecutive 100-scan sessions comprising a

series of 10-scan blocks under 5 different conditions D F A F N F A F N S.  The first

condition (D) was a dummy condition to allow for magnetic saturation effects.  F

(Fixation) corresponds to a low-level baseline where the subjects viewed a fixation

point at the centre of a screen.  In condition A (Attention) subjects viewed 250 dots

moving radially from the centre at 4.7 degrees per second and were asked to detect

changes in radial velocity.  In condition N (No attention) the subjects were asked

simply to view the moving dots.  In condition S (Stationary) subjects viewed

stationary dots.  The order of A and N was swapped for the last two sessions.  In all

conditions subjects fixated the centre of the screen.  In a pre-scanning session the

subjects were given 5 trials with 5 speed changes (reducing to 1%).  During scanning

there were no speed changes. No overt response was required in any condition.

   This design can be reformulated in terms of three potential causes, photic

stimulation, visual motion and directed attention.  The F epochs have no associated

cause and represent a baseline.  The S epochs have just photic stimulation.  The N

epochs have both photic stimulation and motion whereas the A epochs encompass all

three causes.  We performed a conventional analysis using boxcar stimulus functions

encoding the presence or absence of each of the three causes during each epoch.

These functions were convolved with a canonical HRF and its temporal derivative to

give two repressors for each cause.  The corresponding design matrix is shown in the

left panel of Figure 21.  We selected a region that showed a significant attentional

effect in the lingual gyrus for Bayesian inference.  The stimulus functions modelling

the three inputs were the box functions used in the conventional analysis.  The output

corresponded to the first eigenvariate of high-pass filtered time-series from all voxels

in a 4mm sphere centred on 0, -66, -3mm (Talairach and Tournoux 1998).  The error
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covariance basis set was simply the identity matrix10.  The results are shown in the

right-hand panel of Figure 21 using the same format as Figure 20.  The critical thing

here is that there are three conditional densities, one for each of the input efficacies.

Attention has a clear activating effect with more than a 90% probability of being

greater than 0.25 per sec.  However, in this region neither photic stimulation per se or

motion in the visual field evokes any real response.  The efficacies of both are less

than 0.1 and are centred on 0.  This means that the time constants of the response to

visual stimulation would range from about ten seconds to never.  Consequently these

causes can be discounted from a dynamical perspective.  In short, this visually

unresponsive area responds substantially to attentional manipulation showing a true

functional selectivity.  This is a crucial statement because classical inference does not

allow one to infer any region does not respond and therefore precludes a formal

inference about the selectivity of regional responses.  The only reason one can say

“this region responds selectively to attention” is because Bayesian inference allows

one to say “it does not response to photic stimulation with random dots or motion”.

H Conclusion

In this section we have looked a method, that conforms to an EM implementation of

the Gauss-Newton method, for estimating the conditional or posterior distribution of

the parameters of a deterministic dynamical system.  The inclusion of priors in the

estimation procedure ensures robust and rapid convergence and the resulting

conditional densities enable Bayesian inference about the model's parameters.  We

have examined the coupling between experimentally designed causes or factors in

fMRI studies and the ensuing BOLD response.  This application represents a

generalisation of existing linear models to accommodate nonlinearities in the

transduction of experimental causes to measured output in fMRI.  Because the model

is predicated on biophysical processes the parameters have a physical interpretation.

Furthermore the approach extends classical inference about the likelihood of the data,

to more plausible inferences about the parameters of the model given the data.  This

inference provides confidence intervals based on the conditional density.
                                                          
10 We could motivate this by noting the TR is considerably longer in these data than in the previous
example.  However, in reality, serial correlations were ignored because the loss of sparsity in the
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Perhaps the most important extension of the scheme described in this section is to

MIMO systems where we deal with multiple regions or voxels at the same time.  The

fundamental importance of this extension is that one can incorporate interactions

among brain regions at the neuronal level.  This provides a promising framework for

the dynamic causal modelling of functional integration in the brain (see Chapter 22:

Dynamic causal modelling)

VI APPENDIX

A.1 The EM algorithm

This appendix describes EM using a statistical mechanics perspective adopted by the

machine learning community (Neal and Hinton 1998).  The second section of the

appendix connects this formulation with classical ReML methods. We show that, in

the context of linear observation models, the negative free energy is the same as the

objective function maximised in classical schemes like restricted maximum likelihood

(ReML).

