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I INTRODUCTION 
 

This section is about functional integration in the brain.  This chapter introduces the 

neurobiological background of functional integration, in terms of neuronal information 

processing in cortical hierarchies.  This serves to frame the sorts of question than can be 

addressed with analyses of functional and effective connectivity.  In fact, we take the 

empirical Bayesian theory described in the previous chapter as a possible basis for 

understanding integration among the levels of hierarchically organised cortical systems.  The 

next two chapters (Chapter 19 and 20) deal with the fundaments of functional and effective 

connectivity, that are revisited in the next two chapters.  Chapter 21 and 22 deal with two 

complementary perspectives on models of functional integration, namely the Volterra or 

generalised convolution formulation and the state-space representation used by Dynamic 

Causal Modelling.  In the final chapter we reconcile various approaches, looking more 

closely at the underlying mathematics. 

   Self-supervised models of how the brain represents and categorises the causes of its 

sensory input can be divided into those that minimise the mutual information (i.e. 

redundancy) among evoked responses and those that minimise the prediction error.  This 

chapter describes one such model and its implications for the functional anatomy of sensory 

cortical hierarchies in the brain.  We then consider how analyses of effective connectivity can 

be used to look for architectures that are sufficient for perceptual learning and synthesis. 

   Many models of representational learning require prior assumptions about the distribution 

of sensory causes.  However, as seen in the previous chapter, the notion of empirical Bayes, 

suggests that these assumptions are not necessary and that priors can be learned in a 

hierarchical context.  The main point made in this chapter is that backward connections, 

mediating internal or generative models of how sensory inputs are caused, are essential and 

that feedforward architectures, on their own, are not sufficient.  Moreover, nonlinearities in 

generative models require these connections to be modulatory so that estimated causes in 

higher cortical levels can interact to predict responses in lower levels.  This is important in 

relation to functional asymmetries in forward and backward connections that have been 

demonstrated empirically. 

   To ascertain whether backward influences are expressed functionally requires 

measurements of functional integration among brain systems.  This chapter summarises 

approaches to integration in terms of functional and effective connectivity and uses the 

theoretical considerations above to illustrate the sorts of questions that can be addressed.  



 3

Specifically, it will be shown that functional neuroimaging can be used to test for interactions 

between bottom-up and top-down inputs to an area.  

   In concert with the growing interest in contextual and extra-classical receptive field effects 

in electrophysiology (i.e. how the receptive fields of sensory neurons change according to the 

context a stimulus is presented in), a similar paradigm shift is emerging in imaging 

neuroscience.  Namely, the appreciation that functional specialisation exhibits similar extra-

classical phenomena; in which a cortical area may be specialised for one thing in one context 

but something else in another.  These extra-classical phenomena have implications for 

theoretical ideas about how the brain might work.  This chapter uses theoretical models of 

representational learning as a vehicle to illustrate how imaging can be used to address 

important questions about functional brain architectures. 

   We start by reviewing two fundamental principles of brain organisation, namely functional 

specialisation and functional integration and how they rest upon the anatomy and physiology 

of cortico-cortical connections in the brain.  The second section deals with the nature and 

learning of representations from a theoretical or computational perspective.  The key focus of 

this section is on the functional architectures implied by the model.  Generative models based 

on predictive coding rest on hierarchies of backward and lateral projections and, critically, 

confer a necessary role on backward connections. 

   Empirical evidence, from electrophysiological studies of animals and functional 

neuroimaging studies of human subjects, is presented in the third and fourth sections to 

illustrate the context-sensitive nature of functional specialisation and how its expression 

depends upon integration among remote cortical areas.  The third section looks at extra-

classical effects in electrophysiology, in terms of the predictions afforded by generative 

models of brain function.  The theme of context-sensitive evoked responses is generalised to 

a cortical level and human functional neuroimaging studies in the subsequent section.  The 

critical focus of this section is evidence for the interaction of bottom-up and top-down 

influences in determining regional brain responses.  These interactions can be considered 

signatures of backward connections.  The final section reviews some of the implications of 

the forging sections for lesion studies and neuropsychology.  Dynamic diaschisis is 

described, in which aberrant neuronal responses can be observed as a consequence of damage 

to distal brain areas providing enabling or modulatory afferents.  This section uses 

neuroimaging in neuropsychological patients and discusses the implications for constructs 

based on the lesion-deficit model. 

 



 4

 

 

II  FUNCTIONAL SPECIALISATION AND INTEGRATION 

 

A Background 

The brain appears to adhere to two fundamental principles of functional organisation, 

functional integration and functional specialisation, where the integration within and among 

specialised areas is mediated by effective connectivity.  The distinction relates to that 

between 'localisationism' and '[dis]connectionism' that dominated thinking about cortical 

function in the nineteenth century.  Since the early anatomic theories of Gall, the 

identification of a particular brain region with a specific function has become a central theme 

in neuroscience.  However functional localisation per se was not easy to demonstrate: For 

example, a meeting that took place on August 4th 1881 addressed the difficulties of 

attributing function to a cortical area, given the dependence of cerebral activity on underlying 

connections (Phillips et al 1984).  This meeting was entitled "Localisation of function in the 

cortex cerebri".  Goltz, although accepting the results of electrical stimulation in dog and 

monkey cortex, considered that the excitation method was inconclusive, in that the 

behaviours elicited might have originated in related pathways, or current could have spread 

to distant centres.  In short, the excitation method could not be used to infer functional 

localisation because localisationism discounted interactions, or functional integration among 

different brain areas.  It was proposed that lesion studies could supplement excitation 

experiments.  Ironically, it was observations on patients with brain lesions some years later 

(see Absher and Benson 1993) that led to the concept of 'disconnection syndromes' and the 

refutation of localisationism as a complete or sufficient explanation of cortical organisation.  

Functional localisation implies that a function can be localised in a cortical area, whereas 

specialisation suggests that a cortical area is specialised for some aspects of perceptual or 

motor processing, where this specialisation can be anatomically segregated within the cortex.  

The cortical infrastructure supporting a single function may then involve many specialised 

areas whose union is mediated by the functional integration among them.  Functional 

specialisation and integration are not exclusive, they are complementary.  Functional 

specialisation is only meaningful in the context of functional integration and vice versa.  

 

 

B Functional specialisation and segregation 
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The functional role, played by any component (e.g. cortical area, sub-area, neuronal 

population or neuron) of the brain, is defined largely by its connections.  Certain patterns of 

cortical projections are so common that they could amount to rules of cortical connectivity.  

"These rules revolve around one, apparently, overriding strategy that the cerebral cortex uses 

- that of functional segregation" (Zeki 1990).  Functional segregation demands that cells with 

common functional properties be grouped together.  This architectural constraint in turn 

necessitates both convergence and divergence of cortical connections.  Extrinsic connections, 

between cortical regions, are not continuous but occur in patches or clusters.  This patchiness 

has, in some instances, a clear relationship to functional segregation.  For example, the 

secondary visual area V2 has a distinctive cytochrome oxidase architecture, consisting of 

thick stripes, thin stripes and inter-stripes.  When recordings are made in V2, directionally 

selective (but not wavelength or colour selective) cells are found exclusively in the thick 

stripes.  Retrograde (i.e. backward) labelling of cells in V5 is limited to these thick stripes.  

All the available physiological evidence suggests that V5 is a functionally homogeneous area 

that is specialised for visual motion.  Evidence of this nature supports the notion that patchy 

connectivity is the anatomical infrastructure that underpins functional segregation and 

specialisation.  If it is the case that neurons in a given cortical area share a common 

responsiveness (by virtue of their extrinsic connectivity) to some sensorimotor or cognitive 

attribute, then this functional segregation is also an anatomical one.  Challenging a subject 

with the appropriate sensorimotor attribute or cognitive process should lead to activity 

changes in, and only in, the areas of interest.  This is the model upon which the search for 

regionally specific effects with functional neuroimaging is based. 

 

C The anatomy and physiology of cortico-cortical connections 

If specialisation rests upon connectivity then important organisational principles should be 

embodied in the neuroanatomy and physiology of extrinsic connections.  Extrinsic 

connections couple different cortical areas whereas intrinsic connections are confined to the 

cortical sheet.  There are certain features of cortico-cortical connections that provide strong 

clues about their functional role.  In brief, there appears to be a hierarchical organisation that 

rests upon the distinction between forward and backward connections.  The designation of a 

connection as forward or backward depends primarily on its cortical layers of origin and 

termination.  Some characteristics of cortico-cortical connections are presented below and are 

summarised in Table 1.  The list is not exhaustive, nor properly qualified, but serves to 
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introduce some important principles that have emerged from empirical studies of visual 

cortex. 

 

• Hierarchical organisation 

The organisation of the visual cortices can be considered as a hierarchy of cortical levels 

with reciprocal extrinsic cortico-cortical connections among the constituent cortical areas 

(Felleman and Van Essen 1991).  The notion of a hierarchy depends upon a distinction 

between reciprocal forward and backward extrinsic connections.   

