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I. INTRODUCTION 

 

This chapter is concerned with the characterisation of imaging data from a multivariate 

perspective.  This means that the observations at each voxel are considered jointly with 

explicit reference to the interactions among brain regions.  The concept of functional 

connectivity is reviewed and provides the basis for understanding what eigenimages 

represent and how they can be interpreted.  Having considered the nature of eigenimages and 

variations on their applications, we then turn to a related approach that, unlike eigenimage 



analysis, is predicated on a statistical model.  This approach is called multivariate analysis of 

variance (ManCova) and uses canonical variate analysis to create canonical images.  The 

integrated and distributed nature of neurophysiological responses to sensorimotor or 

cognitive challenge makes a multivariate perspective particularly appropriate, if not 

necessary for functional integration. 

 

A Functional integration and connectivity 

A landmark meeting that took place on the morning of August 4th 1881 highlighted the 

difficulties of attributing function to a cortical area, given the dependence of cerebral activity 

on underlying connections (Phillips et al 1984).  Goltz, although accepting the results of 

electrical stimulation in dog and monkey cortex, considered the excitation method 

inconclusive, in that the movements elicited might have originated in related pathways, or 

current could have spread to distant centres.  Despite advances over the past century, the 

question remains; are the physiological changes elicited by sensorimotor or cognitive 

challenges explained by functional segregation, or by integrated and distributed changes 

mediated by neuronal connections?  The question itself calls for a framework within which to 

address these issues.  Functional and effective connectivity are concepts critical to this 

framework. 

 

1 Origins and definitions 

In the analysis of neuroimaging time-series functional connectivity is defined as the 

correlations between spatially remote neurophysiological events.  This definition provides a 

simple characterisation of functional interactions.  The alternative is effective connectivity 

(i.e. the influence one neuronal system exerts over another).  These concepts originated in 

the analysis of separable spike trains obtained from multiunit electrode recordings (Gerstein 

and Perkel 1969).  Functional connectivity is simply a statement about the observed 

correlations; it does not comment on how these correlations are mediated.  For example, at 

the level of multiunit micro-electrode recordings, correlations can result from stimulus-

locked transients, evoked by a common afferent input, or reflect stimulus-induced 

oscillations; phasic coupling of neural assemblies, mediated by synaptic connections.    

Effective connectivity is closer to the notion of a connection and can be defined as the 

influence one neural system exerts over another, either at a synaptic (c.f. synaptic efficacy) 

or cortical level.  Although functional and effective connectivity can be invoked at a 

conceptual level in both neuroimaging and electrophysiology they differ fundamentally at a 



practical level.  This is because the time-scales and nature of neurophysiological 

measurements are very different (seconds vs. milliseconds and hemodynamic vs. spike 

trains).  In electrophysiology it is often necessary to remove the confounding effects of 

stimulus-locked transients (that introduce correlations not causally mediated by direct neural 

interactions) in order to reveal an underlying connectivity.  The confounding effect of 

stimulus-evoked transients is less problematic in neuroimaging because promulgation of 

dynamics from primary sensory areas onwards is mediated by neuronal connections (usually 

reciprocal and interconnecting).  However it should be remembered that functional 

connectivity is not necessarily due to effective connectivity (e.g. common neuromodulatory 

input from ascending aminergic neurotransmitter systems or thalamo-cortical afferents) and, 

where it is, effective influences may be indirect (e.g. polysynaptic relays through multiple 

areas). 

 

 

II. EIGENIMAGES, MULTIDIMENSIONAL SCALING AND OTHER DEVICES 

 

In what follows we introduce a number of techniques (eigenimage analysis, 

multidimensional scaling, partial least squares and generalised eigenimage analysis) using 

functional connectivity as a reference.  Emphasis is placed on the relationships between these 

techniques.  For example, eigenimage analysis is equivalent to principal component analysis 

and the variant of multidimensional scaling considered here is equivalent to principal 

coordinates analysis.  Principal components and coordinates analyses are predicated on 

exactly the same eigenvector solution and from a mathematical perspective are essentially 

the same thing.   