   The EM algorithm is ubiquitous in the sense that many estimation procedures can be

formulated as such, from mixture models through to factor analysis.  Its objective is to

maximise the likelihood of the observed data )( λyp , conditional on some

hyperparameters, in the presence of unobserved variables or parameters θ .  This is

equivalent to maximising the log likelihood

θθθθλθθλ

θλθλ

dqqdypqqF

dypyp

��

�
−=

≥=

)(ln)(),(ln)(),(

),(ln)|(ln
A.1

where )(θq is any distribution over the model parameters (Neal and Hinton 1998).

Equation A.1 rests on Jensen's inequality that follows from the concavity of the log

function, which renders the log of an integral greater than the integral of the log.  F

corresponds to the negative free energy in statistical thermodynamics and comprises

two terms, related to the energy (first term) and entropy (second term).  The EM

                                                                                                                                                                     
associated inverse covariance matrices considerably increases computation time and we wanted to
repeat the analysis many times (see next subsection).
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algorithm alternates between maximising F, and implicitly the likelihood of the data,

with respect to the distribution )(θq  and the hyperparameters λ , holding the other

fixed

E-step: )),((max arg)( λθθ qFq
q

←

M-step:      )),((max arg λθλ
λ

qF←

This iterative alternation performs a co-ordinate ascent on F.  It is easy to show that

the maximum in the E-step obtains when ),()( λθθ ypq = , at which point (A.1)

becomes an equality.  The M-step finds the ML estimate of the hyperparameters, i.e.

the values of λ  that maximise )( λyp  by integrating ),( λθ yp  over the parameters,

using the current estimate of their conditional distribution.  In short the E-step

computes sufficient statistics (in our case the conditional mean and covariance)

relating to the distribution of the unobserved parameters to enable the M-step to

optimise the hyperparameters, in a maximum likelihood sense, using this distribution.

These new hyperparameters re-enter into the estimation of the conditional distribution

and so on until convergence.

The E-Step

In our hierarchical model, with Gaussian (i.e. parametric) assumptions, the E-step is

trivial and corresponds to taking the conditional mean and covariance according to

(15).  These are then used, with the data, to estimate the hyperparameters of the

covariance components in the M-step.

The M-Step

Given that we can reduce the problem to estimating the error covariances with the

augmented expressions for the conditional mean and covariance (15) we only need to

estimate the hyperparameters of the error covariances (which contain the prior

covariances).  Specifically, we require the hyperparameters that maximise the first

term in the expression for F above.  From (15)
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where the residuals yXyr θη−= .   We now simply take the derivatives of F with

respect to the hyperparameters and use some nonlinear search to find the maximum.

Note that the second [entropy] term does not depend on the hyperparameters. There is

an interesting intermediate derivative.  From (A.2)

T
y

T XCXrrC
C
F

θε
ε

2
1

2
1

2
1

1 −−=
∂
∂

− A.3

Setting this derivative to zero (at the maximum of F) requires

T
y

T XCXrrC θελ +=)( A.4

(c.f. Dempster et al (1981) p350).  Equation (A.4) says that the error covariance

estimate has two components: that due to differences between the data observed and

predicted by the conditional expectation of the parameters and another component due

to the variation of the parameters about their conditional mean.  More generally one

can adopt a Fischer scoring algorithm and update the hyperparameters λλλ ∆+←

using the first and expected second partial derivatives of the negative free energy.
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A.5

Fisher scoring corresponds to augmenting a simple Newton-Raphson scheme by

replacing the second derivatives or ‘curvature’ observed at the particular response y

with its expectation over realisations of the data.  The ensuing matrix H is referred to

as Fisher’s Information matrix11.  The computation of the gradient vector g can be

made computationally efficient by capitalising on any sparsity structure in the

constraints and by bracketing the multiplications appropriately.  A.5 is general in that

it accommodates almost any form for the covariance constraints through a Taylor

expansion of ελ}{C .  In many instances the bases can be constructed so that they do

not 'overlap' or interact through the design matrix i.e. 0=ji PQPQ  and estimates of

the hyperparameters can be based directly on the first partial derivatives in A.5 by

solving for 0=g .  For certain forms of ελ)(C the hyperparameters can be calculated

very simply12.  However, we work with the general solution above that encompasses

all these special cases.