 

• Reciprocal connections 

Although reciprocal, forward and backward connections show both a microstructural and 

functional asymmetry.  The terminations of both show laminar specificity.  Forwards 

connections (from a low to a high level) have sparse axonal bifurcations and are 

topographically organised; originating in supragranular layers and terminating largely in 

layer VI.  Backward connections, on the other hand, show abundant axonal bifurcation 

and a more diffuse topography.  Their origins are bilaminar/infragranular and they 

terminate predominantly in supragranular layers (Rockland and Pandya 1979, Salin and 

Bullier 1995).  Extrinsic connections show an orderly convergence and divergence of 

connections from one cortical level to the next.  At a macroscopic level, one point in a 

given cortical area will connect to a region 5 - 8mm in diameter in another.  An important 

distinction between forward and backward connections is that backward connections are 

more divergent.  For example, the divergence region of a point in V5 (i.e. the region 

receiving backward afferents from V5) may include thick and inter-stripes in V2 whereas 

its convergence region (i.e. the region providing forward afferents to V5) is limited to the 

thick stripes (Zeki and Shipp 1988).  Backward connections are more abundant then 

forward connections and transcend more levels.  For example the ratio of forward efferent 

connections to backward afferents in the lateral geniculate is about 1:10/20.  Another 

important distinction is that backward connections will traverse a number of hierarchical 

levels whereas forward connections are more restricted.  For example, there are backward 

connections from TE and TEO to V1 but no monosynaptic connections from V1 to TE or 

TEO (Salin and Bullier 1995). 

 

• Functionally asymmetric forward and backward connections 
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Functionally, reversible inactivation (e.g. Sandell and Schiller 1982, Girard and Bullier 

1988) and neuroimaging (e.g. Büchel and Friston 1997) studies suggest that forward 

connections are driving, always eliciting a response, whereas backward connections can 

also be modulatory.  In this context, modulatory means backward connections modulate 

responsiveness to other inputs.  The notion that forward connections are concerned with 

the promulgation and segregation of sensory information is consistent with; (i) their 

sparse axonal bifurcation, (ii) patchy axonal terminations, (iii) and topographic 

projections.  In contradistinction, backward connections are generally considered to have 

a role in mediating contextual effects and in the co-ordination of processing channels.  

This is consistent with; (i) their frequent bifurcation, (ii) diffuse axonal terminations (iii) 

and more divergent topography (Salin and Bullier 1995, Crick and Koch 1998).  Forward 

connections meditate their postsynaptic effects through fast AMPA (1.3-2.4ms decay) 

and GABAA (6ms decay) receptors.  Modulatory effects can be mediated by NMDA 

receptors.  NMDA receptors are voltage-sensitive, showing nonlinear and slow dynamics 

(~50ms decay).  They are found predominantly in supragranular layers where backward 

connections terminate (Salin and Bullier 1995).  These slow time-constants again point to 

a role in mediating contextual effects that are more enduring than phasic sensory-evoked 

responses. 

 

There are many mechanisms that are responsible for establishing connections in the brain.  
Connectivity results from interplay between genetic, epigenetic and activity- or experience-
dependent mechanisms.  In utero, epigenetic mechanisms predominate; such as the 
interaction between the topography of the developing cortical sheet, cell migration, gene 
expression and the mediating role of gene-gene interactions and gene products such as cell 
adhesion molecules (CAMs).  Following birth, connections are progressively refined and re-
modelled with a greater emphasis on activity- and use-dependent plasticity.  These changes 
endure into adulthood with ongoing reorganisation and experience-dependent plasticity that 
subserves behavioural adaptation and learning throughout life.  In brief, there are two basic 
determinants of connectivity.  (i) Structural plasticity, reflecting the interactions between the 
molecular biology of gene expression, cell migration and neurogenesis in the developing 
brain.  (ii) Synaptic plasticity: Activity-dependent modelling of the pattern and strength of 
synaptic connections.  This plasticity involves changes in the form, expression and function 
of synapses that endure throughout life.  Plasticity is an important functional attribute of 
connections in the brain and is thought to subserve perceptual and procedural learning and 
memory.  A key aspect of this plasticity is that it is generally associative. 
 



 8

• Associative plasticity 
Synaptic plasticity may be transient (e.g. short-term potentiation STP or depression STD) 
or enduring (e.g. long-term potentiation LTP or LTD) with many different time constants.  
In contrast to short-term plasticity, long-term changes rely on protein synthesis, synaptic 
remodelling and infrastructural changes in cell processes (e.g. terminal arbours or 
dendritic spines) that are mediated by calcium-dependent mechanisms.  An important 
aspect of NMDA receptors, in the induction of LTP, is that they confer associatively on 
changes in connection strength.  This is because their voltage-sensitivity only allows 
calcium ions to enter the cell when there is conjoint presynaptic release of glutamate and 
sufficient post-synaptic depolarisation (i.e. the temporal association of pre- and 
postsynaptic events).  Calcium entry renders the post-synaptic specialisation eligible for 
future potentiation by promoting the formation of synaptic 'tags' (e.g. Frey and Morris 
1998) and other calcium dependant intracellular mechanisms. 

 

 

In summary, the anatomy and physiology of cortico-cortical connections suggest that forward 

connections are driving and commit cells to a pre-specified response given the appropriate 

pattern of inputs.  Backward connections, on the other hand, are less topographic and are in a 

position to modulate the responses of lower areas to driving inputs from either higher or 

lower areas (see Table 1).  For example, in the visual cortex Angelucci et al (2002a) used a 

combination of anatomical and physiological recording methods to determine the spatial 

scale and retinotopic logic of intra-areal V1 horizontal connections and inter-areal feedback 

connections to V1.  "Contrary to common beliefs, these [monosynaptic horizontal] 

connections cannot fully account for the dimensions of the surround field [of macaque V1 

neurons].  The spatial scale of feedback circuits from extrastriate cortex to V1 is, instead, 

commensurate with the full spatial range of centre-surround interactions.  Thus these 

connections could represent an anatomical substrate for contextual modulation and global-to-

local integration of visual signals."  
   Brain connections are not static but are changing at the synaptic level all the time.  In many 

instances this plasticity is associative.  Backwards connections are abundant in the brain and 

are in a position to exert powerful effects on evoked responses, in lower levels, that define 

the specialisation of any area or neuronal population.  Modulatory effects imply the post-

synaptic response evoked by presynaptic input is modulated, or interacts with, another.  By 

definition this interaction must depend on nonlinear synaptic or dendritic mechanisms.   
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D Functional integration and effective connectivity 

Electrophysiology and imaging neuroscience have firmly established functional 

specialisation as a principle of brain organisation in man.  The functional integration of 

specialised areas has proven more difficult to assess.  Functional integration refers to the 

interactions among specialised neuronal populations and how these interactions depend upon 

the sensorimotor or cognitive context.  Functional integration is usually assessed by 

examining the correlations among activity in different brain areas, or trying to explain the 

activity in one area in relation to activities elsewhere.  Functional connectivity is defined as 

correlations between remote neurophysiological events1.  However, correlations can arise in a 

variety of ways.  For example, in multi-unit electrode recordings they can result from 

stimulus-locked transients evoked by a common input or reflect stimulus-induced oscillations 

mediated by synaptic connections (Gerstein and Perkel 1969).  Integration within a 

distributed system is better understood in terms of effective connectivity.  Effective 

connectivity refers explicitly to the influence that one neuronal system exerts over another, 

either at a synaptic (i.e. synaptic efficacy) or population level.  It has been proposed that "the 

[electrophysiological] notion of effective connectivity should be understood as the 

experiment- and time-dependent, simplest possible circuit diagram that would replicate the 

observed timing relationships between the recorded neurons" (Aertsen and Preißl 1991).  

This speaks to two important points:  (i) Effective connectivity is dynamic, i.e. activity- and 

time-dependent and (ii) it depends upon a model of the interactions.  An important 

distinction, among models employed in functional neuroimaging, is whether these models are 

linear or nonlinear.  Recent characterisations of effective connectivity have focussed on 

nonlinear models that accommodate the modulatory or nonlinear effects mentioned above.  A 

more detailed discussion of these models is provided in subsequent chapters, after the 

motivation for their application is established below.  In this chapter, the terms modulatory 

and nonlinear are used almost synonymously.  Modulatory effects imply the post-synaptic 

response evoked by one input is modulated, or interacts with, another.  By definition this 

interaction must depend on nonlinear synaptic mechanisms. 

   In summary, the brain can be considered as an ensemble of functionally specialised areas 

that are coupled in a nonlinear fashion by effective connections.  Empirically, it appears that 

connections from lower to higher areas are predominantly driving whereas backwards 

connections, that mediate top-down influences, are more diffuse and are capable of exerting 

modulatory influences.  In the next section we describe a theoretical perspective, provided by 

                                                 
1 More generally any statistical dependency as measured by the mutual information 
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'generative models', that highlights the functional importance of backwards connections and 

nonlinear interactions. 

 

 

III  REPRESENTATIONAL LEARNING 

 

This section describes the heuristics behind self-supervised learning based on empirical 

Bayes.  This approach is considered within the framework of generative models and follows 

Dayan and Abbott (pp359-397, 2001) to which the reader is referred for more detailed 

background.  A more heuristic discussion of these issues can be found in Friston (2002) 

   An important focus of this section is the interaction among causes of sensory input.  These 

interactions create a problem of contextual invariance.  In brief, it will be shown that this 

problem points to the adoption of generative models where interactions among causes of a 

percept are modelled explicitly in backward connections.  First, we will reprise empirical 

Bayes in the context of brain function per se.  Having established the requisite architectures 

for representational learning, neuronal implementation is considered in sufficient depth to 

make predictions about the anatomical and functional anatomy that would be needed to 

implement empirical Bayes in the brain.  We conclude by relating theoretical predictions 

with the four neurobiological principles listed in the previous section. 