 

A Measuring a pattern of correlated activity 

Here we introduce a simple way of measuring the amount a pattern of activity (representing a 

connected brain system) contributes to the functional connectivity or variance-covariances 

observed in the imaging data.  Functional connectivity is defined in terms of statistical 

dependencies among neurophysiological measurement.  If we assume these measurements 

conform to Gaussian assumptions then we need only characterise their correlations or 



covariance (correlations are normalised covariances)1.  The point to point functional 

connectivity between one voxel and another is not usually of great interest.  The important 

aspect of a covariance structure is the pattern of correlated activity subtended by (an 

enormous number of) pairwise covariances.  In measuring such patterns it is useful to 

introduce the concept of a norm.  Vector and matrix norms serve the same purpose as 

absolute values for scalar quantities.  In other words, they furnish a measure of distance.  

One frequently used norm is the 2-norm, which is the length of a vector.  The vector 2-norm 

can be used to measure the degree to which a particular pattern of brain activity contributes 

to a covariance structure.  If a pattern is described by a column vector (p), with an element 

for each voxel, then the contribution of that pattern to the covariance structure can be 

measured by the 2-norm of MpMp = .  M is a (mean-corrected) matrix of data with one row 

for each successive scan and one column for each voxel: 

 

     MpMpMp TT=2      1 

 

(T denotes transposition).  Put simply the 2-norm is a number that reflects the amount of 

variance-covariance or functional connectivity that can be accounted for by a particular 

distributed pattern.  It should be noted that the 2-norm only measures the pattern of interest.  

There may be many other important patterns of functional connectivity.  This fact begs the 

question "what are the most prevalent patterns of coherent activity?"  To answer this question 

one turns to eigenimages or spatial modes. 

 

B Eigenimages and spatial modes 

In this section the concept of eigenimages or spatial modes is introduced in terms of patterns 

of activity defined above.  We show that spatial modes are simply those patterns that account 

for the most variance-covariance (i.e. have the largest 2-norm). 

   Eigenimages or spatial modes are most commonly obtained using singular value 

decomposition (SVD).  SVD is an operation that decomposes an original time-series (M) into 

two sets of orthogonal vectors (patterns in space and patterns in time) V and U where: 

 

                                                 
1 Clearly neuronal processes are not necessarily Gaussian.  However, we can still characterise the second order 
dependencies with the correlations.  Higher-order dependencies would involve computing cumulants as 
described in final chapter of this section. 
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U and V are unitary orthogonal matrices  1  ,1 == VVUU TT  and  0 =UV T  (the sum of 

squares of each column is unity and all the columns are uncorrelated) and S is a diagonal 

matrix (only the leading diagonal has non-zero values) of decreasing singular values.  The 

singular value of each eigenimage is simply its 2-norm.  Because SVD maximises the first 

singular value, the first eigenimage is the pattern that accounts for the greatest amount of the 

variance-covariance structure.  In summary, SVD and equivalent devices are powerful ways 

of decomposing an imaging time-series into a series of orthogonal patterns than embody, in a 

step-down fashion, the greatest amounts of functional connectivity.  Each eigenvector 

(column of V) defines a distributed brain system that can be displayed as an image.  The 

distributed systems that ensue are called eigenimages or spatial modes and have been used to 

characterise the spatiotemporal dynamics of neurophysiological time-series from several 

modalities.  Including, multiunit electrode recordings (Mayer-Kress et al 1991), EEG 

(Friedrich et al 1991), MEG (Fuchs et al 1992), PET (Friston et al 1993a) and functional 

MRI (Friston et al 1993b).  Interestingly in fMRI the application of eigenimage that has 

attracted the most interest is in characterising functional connections while the brain is at 

'rest'.  See Biswal et al (1995). 

   Many readers will notice that the eigenimages associated with the functional connectivity 

or covariance matrix are simply principal components of the time-series.  In the EEG 

literature one sometimes comes across the Karhunen-Loeve expansion which is employed to 

identify spatial modes.  If this expansion is in terms of eigenvectors of covariances (and it 

usually is), then the analysis is formally identical to the one presented above. 