                                                          
11 The derivation of the expression for the Information matrix uses standard linear algebra results and is
most easily seen by: (i) differentiating the form for g in A.7 by noting

PPQP
j

j

−=
∂
∂
λ

and (ii) taking the expectation, using }{}{}{ jijiqj
T

i PQPQtrPQPCPQtrPQyyPPQtr == ε

12 Note that if there is only one hyperparameter then 0=g  can be solved directly
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   Once the hyperparameters have been updated they enter into (19) to give the new

covariance estimate which, in turn enters (15) to give the new conditional estimates

which re-enter into (A.5) to give new updates until convergence.   A pseudo-code

illustration of the complete algorithm is presented in Figure 4.  Note that in this

implementation one is effectively performing a single Fisher scoring iteration for each

M-step.  One could postpone each E-step until this search converged but a single step

is sufficient to perform a co-ordinate ascent on F.  Technically this renders A.5 a

generalised EM or GEM algorithm.

   It should be noted that the search for the maximum of F does not have to employ a

Fisher scoring scheme or indeed the parameterisation of εC  used in (18). Other search

procedures such as quasi-Newton searches are commonly employed (Fahrmeir and

Tutz 1994).  Harville (1977) originally considered Newton-Raphson and scoring

algorithms, and Laird and Ware (1982) recommend several versions of the EM

algorithm. One limitation of the hyper-parameterisation described above is that does

not guarantee that εC  is positive definite.  This is because the hyperparameters can

take negative values with extreme degrees of non-sphericity.  The EM algorithm

employed by multistat (Worsley et al 2002), for variance component estimation

in multi-subject fMRI studies, uses a slower but more stable EM algorithm that

ensures positive definite covariance estimates.  The common aspect of all these

algorithms is that they (explicitly or implicitly) maximise F (or minimise free energy).

As shown next, this is equivalent to the method of restricted maximum likelihood.

A.2 Relationship to ReML

ReML or restricted maximum likelihood was introduced by Patterson and Thompson

in 1971 as a technique for estimating variance components which accounts for the

loss in degrees of freedom that result from estimating fixed effects (Harville 1977).  It

is commonly employed in standard statistical packages (e.g. SPSS).  Under the

present model assumptions ReML is formally identical to EM.  One can regard ReML

as embedding the E-step into the M-step to provide a single log-likelihood objective
                                                                                                                                                                     

where QC λε = and ( ) 111 −−−−= QXXQXXIR TT  is a residual forming matrix. This is the

expression used in classical schemes, given the correlation matrix Q, to estimate the error covariance
using the sum of squared de-correlated residuals.
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function: Substituting the ( ) 11 −−= XCXC T
y εθ from (15) into the expression for the

negative free energy (A.2) gives

.||ln||ln 1
2
11

2
1

2
1 constXCXrCrCF TT +−−−= −−

εεε A.6

which is the ReML objective function (see Harville 1977, p325).  Critically the

derivatives of A.6, with respect to the hyperparameters, are exactly the same as those

given in (A.5)13.  Operationally, (A.5) can be rearranged to give a ReML scheme by

removing any explicit reference to the conditional covariance.

11111
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A.7

These expressions are formally identical to those described in Section 5 of Harville

(1977, p 326).  Because (A.7) does not depend explicitly on the conditional density,

one could think of ReML as estimating the hyperparameters in a subspace that is

restricted in the sense that the estimates are conditionally independent of the

parameters. See Harville (1977) for a discussion of expressions, comparable to the

terms in A.7 that are easier to compute, for particular hyper-parameterisations of the

variance components.