 

 

A The nature of inputs, causes and representations 

Here a representation is taken to be a neuronal event that represents some 'cause' in the 

sensorium.  Causes are simply the states of processes generating sensory data or input.  It is 

not easy to ascribe meaning to these states without appealing to the way that we categorise 

things, perceptually or conceptually.  High-level conceptual causes may be categorical in 

nature, such as the identity of a face in the visual field or the semantic category a perceived 

object belongs to.  In a hierarchical setting, high-level causes may induce priors on lower-

level causes that are more parametric in nature.  For example, the perceptual cause “moving 

quickly” may show a one-to-many relationship with representations of different velocities in 

V5 (MT) units.  Causes have relationships to each other (e.g. ‘is part of’) that often have a 

hierarchical structure.  This hierarchical ontology is attended by ambiguous many-to-one and 

one-to-many mappings (e.g. a table has legs but so do horses; a wristwatch is a watch 
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irrespective of the orientation of its hands).  This ambiguity can render the problem of 

inferring causes from sensory information under-determined or ill posed. 

   Even though causes may be difficult to describe they are easy to define operationally.  

Causes are the variables or states that are necessary to specify the products of a process 

generating sensory information.  To keep things simple, let us frame the problem of 

representing causes in terms of a deterministic nonlinear generative function. 

     

     ),( θvGu =       1 

 

where v  is a vector of underlying causes in the environment (e.g.  the velocity of a particular 

object, direction of radiant light etc), and u represents some sensory inputs.  ),( θvG  is a 

function that generates inputs from the causes.  Nonlinearities in Eq(1) represent interactions 

among the causes.  Second-order interactions are formally identical to interaction terms in 

conventional statistical models of observed data.  These can often be viewed as contextual 

effects, where the expression of a particular cause depends on the context established by 

another.  For example, the extraction of motion from the visual field depends upon there 

being sufficient luminance or wavelength contrast to define the surface moving.  Another 

ubiquitous example, from early visual processing, is the occlusion of one object by another.  

In the absence of interactions we would see a linear superposition of both objects but the 

visual input, caused by the nonlinear mixing of these two causes, render one occluded by the 

other.  At a more cognitive level the cause associated with the word 'HAMMER' will depend 

on the semantic context (that determines whether the word is a verb or a noun).  These 

contextual effects are profound and must be discounted before the representations of the 

underlying causes can be considered veridical. 

   The problem the brain has to contend with is to find a function of the input that recognises 

or represents the underlying causes.  To do this, the brain must effectively undo the 

interactions to disclose contextually invariant causes.  In other words, the brain must perform 

some form of nonlinear unmixing of causes and context without knowing either.  The key 

point here is that this nonlinear mixing may not be invertible and that the estimation of 

causes from input may be fundamentally ill posed.  For example, no amount of unmixing can 

discern the parts of an object that are occluded by another.  The mapping 2vu =  provides a 

trivial example of this non-invertibility.  Knowing u does not uniquely determine v.  The 

corresponding indeterminacy, in probabilistic learning, rests on the combinatorial explosion 

of ways in which stochastic generative models can generate input patterns (Dayan et al 
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1995).  The combinatorial explosion represents another example of the uninvertible 'many to 

one' relationship between causes and inputs. 

   In probabilistic learning one allows for stochastic components in the generation of inputs 

and recognising a particular cause becomes probabilistic.  Here the issue of deterministic 

invertibility is replaced by the existence of an inverse conditional probably [i.e. recognition] 

density that can be parameterised.  Although not a mathematical fundament, parameterisation 

is critical for the brain because it has to encode the parameters of these densities with 

biophysical attributes of its nervous tissue.  In what follows we consider the implications of 

this problem.  In brief, we will show that one needs separate [approximate] recognition and 

generative models that induces the need for both forward and backward influences.  Separate 

recognition and generative models resolve the problem caused by generating processes that 

are difficult to invert and speak to a possible role for backward connections in the brain.  

 

B Generative models and representational learning 

Generative models afford a generic formulation of representational leaning in a supervised or 

self-supervised context.  There are many forms of generative models that range from 

conventional statistical models (e.g. factor and cluster analysis) and those motivated by 

Bayesian inference and learning (e.g. Dayan et al 1995, Hinton et al 1995).  The goal of 

generative models is "to learn representations that are economical to describe but allow the 

input to be reconstructed accurately" (Hinton et al 1995).  Representational learning is 

framed in terms of estimating probability densities of the causes.  This is referred to as 

posterior density analysis in the estimation literature and posterior mode analysis if the 

inference is restricted to estimating the most likely cause (See Chapter 17: Classical and 

Bayesian Inference).  Although density learning is formulated at a level of abstraction that 

eschews many issues of neuronal implementation (e.g. the dynamics of real-time learning), it 

provides a unifying framework that connects the various schemes considered below. 

 

     Figure 2 about here 

 

1 Inference vs. learning 

Equation (1) relates the unknown state of the causes v and some unknown parameters θ , to 

observed inputs u.  The objective is to make inferences about the causes and learn the 

parameters.  Inference may be simply estimating the most likely state of the causes and is 

based on the products of learning.  A useful way of thinking about the distinction between 
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inference and learning is in terms of how one accounts for the patterns or distribution of 

inputs encountered.  Figure 1 shows a very simply example with a univariate cause and a 

bivariate observation.  Observations are denoted by dots in the right hand panel and cluster 

around a curvilinear line.  A parsimonious way of generating dots like these would be move 

up and down the line and add a small amount of observation error.  The position on the line 

corresponds to the state of the single cause and the probability of selecting a particular 

position to the probability density of the causes on the right.  Inference means ascertaining 

the probability of each potential cause given an observation.  Estimation refers to estimating 

the most likely cause, denoted in Figure 1 by v& .  This estimate is the closest point on the line 

to the observation that a priori has a reasonable probability of being selected.  This simple 

example introduces the notion of representing observations in terms of points that lie on a 

low dimensional manifold in observation space, in this case a line.  The dimensions of this 

manifold are the causes.  The shape and position of the manifold depends on the parameters 

θ .  These have to be known or learned before inference about any particular observation can 

proceed.  This learning requires multiple observations so that the manifold can be placed to 

transect the highest density of observations.  In short, representational learning can be 

construed as learning a low dimensional manifold onto which data can be projected with 

minimum loss of information.  This manifold is an essential component of generative models. 

   The goal of learning is to acquire a recognition model for inference that is effectively the 

inverse of a generative model.  Learning a generative model corresponds to making the 

density of the inputs, implied by a generative model );( θup , as close as possible to those 

observed )(up .  The generative model is specified in terms of a prior distribution over the 

causes );( θvp  and the generative distribution or likelihood of the inputs given the causes 

);|( θvup .  Together, these define the marginal distribution that has to be matched to the 

input distribution 

 

   dvvpvupup ∫= );();|();( θθθ      2 

 

See Figure 1.  Once the parameters of the generative model have been learned, through this 

matching, the posterior density of the causes, given the inputs are given by the recognition 

model, which is defined in terms of the recognition distribution 
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);(

);();|();|(
θ

θθθ
up

vpvupuvp =       3 

 

However, as considered above, the generative model may not be easily inverted and it may 

not be possible to parameterise the recognition distribution.  This is crucial because the 

endpoint of learning is the acquisition of a useful recognition model that can be applied to 

sensory inputs.  One solution is to posit an approximate recognition distribution ),;( φuvq  

that is consistent with the generative model and that can be learned at the same time.  The 

approximate recognition distribution has some parameters φ , for example, the strength of 

forward connections or its mode (i.e. most likely value).  The first question addressed in this 

section is whether forward connections are sufficient for representational leaning. 

 

C Density estimation and EM 

In density learning, representational learning has two components that are framed in terms of 

expectation maximisation (EM, Dempster et al 1977).  Iterations of an E-Step ensure the 

recognition approximates the inverse of the generative model and the M-Step ensures that the 

generative model can predict the observed inputs.  Probabilistic recognition proceeds by 

using ),;( φuvq  to determine the probability that v caused the observed sensory inputs.  EM 

provides a useful procedure for density estimation that helps relate many different models 

within a framework that has direct connections with statistical mechanics.  Both steps of the 

EM algorithm involve maximising a function of the densities that corresponds to the negative 

free energy in physics. 

 

 

   

)};|(),,;({);(ln

),;(ln);,(ln
),;(
);,(ln),;(

)(

θφθ

φθ
φ
θφ

uvpuvqKLup

uvquvp

dv
uvq
uvpuvql

ulF

qq

u

−=

−=

=

=

∫     4 

 

This objective function comprises two terms.  The first is the expected log likelihood of the 

inputs under the generative model.  The second term is the Kullback-Leibler (KL) 
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divergence2 between the approximating and true recognition densities.  Critically, the KL 

term is always positive, rendering F a lower bound on the expected log likelihood of the 

inputs.  Maximising F encompasses two components of representational learning; (i) it 

increases the likelihood of the inputs produced by the generative model and (ii) minimises 

the discrepancy between the approximate recognition model and that implied by the 

generative model.  The E-Step increases F with respect to the recognition parameters φ , 

ensuring a veridical approximation to the recognition distribution implied by the generative 

parameters θ .  The M-Step changes θ , enabling the generative model to reproduce the 

inputs. 

 

F

F

θ

φ

θ

φ

max            

max            

=

=

M

E
      5 

 

There are a number of ways of motivating the free energy formulation in Eq(4).  A useful 

one, in this context, rests upon the problem posed by non-invertible models.  This problem is 

finessed by assuming it is sufficient to match the joint probability of inputs and causes under 

the generative model );();|();,( θθθ vpvupvup =  with that implied by recognising the causes 

of inputs encountered )(),;();,( upuvqvup φφ = .  Both these distributions are well defined 

even when );|( θuvp  is not easily parameterised.  This matching minimises the divergence. 