   One might ask what the column vectors of U in Eq(2) correspond to.  These vectors are the 

time-dependent profiles associated with each eigenimage known as eigenvariates.  They 

reflect the extent to which an eigenimage is expressed in each experimental condition or over 

time.  See Figure 1 for a simple schematic illustrating the decomposition of a time-series into 

orthogonal modes.  This is sometimes called spectral decomposition.  Eigenvariates play an 

important role in the functional attribution of distributed systems defined by eigenimages.  

This point and others will be illustrated in the next. 

 



C Mapping function into anatomical space  - Eigenimage analysis 

To illustrate the approach, we will use the PET word generation study used in previous 

chapters.  The data were obtained from five subjects scanned 12 times whilst performing one 

of two verbal tasks in alternation.  One task involved repeating a letter presented aurally at 

one per two seconds (word shadowing).  The other was a paced verbal fluency task, where 

subjects responded with a word that began with the heard letter (word generation).  To 

facilitate inter-subject pooling, the data were realigned and spatially normalised and 

smoothed with an isotropic Gaussian kernel (FWHM of 16mm).  The data were then subject 

to an AnCova (with 12 conditions, subject effects and global activity as a confound).  Voxels 

were selected using a conventional SPM{F} to identify those significant at p<0.05 

(uncorrected).  The time-series of condition-specific effects, from each of these voxels, were 

entered into a mean corrected data matrix M with 12 rows (one for each condition) and one 

column for each voxel. 

  M was subject to SVD as described above.  The distribution of eigenvalues (Figure 2, lower 

left) suggests only two eigenimages are required to account for most of the observed 

variance-covariance structure.  The first mode accounted for 64% and the second for 16% of 

the variance.  The first eigenimage   1V  is shown in Figure 2 (top) along with the 

corresponding eigenvariate   1U  (lower right).  The first eigenimage has positive loadings in 

the anterior cingulate, the left DLPFC, Broca's area, the thalamic nuclei and in the 

cerebellum.  Negative loadings were seen bitemporally and in the posterior cingulate.   

According to   1U  this eigenimage is prevalent in the verbal fluency tasks with negative 

scores in word shadowing.  The second spatial mode (not shown) had its highest positive 

loadings in the anterior cingulate and bitemporal regions (notably Wernicke's area on the 

left).  This mode appears to correspond to a highly non-linear, monotonic time effect with 

greatest prominence in earlier conditions. 

   The post hoc functional attribution of these eigenimages is usually based on their 

eigenvariates (U).  The first mode may represent an intentional system critical for the 

intrinsic generation of words in the sense that the key cognitive difference between verbal 

fluency and word shadowing is the intrinsic generation as opposed to extrinsic specification 

of word representations and implicit mnemonic processing.  The second system, that includes 

the anterior cingulate, seems to be involved in habituation, possibly of attentional or 

perceptual set. 

   The is nothing 'biologically' important about the particular spatial modes obtained in this 

fashion, in the sense that one could 'rotate' the eigenvectors such that they were still 



orthogonal and yet gave different eigenimages.  The uniqueness of the particular solution 

given by SVD is that the first eigenimage accounts for the largest amount of variance-

covariance and the second for the greatest amount that remains and so on.  The reason that 

the eigenimages in the example above lend themselves to such a simple interpretation is that 

the variance introduced by experimental design (intentional) was substantially greater than 

that due to time (attentional) and both these sources were greater than any other effect.  Other 

factors that ensure a parsimonious characterisation of a time-series, with small numbers of 

well-defined modes include (i) smoothness in the data and (ii) using only voxels that showed 

a non-trivial amount of change during the scanning session. 

 

D. Mapping anatomy into functional space  - multidimensional scaling 

In the previous section the functional connectivity matrix was used to define associated 

eigenimages or spatial modes.  In this section functional connectivity is used in a different 

way, namely, to constrain the proximity of two cortical areas in some functional space 

(Friston et al 1996a).  The objective here is to transform anatomical space so that the 

distance between cortical areas is directly related to their functional connectivity.  This 

transformation defines a new space whose topography is purely functional in nature.  This 

space is constructed using multidimensional scaling or principal coordinates analysis (Gower 

1966). 