   The particular form of A.7 has a very useful application when y is a multivariate

data matrix and the hyperparameters are the same for all columns (i.e. voxels).  Here,

irrespective of the voxel-specific parameters, the voxel-wide hyperparameters can be

obtained efficiently by iterating (A.7) using the sample covariance matrix Tyy .  This

is possible because the conditional parameter estimates are not required in the ReML

formulation.  This is used in the current version of the SPM software to estimate

voxel-wide non-sphericity.
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Figure legends

Figure 1

Schematic showing the form of the design matrices in a two-level model and how the

hierarchical form (upper panel) can be reduced to a non-hierarchical form (lower

panel).  The design matrices are shown in image format with an arbitrary colour scale.

The response variable, parameters and error terms are depicted as plots.  In this

example there are four subjects or units observed at the first level.  Each subject's

response is modelled with the same three effects, one of these being a constant term.

These design matrices are part of those used in Friston et al (2002b) to generate

simulated fMRI data and are based on the design matrices used in the subsequent

empirical event-related fMRI analyses.

Figure 2

As for Figure 1 but here showing how the non-hierarchical form is augmented so that

the parameter estimates (that include the error terms from all levels and the final level

parameters) now appear in the model's residuals.  A Gauss-Markov estimator will

minimise these residuals in inverse proportion to their prior variance.

Figure 3

Schematic illustrating the form of the covariance constraints.  These can be thought of

as 'design matrices' for the second-order behaviour of the response variable and form

a basis set for estimating the error covariance and implicitly the prior covariances.

The hyperparameters scale the contribution of each constraint to the error and prior

covariances.  These covariance constraints correspond to the model in Figure 1.  The

top row depicts the constraints on the errors.  For each subject there are two

constraints, one modelling white (i.e. independent) errors and another serial

correlation with an AR(1) form.  The second level constraints simply reflect the fact

that each of the three parameters estimated on the basis of repeated measures at the

first level has its own variance.  The estimated priors at each level are assembled with

the prior for the last level (here a flat prior) to completely specify the models priors

(lower panel).  Constraints of this form are used in Friston et al (2002b) during the

simulation of serially correlated fMRI data-sequences and covariance component

estimation using real data.
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Figure 4

Pseudo-code schematic showing the recursive structure of the EM algorithm

(described in the Appendix) as applied in the context of conditionally independent

hierarchical models.  See main text for a full explanation.  This formulation follows

Harville (1977).

Figure 5

Schematic showing the relationship among estimation schemes for linear observation

models under parametric assumptions.  This figure highlights the universal role of the

EM algorithm, showing that all conventional estimators can be cast in terms of, or

implemented with, the EM algorithm in Figure 4.

Figure 6

Top panel: True response (activation plus random low frequency components) and

that based on the OLS and ML estimators for a simulated fMRI experiment.  The

insert shows the similarity between the OLS and ML predictions.  Lower panel: True

(dashed) and estimated (solid) autocorrelation functions.  The sample autocorrelation

function of the residuals (dotted line) and the best fit in terms of the covariance

constraints (dot-dashed) are also shown.  The insert shows the true covariance

hyperparameters (black), those obtained just using the residuals (grey) and those

estimated by the EM algorithm (white). Note, in relation to the EM estimates, those

based directly on the residuals severely underestimate the actual correlations.  The

simulated data comprised 128 observations with an inter-scan interval of 2 seconds.

The activations were modelled with a box-car (duty cycle 64 seconds) convolved with

a canonical hemodynamic response function and scaled to a peak height of 2.  The

constant terms and low frequency components were simulated with a linear

combination of the first 16 components of a discrete cosine set, each scaled by a

random unit Gaussian variate.  Serially correlated noise was formed by filtering unit

Gaussian noise with a convolution kernel based on covariance hyperparameters of 1.0

[uncorrelated or white component] and 0.5 [AR(1) component].
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Figure 7

Estimates of serial correlations expressed as autocorrelation functions based on

empirical data.  Left panel: Estimates from 12 randomly selected voxels from a single

subject.  Right panel: Estimates from the same voxel over 12 different subjects.  The

voxel was in the cingulate gyrus.  The empirical data are described in Henson et al