 

)(
);,(

)(),;(ln)(),;()};,(),;,({

uHF

dvdu
uvp

upuvqupuvquvpuvpKL

−−=

= ∫ θ
φφθφ

  6 

 

This is equivalent to maximising F because the entropy of the inputs )(uH  is fixed.  This 

perspective is used in Figure 2 to illustrate the E and M steps schematically.  The E-Step 

adjusts the recognition parameters to match the two joint distributions, while the M-Step 

does exactly the same thing but by changing the generative parameters.  The dependency of 

the generative parameters, on the input distribution, is mediated vicariously in the M-Step 

through the recognition.  In the setting of invertibility, where );|(),;( θφ uvpuvq =  the 

divergence in Eq(6) reduces to )};(),({ θupupKL .  As above, the M-Step then finds 

                                                 
2 a measure of the distance or difference between two probability densities 
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parameters that allow the model to simply match the observed input distribution (i.e. 

maximise the expected likelihood).   

 

 

     Figure 2 about here 

 

1 Invertibility 

This formulation of representational leaning is critical for the thesis of this section because it 

suggests that backward and lateral connections, parameterising a generative model, are 

essential when the model is not invertible.  If the generative model is invertible then the KL 

term in Eq(4) can be discounted by setting );|(),;( θφ uvpuvq =  with Eq(3) and learning 

reduces to the M-Step (i.e. maximising the expected likelihood).  

 

u
upF );(ln θ=       7 

 

In principle, this could be done using a feedforward architecture corresponding to the inverse 

of the generative model.  However, when processes generating inputs are non-invertible (in 

terms of the parameterisation of the recognition density) a generative model and approximate 

recognition model are required that are updated in M- and E-Steps respectively.  In short, 

non-invertibility enforces an explicit parameterisation of the generative model in 

representational learning.  In the brain this parameterisation may be embodied in backward 

connections. 

 

2 Deterministic recognition 

Another special case arises when the recognition is deterministic.  The recognition becomes 

deterministic when ),;( φuvq  is a Dirac δ -function over its mode ),( φuv .  In this instance, 

posterior density analysis reduces to a posterior mode analysis at which point inference and 

estimation coincide.  They are equivalent in the sense that inferring the posterior distribution 

of causes is the same as estimating the most likely cause given the inputs (the maximum a 

posteriori or MAP estimator).  Here the integral in Eq(4) disappears, leaving the joint 

probability of the inputs and their cause to be maximised 
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Notice, again, that this objective function does not require );|( θuvp  and eschews the 

inversion in Eq(3).  An illustration of the E-Step for deterministic recognition is shown in 

Figure 4 (lower panel).  Here, the distinction between deterministic and stochastic relates to 

inference and refers to form of the recognition density.  It should be noted that learning could 

also employ a deterministic or stochastic ascent on F.  We will deal largely with 

deterministic learning schemes. 

 

3. Summary 

EM enables exact and approximate maximum likelihood density estimation for a whole 

variety of generative models that can be specified in terms of prior and generative 

distributions.  Dayan and Abbott (2001) work though a series of didactic examples from 

cluster analysis to independent component analyses, within this unifying framework.  For 

example, factor analysis corresponds to the generative model 
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Namely, the underlying causes of inputs are independent normal variates that are mixed 

linearly and added to Gaussian noise to form inputs.  In the limiting case of 0→Σ  the 

ensuing model become deterministic and conforms to PCA.  By simply assuming non-

Gaussian priors one can specify generative models for sparse coding of the sort proposed by 

Olshausen and Field (1996) 
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where );( θivp are chosen to be suitably sparse (i.e. heavy-tailed) with a cumulative density 

function that corresponds to the squashing function in Chapter 19 (Functional 

connectivity).  The deterministic equivalent of sparse coding is ICA that obtains when 

0→Σ .  The relationships among different models are rendered apparent under the 
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perspective of generative models.  In what follows we consider a series of models entailing 

assumptions about the generation of sensory inputs that are relaxed one by one.  At each 

point we consider whether they could be implemented plausibly in the brain.   

 

     Figure 3 about here 

 

D Cortical hierarchies and empirical Bayes 

Empirical Bayes harnesses the hierarchical structure of a generative model, treating the 

estimates at one level as prior expectations for the subordinate level (Efron and Morris 1973).  

This provides a natural framework within which to treat cortical hierarchies in the brain, each 

providing constraints on the level below.  This approach models the world as a hierarchy of 

systems where supraordinate causes induce, and moderate, changes in subordinate causes.  

For example, the presence of a particular object in the visual field changes the incident light 

falling on a particular part of the retina.  A more intuitive example is provided in Figure 3.  

These priors offer contextual guidance towards the most likely cause of the input.  Note that 

predictions at higher levels are subject to the same constraints, only the highest level, if there 

is one in the brain, is free to be directed solely by bottom-up influences (although there are 

always implicit priors).  If the brain has evolved to recapitulate the casual structure of its 

environment, in terms of its sensory infrastructures, it is interesting to reflect on the 

possibility that our visual cortices reflect the hierarchical casual structure of our environment.  

 

1 The nature of hierarchical models 

Consider any level i in a hierarchy whose causes iv  are induced by corresponding causes in 

the level above 1+iv .  The hierarchical form of the implicit generative model is 
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with 1vu =  c.f. Eq(1).  Technically, these models fall into the class of conditionally 

independent hierarchical models when the stochastic terms are independent at each level 

(Kass and Steffey 1989).  These models are also called parametric empirical Bayes (PEB) 

models because the obvious interpretation of the higher-level densities as priors led to the 

development of PEB methodology (Efron and Morris 1973).  Often, in statistics, these 
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hierarchical models comprise just two levels, which is a useful way to specify simple 

shrinkage priors on the parameters of single-level models (see Section II, Part II).  We will 

assume the stochastic terms are Gaussian with covariance )( ii λΣ=Σ .  Therefore, iθ  and iλ  

parameterise the means and covariances of the likelihood at each level. 

 

   )),,(:();( 11 iiiiiii vGvNvvp Σ= ++ θθ       12 

 

This likelihood of iv  also plays the role of a prior on iv  that is jointly maximised with the 

likelihood of the level below );|( 1 θii vvp − .  This is key to understanding the utility of 

hierarchical models; By learning the parameters of the generative distribution of level i one is 

implicitly learning the parameters of the prior distribution for level 1−i .  This enables this 

learning of prior densities. 

 

     Figure 4 about here 

 

   The hierarchical nature of these models lends an important context-sensitivity to 

recognition densities not found in single-level models.  This is illustrated in Figure 4, which 

should be compared with Figure 1.  The key point here is that high-level causes 1+iv  

determine the prior expectation of causes iv  in the subordinate level.  This can completely 

change the marginal );( 1 θ−ivp  and recognition );|( 1 θ−ii vvp  distributions upon which 

inference in based.  From the manifold perspective on inference, the part of the manifold 

);( 11 −− iii vG θ  highlighted by prior expectations, changes from input to input in a context-

dependent way (see Figure 4).  The context established by priors is not determined by 

preceding events but is immediate and conferred by higher hierarchical levels.  For example, 

in Figure 3 the semantic context induced by reading one of the sentences has a profound 

effect on the most likely graphemic cause of the visual input subtended by 'ev'.  The dual role 

of );|( 1 θ+ii vvp as a likelihood or generative density for level i and a prior density for level i - 

1 is recapitulated by a dual role for MAP estimates of iv .  From a bottom-up perspective 

these correspond to parameters [modes] of the recognition densities.  However, from a top-

down perspective they also act as parameters of the generative model by interacting with 1−iθ  

in ),( 11 −− iii vG θ  to give the prior expectation of 1−iv . 
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   Although iλ  are parameters of the forward model we have referred to as hyperparameters 

in previous chapters and, in classical statistics, correspond to variance components.  We will 

preserve the distinction between iθ  and iλ  because they may correspond to backward and 

lateral connections strengths respectively. 

 

2 Implementation 

The biological plausibility of the empirical Bayes in the brain can be established fairly 

simply.  To do this a hierarchical scheme is described in some detail. For the moment, we 

will address neuronal implementation at a purely theoretical and somewhat heuristic level, 

using the framework developed above. 

   For simplicity, we will assume deterministic recognition such that 1));(( =uuq φ .  In this 

setting, with conditional independence, F comprises a series of log likelihoods 
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Here ii λ+=Σ 12/1 .  In the setting of neuronal models the [whitened] prediction error is 

encoded by the activities of units denoted by iξ .  These error units receive a prediction from 

units in the level above3 and connections from the principal units iφ  being predicted.  

Horizontal interactions among the error units serve to de-correlate them (c.f. Foldiak 1990), 

where the symmetric lateral connection strengths iλ  hyper-parameterise the covariances of 

the errors iΣ , which are the prior covariances for level 1−i . 

   The estimators iφ  and the connection strength parameters perform a gradient ascent on the 

compound log probability. 

 

                                                 
3 Clearly, in the brain, backward connections are not inhibitory but, after mediation by inhibitory interneurons, their 
effective influence could be rendered so. 
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Each of the learning components has a relatively simple neuronal interpretation (see below)   

 

     Figure 5 about here 

 

 

E Implications for neuronal implementation 

The scheme implied by Eq(14) has four clear implications or predictions about the functional 

architectures required for its implementation.  We now review these in relation to cortical 

organisation in the brain.  A schematic summarising these points in provided in Figure 5.  In 

short, we arrive at exactly the same four points presented in the previous section. 