   Multidimensional scaling (MDS) is a descriptive method for representing the structure of a 

system.  Based on pairwise measures of similarity or confusability (Torgerson 1958; Shepard 

1980).  The resulting multidimensional spatial configuration of a system's elements embody, 

in their proximity relationships, comparative similarities.  The technique was developed 

primarily for the analysis of perceptual spaces.  The proposal that stimuli be modelled by 

points in space, so that perceived similarity is represented by spatial distances, goes back to 

the days of Isaac Newton (1794).   

   Imagine k measures from n voxels plotted as n points in a k-dimensional space (k-space).  

If they have been normalised to zero mean and unit sum of squares, these points will fall on 

an k-1 dimensional sphere.  The closer any two points are to each other, the greater their 

correlation or functional connectivity (in fact the correlation is a cosine of the angle 

subtended at the origin).  The distribution of these points embodies the functional 

topography.  A view of this distribution, that reveals the greatest structure, is simply obtained 

by rotating the points to maximise their apparent dispersion (variance).  In other words one 

looks at the subspace with the largest 'volume' spanned by the principal axes of the n points 



in k-space.  These principal axes are given by the eigenvectors of TMM .  i.e. the column 

vectors of    1U .  From Eq(2): 
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Let Q be the matrix of desired coordinates derived by simply projecting the original data 

onto axes defined by U: where UM T=Q .  Voxels that have a correlation of unity will 

occupy the same point in MDS space.  Voxels that have uncorrelated dynamics will be 2 π  

apart.  Voxels that are negatively but totally correlated (correlation = -1) will be maximally 

separated on the opposite sides of the MDS hyperspace.  Profound negative correlations 

denote a functional association that is modelled in MDS functional space as diametrically 

opposed locations on the hyper-sphere.  In other words, two regions with profound negative 

correlations will form two 'poles' in functional space. 

   Following normalisation to unit sum of squares over each column M (the adjusted data 

matrix from the word generation study above) the data were subjected to singular value 

decomposition according to Eq(2) and the coordinates Q of the voxels in MDS functional 

space were computed.  Recall that only two eigenvalues exceed unity (Figure 2; right), 

suggesting a functional space that is essentially two dimensional.  The locations of voxels in 

this two-dimensional subspace are shown in Figure 3 (lower row) by rendering voxels from 

different regions in different colours.  The anatomical regions corresponding to the different 

colours are shown in the upper row.  Anatomical regions were selected to include those parts 

of the brain that showed the greatest variance during the 12 conditions.  Anterior regions 

(Figure 3; right) included the mediodorsal thalamus (blue), the dorsolateral prefrontal cortex 

(DLPFC), Broca's area (red) and the anterior cingulate (green).  Posterior regions (Figure 3; 

left) included the superior temporal regions (red), the posterior superior temporal regions 

(blue) and the posterior cingulate (green).  The corresponding functional spaces (Figure 3; 

lower rows) reveal a number of things about the functional topography elicited by this set of 

activation tasks.  First, each anatomical region maps into a relatively localised portion of 

functional space.  This preservation of local contiguity reflects the high correlations within 

anatomical regions, due in part to smoothness of the original data and to high degrees of 

intra-regional functional connectivity.  Secondly, the anterior regions are almost in 

juxtaposition as are posterior regions.  However, the confluence of anterior and posterior 

regions forms two diametrically opposing poles (or one axis).  This configuration suggests an 



anterior-posterior axis with prefronto-temporal and cingulo-cingulate components.  One 

might have predicted this configuration by noting that the anterior regions had high positive 

loadings on the first eigenimage (see Figure 2) while the posterior regions had high negative 

loadings.  Thirdly, within the anterior and posterior sets of regions certain generic features 

are evident.  The most striking is the particular ordering of functional interactions.  For 

example, the functional connectivity between posterior cingulate (green) and superior 

temporal regions (red) is high and similarly for the superior temporal (red) and posterior 

temporal regions (blue).  Yet the posterior cingulate and posterior temporal regions show 

very little functional connectivity (they are 2 π  apart or, equivalently, subtend 90 degrees at 

the origin). 