(2000).  They comprised 300 volumes, acquired with EPI at two Tesla and a TR of

three seconds.  The experimental design was stochastic and event-related looking for

differential response evoked by new relative to old (studied prior to the scanning

session) words.  Either a new or old word was presented visually with a mean

stimulus onset asynchrony (SOA) of 4 seconds (SOA varied randomly between 2.5

and 5.5 seconds).  Subjects were required to make an old vs. new judgement for each

word.  The design matrix for these data comprised two regressors (early and late) for

each of the four trial types (old vs. new and correct vs. incorrect) and the first 16

components of a discrete cosine set (as in the simulations).

Figure 8

The results of an analysis of simulated event-related responses in a single voxel.

Parameter and hyperparameter estimates based on a simulated fMRI study are shown

in relation to the true values.  The simulated data comprised 128 scans for each of 12

subjects with a mean peak response over subjects of 0.5%.  The construction of these

data is described in the main text.  Stimulus presentation conformed to the

presentation of 'old' words in the empirical analysis described in the main text.  Serial

correlations were modelled as in the main text.  Upper left: first-level

hyperparameters.  The estimated subject-specific values (black) are shown alongside

the true values (white).  The first 12 correspond to the 'white' term or variance.  The

second 12 control the degree of autocorrelation and can be interpreted as the

covariance between one scan and the next.  Upper right: Hyperparameters for the

early and late components of the evoked response.  Lower left: The estimated subject-

specific parameters pertaining to the early and late response components are plotted

against their true values.  Lower right: The estimated and true parameters at the

second level representing the conditional mean of the distribution from which the

subject-specific effects are drawn.
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Figure 9

Response estimates and inferences about the estimates presented in Figure 8:  Upper

panel:  True (dotted) and ML (solid) estimates of event-related responses to a stimulus

over 12 subjects.  The units of activation are adimensional and correspond to percent

of whole brain mean.  The insert shows the corresponding subject-specific T values

for contrasts testing for early and late responses.  Lower panel: The equivalent

estimates based on the conditional means.  It can be seen that the conditional

estimates are much 'tighter' and reflect better the inter-subject variability in responses.

The insert shows the posterior probability that the activation was greater than 0.1%.

Because the responses were modelled with early and late components (basis functions

corresponding to canonical hemodynamic response functions, separated by 3 seconds)

separate posterior probabilities could be computed for each.  The simulated data

comprised only early responses as reflected in the posterior probabilities.

Figure 10

Estimation of differential event-related responses in real data.  The format of this

figure is identical to that of Figure 8.  The only differences are that these results are

based on real data where the response is due to the difference between studied or

familiar (old) words and novel (new) words.  In this example we used the first 128

scans from 12 subjects.  Clearly in this figure we cannot include true effects.

Figure 11

The format of this figure is identical to that of Figure 9.  The only differences are that

these results are based on real data were the response is due to the difference between

studied or familiar (old) words and novel (new) words.  The same regression of

conditional responses to the conditional mean is seen on comparing the ML and

conditional estimates.  In relation to the simulated data, there is more evidence for a

late component but no late activation could be inferred for any subject with any

degree of confidence.  The voxel from which these data were taken was in the

cingulate gyrus (BA 31) at –3, -33, 39mm.

Figure 12

Schematic summarising the two-step procedure for (1) ReML estimation of the prior

covariance based on the data covariance, pooled over voxels and (2) a voxel-by-voxel
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estimation of the posterior expectation and covariance of the parameters, required for

inference.  See the main text for a detailed explanation of the equations.

Figure 13

Bayesian and classical and inference for the PET study of word generation.  3a)  PPM

for a contrast reflecting the difference between word-shadowing and word-generation,

using an activation threshold of 2.2 and a confidence of 95%.  The design matrix and

contrast for this model are shown (right) in image format.  We have modelled each

scan as a specific effect that has been replicated over subjects. 3b) Classical SPM of

the t statistic for the same contrast.  This SPM has been thresholded at p=0.05,

corrected using a Gaussian field adjustment.