 

• Hierarchical organisation 

Hierarchical models enable empirical Bayesian learning of prior densities and provide 

a plausible model for sensory inputs.  Single-level models that do not show any 

conditional independence  (e.g. those used by connectionist and infomax schemes) 

depend on prior constraints for unique inference and do not call upon a hierarchical 

cortical organisation.  On the other hand, if the causal structure of generative 

processes is hierarchical, this will be reflected, literally, by the hierarchical 

architectures trying to minimise prediction error, not just at the level of sensory input 

but at all levels (notice the deliberate mirror symmetry in Figure 5).  The nice thing 

about this architecture is that the responses of units at the ith level iφ  depend only on 

the error for the current level and the immediately preceding level.  This follows from 

conditional independence and is important because it permits a biologically plausible 

implementation, where the connections driving the error minimisation only run 

forward from one level to the next. 
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• Reciprocal connections 

As established at the beginning of his section the non-invertibility of processes 

generating sensory data induces a need for both forward and backward connections.  

In the hierarchical model, the dynamics of principal units 1+iφ  are subject to two, 

locally available, influences.  A likelihood or recognition term mediated by forward 

afferents from the error units in the level below and an empirical prior conveyed by 

error units in the same level.  Critically, the influences of the error units in both levels 

are meditated by linear connections with a strength that is exactly the same as the 

[negative] effective connectivity of the reciprocal connections from 1+iφ  to iξ  and 

1+iξ .  Functionally, forward and lateral connections are reciprocated, where backward 

connections generate predictions of lower-level responses.  Effective connectivity is 

simply the change in a neuronal unit (neuron, assembly or cortical area) induced by 

inputs from another (Friston 1995).  In this case 1+∂∂ ii φξ and 11 ++ ∂∂ ii φξ  

   Effective connectivity in the forward direction is the reciprocal (negative transpose) 

of that in the backward direction 111 ),( +++ ∂∂−=∂∂ iiiiiii vG βφφξ

 

that is a function of 

the generative parameters.  Lateral connections, within each level, mediate the 

influence of error units on the principal units and intrinsic connections iλ  among the 

error units decorrelate them, allowing competition among prior expectations with 

different precisions (precision is the inverse of variance).  In short, lateral, forwards 

and backward connections are all reciprocal, consistent with anatomical observations.   

 

• Functionally asymmetric forward and backward connections 

The forward connections are the reciprocal of the backward effective connectivity 

from the higher level to the lower level, extant at that time.  However, the functional 

attributes of forward and backward influences are different.  The influences of units 

1+iφ  on error units in the lower level iξ  instantiate the forward model 

iiiiiii G ξλθφφξ −−= + ),( 1 .  These can be nonlinear, where each unit in the higher 

level may modulate or interact with the influence of others, according to the 

nonlinearities in ),( 1 iiiG θφ + .  In contradistinction, the influences of units in lower 

levels do not interact when producing changes in the higher level because their effects 

are linearly separable [see Eq(27)].  This is a key observation because the empirical 
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evidence, reviewed in the previous section, suggests that backward connections are in 

a position to interact (e.g. though NMDA receptors expressed predominantly in the 

supragranular layers receiving backward connections).  Forward connections are not.  

It should be noted that, although the implied forward connections 
T

ii 1+∂∂− φξ mediate linearly separable effects of iξ  on 1+iφ , these connections might 

be activity- and time-dependent because of their dependence on 1+iφ .  In summary, 

nonlinearities, in the way sensory inputs are produced, necessitate nonlinear 

interactions in the generative model that are mediated by backward influences but do 

not require forward connections to be modulatory. 

 

• Associative plasticity 

Changes in the parameters correspond to plasticity in the sense that the parameters 

control the strength of backward and lateral connections.  The backward connections 

parameterise the prior expectations of the forward model and the lateral connections 

hyper-parameterise the prior covariances.  Together they parameterise the Gaussian 

densities that constitute the priors (and likelihoods) of the model.  The plasticity 

implied can be seen more clearly with an explicit parameterisation of the connections.  

For example, let 11 ),( ++ = iiiii vvG θθ .  In this instance 
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This is just Hebbian or associative plasticity where the connection strengths change in 

proportion to the product of pre and post-synaptic activity.  An intuition about Eq(15) 

obtains by considering the conditions under which the expected change in parameters 

is zero (i.e. after learning).  For the backward connections this implies there is no 

component of prediction error that can be explained by estimates at the higher level 

01 =+
T
iiφξ .  The lateral connections stop changing when the prediction error has 

been whitened 1=T
iiξξ  

It is evident that the predictions of the theoretical analysis coincide almost exactly with the 

empirical aspects of functional architectures in visual cortices highlighted by the previous 

section (hierarchical organisation, reciprocity functional asymmetry and associative 
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plasticity)..  Although somewhat contrived, it is pleasing that purely theoretical 

considerations and neurobiological empiricism converge so precisely. 

 

 

VI GENERATIVE MODELS AND THE BRAIN 

 

In summary, generative models lend themselves naturally to a hierarchical treatment, which 

considers the brain as an empirical Bayesian device.  The dynamics of the units or 

populations are driven to minimise prediction error at all levels of the cortical hierarchy and 

implicitly render themselves posterior modes of the causes given the data.  The overall 

scheme implied by Eq. (14) sits comfortably the hypothesis (Mumford, 1992).  "on the role of 

the reciprocal, topographic pathways between two cortical areas, one often a 'higher' area 

dealing with more abstract information about the world, the other 'lower', dealing with more 

concrete data.  The higher area attempts to fit its abstractions to the data it receives from 

lower areas by sending back to them from its deep pyramidal cells a template reconstruction 

best fitting the lower level view.  The lower area attempts to reconcile the reconstruction of 

its view that it receives from higher areas with what it knows, sending back from its 

superficial pyramidal cells the features in its data which are not predicted by the higher area.  

The whole calculation is done with all areas working simultaneously, but with order imposed 

by synchronous activity in the various top-down, bottom-up loops".   
 

A Context, causes and representations 

The Bayesian perspective suggests something quite profound for the classical view of 

receptive fields.  If neuronal responses encompass a bottom-up likelihood term and top-down 

priors, then responses evoked by bottom-up input should change with the context established 

by prior expectations from higher levels of processing.  Consider the example in Figure 3.  

Here a unit encoding the visual form of 'went' responds when we read the first sentence at the 

top of this figure.  When we read the second sentence 'The last event was cancelled' it would 

not.  If we recorded from this unit we might infer that our 'went' unit was, in some 

circumstances, selective for the word 'event'.  This might be difficult to explain without an 

understanding of hierarchical inference and the semantic context the stimulus was presented 

in.  In short, under a predictive coding scheme, the receptive fields of neurons should be 

context-sensitive.  The remainder of this subsection deals with empirical evidence for these 

extra-classical receptive field effects. 
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   Generative models suggest that the role of backward connections is to provide contextual 

guidance to lower levels through a prediction of the lower level's inputs.  When this 

prediction is incomplete or incompatible with the lower area's input, an error is generated that 

engenders changes in the area above until reconciliation.  When, and only when, the bottom-

up driving inputs are in harmony with top-down prediction, error is suppressed and a 

consensus between the prediction and the actual input is established.  Given this conceptual 

model a stimulus-related response or 'activation' corresponds to some transient error signal 

that drives the appropriate change in higher areas until a veridical higher-level representation 

emerges and the error is 'cancelled' by backwards connections.  Clearly the prediction error 

will depend on the context and consequently the backward connections confer context-

sensitivity on the functional specificity of the lower area.  In short, the activation does not 

just depend on bottom-up input but on the difference between bottom-up input and top-down 

predictions. 

   The prevalence of nonlinear or modulatory top-down effects can be inferred from the fact 

that context interacts with the content of representations.  Here context is established simply 

through the expression of causes other than the one in question.  Backward connections from 

one higher area can be considered as providing contextual modulation of the prediction from 

another area.  Because the effect of context will only be expressed when the thing being 

predicted is present these contextual afferents should not elicit a response by themselves.  

Effects of this sort, which change the responsiveness of units but do not elicit a response, are 

a hallmark of modulatory projections.  In summary, hierarchical models offer a scheme that 

allows for contextual effects; firstly through biasing responses towards their prior expectation 

and secondly by conferring a context-sensitivity on these priors through the modulatory 

component of backward projections.  Next we consider the nature of real neuronal responses 

and whether they are consistent with this perspective. 

 

B Extra-classical and context-sensitive effects 

Classical models (e.g. classical receptive fields) assume that evoked responses will be 

expressed invariably in the same units or neuronal populations irrespective of the context.  

However, real neuronal responses are not invariant but depend upon the context in which 

they are evoked.  For example, visual cortical units have dynamic receptive fields that can 

change from moment to moment [c.f. the non-classical receptive field effects modelled in 

(Rao and Ballard 1999)].  A useful synthesis of data for the macaque visual system that 

highlights the anatomical and physiological substrates of context-dependent responses can be 
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found in Angelucci et al (2002b).  A key conclusion of the authors is that "feedback from 

extrastriate cortex (possibly together with overlap or interdigitation of coactive lateral 

connectional fields within V1) can provide a large and stimulus-specific surround modulatory 

field.  The stimulus specificity of the interactions between the centre and surround fields, 

may be due to the orderly, matching structure and different scales of intra-areal and feedback 

projection excitatory pathways." 