   These results are consistent with known anatomical connections.  For example DLPFC - 

anterior cingulate connections, DLPFC - temporal connections, bitemporal commissural 

connections and mediodorsal thalamic - DLPFC projections have all been demonstrated in 

non-human primates (Goldman-Rakic 1988).  The mediodorsal thalamic region and DLPFC 

are so correlated that one is embedded within the other (purple area).  This is pleasing given 

the known thalamo-cortical projections to DLPFC. 

 

E. Functional connectivity between systems  - Partial least squares 

Hitherto, we have been dealing with functional connectivity between two voxels.  The same 

notion can be extended to functional connectivity between two systems by noting that there 

is no fundamental difference between the dynamics of one voxel and the dynamics of a 

distributed system or pattern.  The functional connectivity between two systems is simply the 

correlation or covariance between their time-dependent activity.  The time-dependent activity 

of a system or pattern ip  is given by: 
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where ijC  is the functional connectivity between the systems described by vectors ip  and 

jp .  Consider functional connectivity between two systems in separate parts of the brain, for 

example the right and left hemispheres.  Here the data matrices ( iM  and jM ) derive from 

different sets of voxels and Eq(4) becomes: 
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If one wanted to identify the intra-hemispheric systems that showed the greatest inter-

hemispheric functional connectivity (i.e. covariance) one would need to identify the pair of 

vectors ip  and jp  that maximise ijC  in Eq(5).  SVD finds another powerful application in 

doing just this where: 
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The first columns of U and V represent the singular images that correspond to the two 

systems with the greatest amount of functional connectivity (the singular values in the 

diagonal matrix S).  In other words SVD of the (generally asymmetric) cross-covariance 

matrix, based on time-series from two anatomically separate parts of the brain, yields a series 

of paired vectors (paired columns of U and V) that, in a step-down fashion, define pairs of 

brain systems that show the greatest functional connectivity.  This particular application of 

SVD is also know as partial least squares and has been proposed for analysis of designed 

activation experiments where the two data matrices comprise (i) an imaging time-series and 

(ii) a set of behavioural or task parameters (Macintosh et al 1996).  In this application the 

paired singular vectors correspond to (i) a singular image and (ii) a set of weights that give 

the linear combination of task parameters that show the maximal covariance with the 

corresponding singular image. 

 

 

F. Differences in functional connectivity  - Generalised eigenimages 

In this section we introduce an extension of eigenimage analysis using the solution to the 

generalised eigenvalue problem.  This problem involves finding the eigenvector solution that 

involves two functional connectivity or covariance matrices and can be used to find the 

eigenimage that is maximally expressed in one time-series relative to another.  In other 

words it can find a pattern of distributed activity that is most prevalent in one data set and 

least expressed in another.  The example used to illustrate this idea is fronto-temporal 

functional disconnection in schizophrenia (see Friston et al 1996b). 



   The notion that schizophrenia represents a disintegration or fractionation of the psyche is 

as old as its name, introduced by Bleuler (1911) to convey a 'splitting' of mental faculties.  

Many of Bleuler's primary processes, such as 'loosening of associations' emphasise a 

fragmentation and loss of coherent integration.  In what follows we assume that this 

mentalistic 'splitting' has a physiological basis, and furthermore that both the mentalistic and 

physiological disintegration have precise and specific characteristics that can be understood 

in terms of functional connectivity 

  The idea is that although localised pathophysiology in cortical areas may be a sufficient 

explanation for some signs of schizophrenia it does not suffice as a rich or compelling 

explanation for the symptoms of schizophrenia. The conjecture is that symptoms such as 

hallucinations and delusions are better understood in terms of abnormal interactions or 

impaired integration between different cortical areas.  This dysfunctional integration, 

expressed at a physiological level as abnormal functional connectivity, is measurable with 

neuroimaging and observable at a cognitive level as a failure to integrate perception and 

action that manifests as clinical symptoms.  The distinction between a regionally specific 

pathology and a pathology of interaction can be seen in terms of a first order effect (e.g. 

hypofrontality) and a second order effect that only exists in the relationship between activity 

in the prefrontal cortex and some other (e.g. temporal) region.  In a similar way 

psychological abnormalities can be regarded as first order (e.g. a poverty of intrinsically cued 

behaviour in psychomotor poverty) or second order (e.g. a failure to integrate intrinsically 

cued behaviour and perception in reality distortion). 