Figure 14

Illustrative results for a single voxel - the maximum in the left temporal region of the

PPM in the previous figure (-54, -4, -2mm).  Upper panel: These are the conditional

or posterior expectations and 95% confidence intervals for the activation effect

associated with each of the 12 conditions.  Note that the odd conditions (word

shadowing) are generally higher.  In condition 5 one would be more than 95% certain

the activation exceeded 2.2.  Lower panel: The prior and posterior densities for the

parameter estimate for condition 5.

Figure 15

PPM for the fMRI study of attention to visual motion.  The display format in the

lower panel uses an axial slice through extrastriate regions but the thresholds are the

same as employed in maximum intensity projections (upper panels).  The activation

threshold for the PPM was 0.7.  As can be imputed from the design matrix, the

statistical model of evoked responses comprised box-car regressors convolved with a

canonical hemodynamic response function.

Figure 16

As for Figure 15, but this time showing the corresponding SPM using a corrected

threshold at p = 0.05.
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Figure 17

Schematic illustrating the architecture of the hemodynamic model.  This is a fully

nonlinear single-input )(tu , single-output )(ty  state model with four state

variables qvfs in  and , , .  The form and motivation for the changes in each state

variable, as functions of the others, is described in the main text.

Figure 18

Prior covariances for the five biophysical parameters of the hemodynamic model in

Figure 17.  Left panel: Correlation matrix showing the correlations among the

parameters in image format (white = 1).  Right panel: Corresponding covariance

matrix in tabular format.  These priors represent the sample covariances of the

parameters estimated by minimising the difference between the Volterra kernels

implied by the parameters and those estimated, empirically using ordinary least

squares as described in Friston et al (2000).

Figure 19

Partial derivatives of the kernels with respect to parameters of the model evaluated at

their prior expectation.  Upper panel: First-order partial derivative with respect to

efficacy.  Lower panels: Second-order partial derivatives with respect to efficacy and

the biophysical parameters.  When expanding around the prior expectations of the

efficacies = 0 the remaining first- and second-order partial derivatives with respect to

the parameters are zero.

Figure 20

A SISO example: Left panel: Conventional SPM{T} testing for an activating effect of

word presentation.  The arrow shows the centre of the region (a sphere of 4mm

radius) whose response was entered into the Bayesian estimation procedure.  The

results for this region are shown in the right hand panel in terms of (i) the conditional

distribution of the parameters and (ii) the conditional expectation of the first- and

second-order kernels.  The upper right panel shows the first-order kernels for the state

variables (signal, inflow, deoxyhemoglobin content and volume).  The first- and

second-order output kernels for the BOLD response are shown in the lower right

panels.  The left-hand panels show the conditional or posterior distributions.  That for
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efficacy is presented in the upper panel and those for the five biophysical parameters

in the lower panel.  The shading corresponds to the probability density and the bars to

90% confidence intervals.

Figure 21

A MISO example using visual attention to motion.  The left panel shows the design

matrix used in the conventional analysis and the right panel shows the results of the

Bayesian analysis of a lingual extrastriate region.  This panel has the same format as

Figure 20.
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EM estimation with

giving Fully Bayesian estimation of conditional moments

Are priors known?

yes

no

Is the model
hierarchical ? yes

no

EM estimation with

giving a Parametric Empirical Bayes estimation of the conditional moments
that embodies estimates of the error and priors
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Design matrix
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SPM(T)

Height threshold T = 5.50

Extent threshold k = 0 voxels

Design matrix
5 10 15 20
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PPM

Height threshold P = 0.95, effect size  = 2.2

Extent threshold k = 0 voxels
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PPM

Height threshold P = 0.95, effect size 0.7%
Extent threshold k = 0 voxels

Design matrix
1 2 3 4
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z = 3mm
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SPM(T)

Height threshold T = 4.86
Extent threshold k = 0 voxels

Design matrix
1 2 3 4

100

200

300

contrast

z = 3mm
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fMRI study of
single word

processing at
different rates
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Extension to MISO

fMRI study of attention to
visual motion

Design matrix

photic  motion  attention

{ { {