   There are numerous examples of context-sensitive neuronal responses.  Perhaps the 

simplest is short-term plasticity.  Short-term plasticity refers to changes in connection 

strength, either potentiation or depression, following pre-synaptic inputs (e.g. Abbot 1997).  

In brief, the underlying connection strengths, that define what a unit represents, are a strong 

function of the immediately preceding neuronal transient (i.e. preceding representation).  A 

second, and possibly richer, example is that of attentional modulation that can change the 

sensitivity of neurons to different perceptual attributes (e.g. Treue and Maunsell 1996).  .  It 

has been shown, both in single unit recordings in primates (Treue and Maunsell 1996) and 

human functional fMRI studies (Büchel and Friston 1997), that attention to specific visual 

attributes can profoundly alter the receptive fields or event-related responses to the same 

stimuli. 

   These sorts of effects are commonplace in the brain and are generally understood in terms 

of the dynamic modulation of receptive field properties by backward and lateral afferents.  

There is clear evidence that lateral connections in visual cortex are modulatory in nature 

(Hirsch and Gilbert 1991), speaking to an interaction between the functional segregation 

implicit in the columnar architecture of V1 and the neuronal dynamics in distal populations.  

These observations, suggests that lateral and backwards interactions may convey contextual 

information that shapes the responses of any neuron to its inputs (e.g. Kay and Phillips 1996, 

Phillips and Singer 1997) to confer on the brain the ability to make conditional inferences 

about sensory input.  See also McIntosh (2000) who develops the idea from a cognitive 

neuroscience perspective "that a particular region in isolation may not act as a reliable index 

for a particular cognitive function.  Instead, the neural context in which an area is active may 

define the cognitive function."  His argument is predicated on careful characterisations of 

effective connectivity using neuroimaging. 
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C Conclusion 

In conclusion, the representational capacity and inherent function of any neuron, neuronal 

population or cortical area in the brain is dynamic and context-sensitive.  Functional 

integration, or interactions among brain systems, that employ driving (bottom-up) and 

backward (top-down) connections, mediate this adaptive and contextual specialisation.  Most 

models of representational learning require prior assumptions about the distribution of 

causes.  However, empirical Bayes suggests that these assumptions can be relaxed and that 

priors can be learned in a hierarchical context.  We have tried to show that this hierarchical 

prediction can be implemented in brain-like architectures and in a biologically plausible 

fashion. 

   A key point, made above, is that backward connections, mediating internal or generative 

models of how sensory inputs are caused, are essential if the processes generating inputs are 

difficult to invert.  This non-invertibility demands an explicit parameterisation of both the 

generative model (backward connections) and approximate recognition (forward 

connections).  This suggests that feedforward architectures are not sufficient for 

representational learning or perception.  Moreover, nonlinearities in generative models, that 

make backward connections necessary, require these connections to be modulatory; so that 

estimated causes in higher cortical levels can interact to predict responses in lower levels.  

This is important in relation to asymmetries in forward and backward connections that have 

been characterised empirically. 

   The arguments in this section were developed under hierarchical models of brain function, 

where high-level systems provide a prediction of the inputs to lower-levels.  Conflict 

between the two is resolved by changes in the high-level representations, which are driven by 

the ensuing error in lower regions, until the mismatch is 'cancelled'.  From this perspective 

the specialisation of any region is determined both by bottom-up driving inputs and by top-

down predictions.  Specialisation is therefore not an intrinsic property of any region but 

depends on both forward and backward connections with other areas.  Because the latter have 

access to the context in which the inputs are generated they are in a position to modulate the 

selectivity or specialisation of lower areas.  The implications for classical models (e.g. 

classical receptive fields in electrophysiology, classical specialisation in neuroimaging and 

connectionism in cognitive models) are severe and suggest these models may provide 

incomplete accounts of real brain architectures.  On the other hand, representational learning, 

in the context of hierarchical generative models not only accounts for extra-classical 
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phenomena seen empirically but enforces a view of the brain as an inferential machine 

through its empirical Bayesian motivation. 

 

 

V ASSESSING FUNCTIONAL ARCHITECTURES WITH BRAIN IMAGING 

 

Clearly, it would be nice to demonstrate the existence of backward influences with 

neuroimaging.  This is a slightly deeper problem than might be envisaged.  This is because 

making causal inferences about effective connectivity is not straightforward (see Pearl 2000).  

It might be thought that showing regional activity was partially predicted by activity in a 

higher level would be sufficient to confirm the existence of backward influences, at least at a 

population level.  The problem is that this statistical dependency does not permit any causal 

inference.  Statistical dependencies could easily arise in a purely forward architecture 

because the higher level activity is predicated on activity in the lower level.  One resolution 

of this problem is to perturb the higher level directly using transmagnetic stimulation or 

pathological disruptions (see below).  However, discounting these interventions, one is left 

with the difficult problem of inferring backward influences, based on measures that could be 

correlated because of forward connections.  Although there are causal modelling techniques 

that can address this problem we will take a simpler approach and note that interactions 

between bottom-up and top-down influences cannot be explained by a purely feedforward 

architecture.  This is because the top-down influences have no access to the bottom-up 

inputs.  An interaction, in this context, can be construed as an effect of backward connections 

on the driving efficacy of forward connections.  In other words, the response evoked by the 

same driving bottom-up inputs depends upon the context established by top-down inputs.  

This interaction is used below simply as evidence for the existence of backward influences.  

There are instances of predictive coding that emphasises this phenomenon.  For example, the 

"Kalman filter model demonstrates how certain forms of attention can be viewed as an 

emergent property of the interaction between top-down expectations and bottom-up signals" 

(Rao 1999).  

   The remainder of this chapter focuses on the evidence for these interactions.  From the 

point of view of functionally specialised responses these interactions manifest as context-

sensitive or contextual specialisation, where modality-, category- or exemplar-specific 

responses, driven by bottom up inputs are modulated by top-down influences induced by 

perceptual set.  The first half of this section adopts this perceptive.  The second part of this 
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section uses measurements of effective connectivity to establish interactions between bottom-

up and top-down influences.  All the examples presented below rely on attempts to establish 

interactions by trying to change sensory-evoked neuronal responses through putative 

manipulations of top-down influences.  These include inducing independent changes in 

perceptual set, cognitive [attentional] set and, in the last section through the study of patients 

with brain lesions 

 

A Context-sensitive specialisation 

If functional specialisation is context-dependent then one should be able to find evidence for 

functionally-specific responses, using neuroimaging, that are expressed in one context and 

not in another.  The first part of this section provides an empirical example.  If the contextual 

nature of specialisation is mediated by backwards modulatory afferents then it should be 

possible to find cortical regions in which functionally-specific responses, elicited by the same 

stimuli, are modulated by activity in higher areas.  The second example shows that this is 

indeed possible.  Both of these examples depend on multifactorial experimental designs. 

 

1 Multifactorial designs 

Factorial designs combine two or more factors within a task or tasks.  Factorial designs can 

be construed as performing subtraction experiments in two or more different contexts.  The 

differences in activations, attributable to the effects of context, are simply the interaction.  

Consider an implicit object recognition experiment, for example naming (of the object's name 

or the non-object's colour) and simply saying ''yes' during passive viewing of objects and 

non-objects.  The factors in this example are implicit object recognition with two levels 

(objects vs. non-objects) and phonological retrieval (naming vs. saying "yes").  The idea here 

is to look at the interaction between these factors, or the effect that one factor has on the 

responses elicited by changes in the other.  Noting that object-specific responses are elicited 

(by asking subjects to view objects relative to meaningless shapes), with and without 

phonological retrieval, reveals the factorial nature of this experiment.  This 'two by two' 

design allows one to look specifically at the interaction between phonological retrieval and 

object recognition.  This analysis identifies not regionally specific activations but regionally 

specific interactions.  When we actually performed this experiment these interactions were 

evident in the left posterior, inferior temporal region and can be associated with the 

integration of phonology and object recognition (see Figure 6 and Friston et al 1996 for 

details).  Alternatively this region can be thought of as expressing recognition-dependent 
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responses that are realised in, and only in, the context of having to name the object seen.  

These results can be construed as evidence of contextual specialisation for object-recognition 

that depends upon modulatory afferents [possibly from temporal and parietal regions] that are 

implicated in naming a visually perceived object.  There is no empirical evidence in these 

results to suggest that the temporal or parietal regions are the source of this top-down 

influence but in the next example the source of modulation is addressed explicitly using 

psychophysiological interactions. 

 

B Psychophysiological Interactions 

Psychophysiological interactions speak directly to the interactions between bottom-up and 

top-down influences, where one is modelled as an experimental factor and the other 

constitutes a measured brain response.  In an analysis of psychophysiological interactions one 

is trying to explain a regionally specific response in terms of an interaction between the 

presence of a sensorimotor or cognitive process and activity in another part of the brain 

(Friston et al 1997).  The supposition here is that the remote region is the source of backward 

modulatory afferents that confer functional specificity on the target region.  For example, by 

combining information about activity in the posterior parietal cortex, mediating attentional or 

perceptual set pertaining to a particular stimulus attribute, can we identify regions that 

respond to that stimulus when, and only when, activity in the parietal source is high?  If such 

an interaction exists, then one might infer that the parietal area is modulating responses to the 

stimulus attribute for which the area is selective.  This has clear ramifications in terms of the 

top-down modulation of specialised cortical areas by higher brain regions. 