 

1 The generalised eigenvalue solution 

Suppose that we want to find a pattern embodying the greatest amount of functional 

connectivity in control subjects, relative to schizophrenic subjects (e.g. fronto-temporal 

covariance).  To achieve this we identify an eigenimage that reflects the most functional 

connectivity in control subjects relative to a schizophrenic group (d).  This eigenimage is 

obtained by using a generalised eigenvector solution: 
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where iC  and jC  are the two functional connectivity matrices.  The generalised eigenimage 

d is essentially a single pattern that maximises the ratio of the 2-norm measure [Eq(1)] when 



applied to iC  and jC  .  Generally speaking, these matrices could represent data from two 

[groups of] subjects or from the same subject[s] scanned under different conditions.  In the 

present example we use connectivity matrices from control subjects and people with 

schizophrenia showing pronounced psychomotor poverty. 

  The data were acquired from two groups of six subjects.  Each subject was scanned six 

times during the performance of three word generation tasks (A B C C B A).  Task A was a 

verbal fluency task, requiring subjects to respond with a word that began with a heard letter.  

Task B was a semantic categorisation task in which subjects responded "man-made" or 

"natural", depending on a heard noun.  Task C was a word-shadowing task in which subjects 

simply repeated what was heard.  In the current context, the detailed nature of the tasks is not 

very important.  They were used to introduce variance and covariance in activity that could 

support an analysis of functional connectivity.  

    The groups comprised six control subjects and six schizophrenic patients.  The 

schizophrenic subjects produced less than 24 words on a standard (one minute) FAS verbal 

fluency task (generating words beginning with the letters 'F', 'A' and 'S').  The results of a 

generalised eigenimage analysis are presented in Figure 4.  As expected the pattern that best 

captures differences between the two groups involves prefrontal and temporal cortices.  

Negative correlations between left DLPFC and bilateral superior temporal regions are found 

(Figure 4; upper panels).  The amount to which this pattern was expressed in each individual 

group is shown in the lower panel using the appropriate 2-norm dCd i
T .  It is seen that this 

eigenimage, whilst prevalent in control subjects, is uniformly reduced in schizophrenic 

subjects. 

 

G. Summary 

In the preceding sections we have seen how eigenimages can be framed in terms of 

functional connectivity and the relationships among eigenimage analysis, multidimensional 

scaling, partial least squares and generalised eigenimage analysis.  In the next section we use 

the generative models perspective, described in the previous chapter, to take component 

analysis into the nonlinear domain. 

 

III NONLINEAR PCA AND ICA 

 



A Generative models 

Recall from the previous chapter how generative models of data could be framed in terms of 

a prior distribution over causes );( θvp  and a generative distribution or likelihood of the 

inputs given the causes );|( θvup .  For example, factor analysis corresponded to the 

generative model 

 

    
),:();(

)1,0:();(
Σ=

=

vuNvup
vNvp
θθ

θ
     8 

 

Namely, the underlying causes of inputs are independent normal variates that are mixed 

linearly and added to Gaussian noise to form inputs.  In the limiting case of 0→Σ  the model 

become deterministic and conforms to PCA.  By simply assuming non-Gaussian priors one 

can specify generative models for sparse coding 
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where );( θivp are chosen to be suitably sparse (i.e. heavy-tailed) with a cumulative density 

function that corresponds to the squashing function below.  The deterministic equivalent of 

sparse coding is ICA that obtains when 0→Σ .  These formulations allow us to consider 

simple extensions of PCA by looking at nonlinear versions of the underlying generative 

model. 