   The statistical model employed in testing for psychophysiological interactions is a simple 

regression model of effective connectivity that embodies nonlinear (second-order or 

modulatory effects).  As such, this class of model speaks directly to functional specialisation 

of a nonlinear and contextual sort.  Figure 7 illustrates a specific example (see Dolan et al 

1997 for details).  Subjects were asked to view [degraded] faces and non-face (object) 

controls.  The interaction between activity in the parietal region and the presence of faces 

was expressed most significantly in the right infero-temporal region not far from the 

homologous left infero-temporal region implicated in the object naming experiment above.  

Changes in parietal activity were induced experimentally by pre-exposure of the [un-

degraded] stimuli before some scans but not others to prime them.  The data in the right panel 

of Figure 7 suggests that the infero-temporal region shows face-specific responses, relative to 

non-face objects, when, and only when, parietal activity is high.  These results can be 



 31

interpreted as a priming-dependent face-specific response, in infero-temporal regions that are 

mediated by interactions with medial parietal cortex.  This is a clear example of contextual 

specialisation that depends on top-down effects. 

 

 

C Effective connectivity 

The previous examples, demonstrating contextual specialisation, are consistent with 

functional architectures implied by generative models.  However, they do not provide 

definitive evidence for an interaction between top-down and bottom-up influences.  In this 

subsection we look for direct evidence of these interactions using functional imaging.  This 

rests upon being able to measure effective connectivity in a way that is sensitive to 

interactions among inputs.  This requires a plausible model of coupling among brain regions 

that can accommodate nonlinear effects.  We will illustrate the use of a model that is based 

on the Volterra expansion described in Chapter 20 (Effective Connectivity) and expanded 

on in the subsequent chapter. 

  

1 Nonlinear coupling among brain areas 

Linear models of effective connectivity assume that the multiple inputs to a brain region are 

linearly separable.  This assumption precludes activity-dependent connections that are 

expressed in one context and not in another.  The resolution of this problem lies in adopting 

nonlinear models like the Volterra formulation that include interactions among inputs.  These 

interactions can be construed as a context- or activity-dependent modulation of the influence 

that one region exerts over another (Büchel and Friston 1997).  In the Volterra model, second 

order kernels model modulatory effects.  Within these models the influence of one region on 

another has two components.  (i) The direct or driving influence of input from the first (e.g. 

hierarchically lower) region, irrespective of the activities elsewhere and (ii) an activity-

dependent, modulatory component that represents an interaction with inputs from the 

remaining (e.g. hierarchically higher) regions.  These are mediated by the first and second 

order kernels respectively.  The example provided in Figure 8 addresses the modulation of 

visual cortical responses by attentional mechanisms (e.g. Treue and Maunsell 1996) and the 

mediating role of activity-dependent changes in effective connectivity.  This is the same 

example used in the introduction (Chapter 1) and in subsequent chapters. 

   The right panel in Figure 8 shows a characterisation of this modulatory effect in terms of 

the increase in V5 responses, to a simulated V2 input, when posterior parietal activity is zero 
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(broken line) and when it is high (solid lines).  In this study subjects were studied with fMRI 

under identical stimulus conditions (visual motion subtended by radially moving dots) whilst 

manipulating the attentional component of the task (detection of velocity changes).  The 

brain regions and connections comprising the model are shown in the upper panel.  The lower 

panel shows a characterisation of the effects of V2 inputs on V5 and their modulation by 

posterior parietal cortex (PPC) using simulated inputs at different levels of PPC activity.  It is 

evident that V2 has an activating effect on V5 and that PPC increases the responsiveness of 

V5 to these inputs.  The insert shows all the voxels in V5 that evidenced a modulatory effect 

(p<0.05 uncorrected).  These voxels were identified by thresholding statistical parametric 

maps of the F statistic testing for the contribution of second order kernels involving V2 and 

PPC while treating all other components as nuisance variables.  The estimation of the 

Volterra kernels and statistical inference procedure is described in Friston and Büchel  

(2000). 

   This sort of result suggests that backward parietal inputs may be a sufficient explanation for 

the attentional modulation of visually evoked extrastriate responses.  More importantly, they 

are consistent with the functional architecture implied by predictive coding because they 

establish the existence of functionally expressed backward connections.  V5 cortical 

responses evidence an interaction between bottom-up input from early visual cortex and top-

down influences from parietal cortex.  In the final section the implications of this sort of 

functional integration are addressed from the point of view of the lesion-deficit model and 

neuropsychology.  

 

 

VI.  FUNCTIONAL INTEGRATION AND NEUROPSYCHOLOGY 

 

If functional specialisation depends on interactions among cortical areas then one might 

predict changes in functional specificity in cortical regions that receive enabling or 

modulatory afferents from a damaged area.  A simple consequence is that aberrant responses 

will be elicited in regions hierarchically below the lesion if, and only if, these responses 

depend upon inputs from the lesion site.  However, there may be other contexts in which the 

region's responses are perfectly normal (relying on other, intact, afferents).  This leads to the 

notion of a context-dependent region-specific abnormality, caused by, but remote from, a 

lesion (i.e. an abnormal response that is elicited by some tasks but not others).  We have 
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referred to this phenomenon as 'dynamic diaschisis' (Price et al 2000).  See Section V, 

(Language and Semantics; Part I) for a more psychologically finessed discussion. 

 

A Dynamic diaschisis 

Classical diaschisis, demonstrated by early anatomical studies and more recently by 

neuroimaging studies of resting brain activity, refers to regionally specific reductions in 

metabolic activity at sites that are remote from, but connected to, damaged regions.  The 

clearest example is 'crossed cerebellar diaschisis' (Lenzi et al 1982) in which abnormalities of 

cerebellar metabolism are seen characteristically following cerebral lesions involving the 

motor cortex.  Dynamic diaschisis describes the context-sensitive and task-specific effects 

that a lesion can have on the evoked responses of a distant cortical region.  The basic idea 

behind dynamic diaschisis is that an otherwise viable cortical region expresses aberrant 

neuronal responses when, and only when, those responses depend upon interactions with a 

damaged region.  This can arise because normal responses in any given region depend upon 

inputs from, and reciprocal interactions with, other regions.  The regions involved will 

depend on the cognitive and sensorimotor operations engaged at any particular time.  If these 

regions include one that is damaged, then abnormal responses may ensue.  However, there 

may be situations when the same region responds normally, for instance when its dynamics 

depend only upon integration with undamaged regions.  If the region can respond normally in 

some situations then forward driving components must be intact.  This suggests that dynamic 

diaschisis will only present itself when the lesion involves a hierarchically equivalent or 

higher area. 

 

1 An empirical demonstration 

We investigated this possibility in a functional imaging study of four aphasic patients, all 

with damage to the left posterior inferior frontal cortex, classically known as Broca’s area 

(see Figure 9 - upper panels).  These patients had speech output deficits but relatively 

preserved comprehension.  Generally functional imaging studies can only make inferences 

about abnormal neuronal responses when changes in cognitive strategy can be excluded.  We 

ensured this by engaging the patients in an explicit task that they were able to perform 

normally.  This involved a keypress response when a visually presented letter string 

contained a letter with an ascending visual feature (e.g.: h, k, l, or t).  While the task 

remained constant, the stimuli presented were either words or consonant letter strings.  

Activations detected for words, relative to letters, were attributed to implicit word 
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processing.  Each patient showed normal activation of the left posterior middle temporal 

cortex that has been associated with semantic processing (Price 1998).  However, none of the 

patients activated the left posterior inferior frontal cortex (damaged by the stroke), or the left 

posterior inferior temporal region (undamaged by the stroke) (see Figure 4b).  These two 

regions are crucial for word production (Price 1998).  Examination of individual responses in 

this area revealed that all the normal subjects showed increased activity for words relative to 

consonant letter strings while all four patients showed the reverse effect.  The abnormal 

responses in the left posterior inferior temporal lobe occurred even though this undamaged 

region lies adjacent and posterior to a region of the left middle temporal cortex that activated 

normally (see middle column of Figure 9b).  Critically, this area thought to be involved in an 

earlier stage of word processing than the damaged left inferior frontal cortex (i.e. is 

hierarchically lower than the lesion).  From these results we can conclude that, during the 

reading task, responses in the left basal temporal language area rely on afferent inputs from 

the left posterior inferior frontal cortex.  When the first patient was scanned again, during an 

explicit semantic task, the left posterior inferior temporal lobe responded normally.  The 

abnormal implicit reading related responses were therefore task-specific.   

   These results serve to illustrate the concept of dynamic diaschisis; namely the anatomically 

remote and context-specific effects of focal brain lesions.  Dynamic diaschisis represents a 

form of functional disconnection where regional dysfunction can be attributed to the loss of 

enabling inputs from hierarchically equivalent or higher brain regions.  Unlike classical or 

anatomical disconnection syndromes its pathophysiological expression depends upon the 

functional brain state at the time responses are evoked.  Dynamic diaschisis may be 

characteristic of many regionally specific brain insults and may have implications for 

neuropsychological inference. 

 

 

CONCLUSION 

 

In conclusion, the representational capacity and inherent function of any neuron, neuronal 

population or cortical area in the brain is dynamic and context-sensitive.  Functional 

integration, or interactions among brain systems, that employ driving (bottom up) and 

backward (top-down) connections, mediate this adaptive and contextual specialisation.  A 

critical consequence is that hierarchically organised neuronal responses, in any given cortical 

area, can represent different things at different times.  Although most models of 
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representational learning require prior assumptions about the distribution of causes; empirical 

Bayes suggests that these assumptions can be relaxed and that priors can be learned in a 

hierarchical context.  We have tried to show that this hierarchical prediction based on can be 

implemented in brain-like architectures and in a biologically plausible fashion.   The 

arguments in this chapter were developed under generative models of brain function, where 

higher-level systems provide a prediction of the inputs to lower-level regions.  Conflict 

between the two is resolved by changes in the higher-level representations, which are driven 

by the ensuing error in lower regions, until the mismatch is 'cancelled'.  From this perspective 

the specialisation of any region is determined both by bottom-up driving inputs and by top-

down predictions.  Specialisation is therefore not an intrinsic property of any region but 

depends on both forward and backward connections with other areas.  Because the latter have 

access to the context in which the inputs are generated they are in a position to modulate the 

selectivity or specialisation of lower areas. 

  The emphasis on theoretical neurobiology has been used to expose the usefulness of being 

able to measure effective connectivity and the importance of modulatory or nonlinear 

coupling in the brain.  These nonlinear aspects of effective connectivity will be a recurrent 

theme in subsequent chapters that discuss functional and effective connectivity from an 

operational point of view.  
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Figure 1 

Schematic of a simple model with a univariate cause and a bivariate observation.  

Observations are denoted by dots in the right hand panel and cluster around a curvilinear line.  

A parsimonious way of generating dots like these would be move up and down the line and 

add a small amount of random error.  The position on the line corresponds to the state of the 

single cause and the probability of selecting a particular position the probability density of 

the causes on the right. 

 

Figure 2 

Schematic illustrating the two components of EM.  In the E-Step the joint distribution of 

causes and inputs under the recognition model changes to approximate that under the 

generative model.  This refines the recognition model.  In the M-Step the joint distribution 

under the generative model changes to approximate that under the recognition model.  This 

reduces the difference between the distribution of inputs implied by the generative model and 

that observed. 

 

Figure 3 

Schematic illustrating the role of priors in biasing towards one representation of an input or 

another.  Upper panel: On reading the first sentence 'Jack and Jill went up the hill' we 

perceive the word 'event' as 'went' despite the fact it is 'event' (as in the second sentence).  

However, in the absence of any hierarchical inference the best explanation for the pattern of 

visual stimulation incurred by the text is the grapheme 'ev'.  This would correspond to the 

maximum likelihood estimate and would be the most appropriate in the absence of prior 

information, from the lexical and semantic context, about which is the most likely grapheme.  

However, within hierarchical inference the semantics (provided by the sentence) provide top-

down predictions about the word, which in turn predicts the graphemes and finally the visual 

input.  The posterior estimate is accountable to all these levels.  When the semantic prior 

biases in favour of 'went' and 'w' we tolerate a small error as a lower level of visual analysis 

to minimise the overall prediction error.  Lower panel: (left) The grapheme 'ev' is selected as 

the most likely cause of visual input.  (right)  The letter 'w' is selected, as it is (i) a reasonable 

explanation for the sensory input and (ii) conforms to prior expectations induced by lexico-

semantic context.  The bars represent prediction error, which is minimised over all levels to 

attain the most likely cause. 
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Figure 4 

Hierarchical models embody context-sensitivity not found in single-level models (c.f. Figure 

1).  High-level causes 1+iv  determine the prior expectation of causes iv  in the subordinate 

level.  Changes in 1+iv  can completely change the marginal );( 1 θ−ivp  and recognition 

);|( 1 θ−ii vvp  distributions upon which inference in based.  

 

Figure 5 

Upper panel: Schematic depicting a hierarchical extension to the predictive coding 

architecture.  Hierarchical arrangements within the model serve to provide predictions or 

priors to representations in the level below.  The open circles are the error units and the filled 

circles are the states encoding the conditional expectation of causes in the environment.  

These change to minimise both the discrepancies between their predicted value and the 

mismatch incurred by their own prediction of the level below.  These two constraints 

correspond to prior and likelihood terms respectively (see main text).  Lower panel: A more 

detailed picture of the influences on principal and error units. 

 

Figure 6 

This example of regionally specific interactions comes from an experiment where subjects 

were asked to view coloured non-object shapes or coloured objects and say "yes", or to name 

either the coloured object or the colour of the shape.  Left: A regionally specific interaction in 

the left infero-temporal cortex.  The SPM threshold is p < 0.05 (uncorrected).  Right:  The 

corresponding activities in the maxima of this region are portrayed in terms of object 

recognition-dependent responses with and without naming.  It is seen that this region shows 

object recognition responses when, and only when, there is phonological retrieval.  The 

'extra' activation with naming corresponds to the interaction.  These data were acquired from 

six subjects scanned 12 times using PET.   

 

Figure 7 

Top: Examples of the stimuli presented to subjects.  During the measurement of brain 

responses only degraded stimuli where shown (e.g. the right hand picture).  In half the scans 

the subject was given the underlying cause of these stimuli, through presentation of the 

original picture (e.g. left) before scanning.  This priming induced a profound difference in 

perceptual set for the primed, relative to non-primed, stimuli, 
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Right:  Activity observed in a right infero-temporal region, as a function of [mean corrected] 

PPC activity.  This region showed the most significant interaction between the presence of 

faces in visually presented stimuli and activity in a reference location in the posterior medial 

parietal cortex (PPC).  This analysis can be thought of as finding those areas that are subject 

to top-down modulation of face-specific responses by medial parietal activity.  The crosses 

correspond to activity whilst viewing non-face stimuli and the circles to faces.  The essence 

of this effect can be seen by noting that this region differentiates between faces and non-faces 

when, and only when, medial parietal activity is high.  The lines correspond to the best 

second-order polynomial fit.  These data were acquired from six subjects using PET.  Left: 

Schematic depicting the underlying conceptual model in which driving afferents from ventral 

form areas (here designated as V4) excite infero-temporal (IT) responses, subject to 

permissive modulation by PPC projections. 

 

Figure 8 

Upper panel: Brain regions and connections comprising the model.  Lower panel: 

Characterisation of the effects of V2 inputs on V5 and their modulation by posterior parietal 

cortex (PPC).  The broken lines represent estimates of V5 responses when PPC activity is 

zero, according to a second order Volterra model of effective connectivity with inputs to V5 

from V2, PPC and the pulvinar (PUL).  The solid curves represent the same response when 

PPC activity is one standard deviation of its variation over conditions.  It is evident that V2 

has an activating effect on V5 and that PPC increases the responsiveness of V5 to these 

inputs.  The insert shows all the voxels in V5 that evidenced a modulatory effect (p < 0.05 

uncorrected).  These voxels were identified by thresholding a SPM (Friston et al 1995b) of 

the F statistic testing for the contribution of second order kernels involving V2 and PPC 

(treating all other terms as nuisance variables).  The data were obtained with fMRI under 

identical stimulus conditions (visual motion subtended by radially moving dots) whilst 

manipulating the attentional component of the task (detection of velocity changes). 

 

Figure 9 

a) Top: These renderings illustrate the extent of cerebral infarcts in four patients, as identified 

by voxel-based morphometry.  Regions of reduced grey matter (relative to neurologically 

normal controls) are shown in white on the left hemisphere.  The SPMs were thresholded at 

P<0.001 uncorrected.  All patients had damage to Broca’s area.  The first (upper left) 

patient's left middle cerebral artery infarct was most extensive encompassing temporal and 
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parietal regions as well as frontal and motor cortex.  b) Bottom: SPMs illustrating the 

functional imaging results with regions of significant activation shown in black on the left 

hemisphere.  Results are shown for: (i) Normal subjects reading words (left).  (ii) Activations 

common to normal subjects and patients reading words using a conjunction analysis (middle-

top).  (iii) Areas where normal subjects activate significantly more than patients reading 

words, using the group times condition interaction (Middle lower).  (iv) The first patient 

activating normally for a semantic task.  Context-sensitive failures to activate are implied by 

the abnormal activations in the first patient, for the implicit reading task, despite a normal 

activation during a semantic task. 
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Table 1 

Some key characteristics of extrinsic cortico-cortical connections in the brain 

 

 

Hierarchical organisation 

• The organisation of the visual cortices can be considered as a hierarchy (Felleman and Van Essen 1991). 

•  The notion of a hierarchy depends upon a distinction between forward and backward extrinsic connections. 

•  This distinction rests upon different laminar specificity (Rockland and Pandya 1979, Salin and Bullier 1995). 

•  Backward connections are more numerous and transcend more levels 

•  Backward connections are more divergent than forward connections (Zeki and Shipp 1988).   

 

Forwards connections 

 

Backwards connections 

Sparse axonal bifurcations 

Topographically organised 

Originate in supragranular layers 

Terminate largely in layer VI 

Postsynaptic effects through fast AMPA (1.3-2.4ms 

decay) and GABAA (6ms decay) receptors.  

Abundant axonal bifurcation 

Diffuse topography 

Originate in bilaminar/infragranular layers 

Terminate predominantly in supragranular layers  

Modulatory afferents activate slow (50ms decay) 

voltage-sensitive NMDA receptors 
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Modulation of face-selectivity by PPC
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Dynamic diaschisis

a) Lesion sites in four patients

b)                 Patterns of activation
Normal activations         Activations in Patients   Activations in first patient
Implicit reading              Implicit reading               Semantic task

Failure to activate
Implicit reading

Context-sensitive
failure to activate
Context-sensitive
failure to activate