 

B Nonlinear PCA 

Despite its exploratory power, eigenimage analysis is fundamentally limited because 

the particular modes obtained are uniquely determined by constraints that are 

biologically implausible.  This represents an inherent limitation on the 

interpretability and usefulness of eigenimage analysis.  The two main limitations of 

conventional eigenimage analysis are that the decomposition of any observed time-

series is in terms of linearly separable components.  Secondly, the spatial modes are 

somewhat arbitrarily constrained to be orthogonal and account, successively, for the 

largest amount of variance.  From a biological perspective, the linearity constraint is 



a severe one because it precludes interactions among brain systems.  This is an 

unnatural restriction on brain activity, where one expects to see substantial 

interactions that render the expression of one mode sensitive to the expression of 

others.  Nonlinear PCA attempts to circumvent these sorts of limitations. 

   The generative model implied by Eq(8), when 0→Σ , is linear and deterministic 
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Here the causes v correspond to the eigenvariates and the model parameters to scaled 

eigenvectors VS=θ .  u is the observed data or image that comprised each row of M above.  

This linear generative model vvG θθ =),(  can now be generalised to any static nonlinear 

model by taking a second order approximation 

 

    

ji
ij

i

ij
jiij

i
ii

vv
GV

v
GV

vvVvV
vGu
vNvp

∂∂
∂

=

∂
∂

=

++=

=
=

∑∑

2

2
1

),(
)1,0:();(

K

θ
θ

    11 

 

This nonlinear model has two sorts of modes.  First-order modes iV  that mediate the effect of 

any orthogonal cause on the response (i.e. maps the causes onto voxels directly) and second-

order modes ijV  which map interactions among causes onto the measured response.  These 

second-order modes could represent the distributed systems implicated in the interaction 

between various experimentally manipulated causes.  See the example below. 

   The identification of the first- and second-order modes proceeds using expectation 

maximisation (EM) as described in the previous chapter.  In this instance the algorithm can 

be implemented as a simple neural net with forward connections from the data to the causes 

and backward connections from the causes to the predicted data.  The E-step corresponds to 

recognition of the causes by the forward connections using the current estimate of the first-

order modes and the M-Step adjusts these connections to minimise the prediction error of the 



generative model in Eq(11), using the recognised causes.  These schemes (e.g. Kramer 1991, 

Karhunen and Joutsensalo 1994, Friston 2000) typically employ a 'bottleneck' architecture 

that forces the inputs through a small number of nodes (see the insert in Figure 5).  The 

output from these nodes then diverges to produce the predicted inputs.  After learning, the 

activity of the bottleneck nodes can be treated as estimates of the causes.  These 

representations obtain by projection of the input onto a low-dimensional curvilinear manifold 

that is defined by the activity of the bottleneck.  Before looking at an empirical example we 

will briefly discuss ICA. 

 

C. Independent Component Analysis  

ICA represents another way of generalising the linear model used by PCA.  This is achieved, 

not through nonlinearities, but by assuming non-Gaussian priors.  The non-Gaussian form 

can be specified by a nonlinear transformation of the causes )(~ vv σ=  that renders then 

normally distributed, such that when 0→Σ , in Eq(9) we get 
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This is not the conventional to present ICA but is used here to connect the models for PCA 

and ICA.  The form of the nonlinear squashing function )(~ vv σ=  embodies our prior 

assumptions about the marginal distribution of the causes.  These are usually supra-Gaussian.  

There exist simple algorithms that implicitly minimise the objective function F (see previous 

chapter) using the covariances of the data.  In neuroimaging, this enforces an ICA of 

independent spatial modes, because there are more voxels than scans (McKeown et al 1998).  

In EEG there are more time-bins than channels and the independent components are temporal 

in nature.  The distinction between spatial and temporal ICA depends on whether one regard 

the Eq(12) as generating data over space or time.  See Friston (1998) for a discussion of their 

relative merits.  The important thing about ICA, relative to PCA, is that the prior densities 

model independent causes not just uncorrelated causes.  This difference is expressed in terms 

of statistical dependencies beyond second order.  See Stone (2002) for an introduction to 

these issues.  . 

 



D.  An example 

This example comes from Friston et al (2000)1 and is based on an fMRI study of visual 

processing that was designed to address the interaction between colour and motion systems.  

We had expected to demonstrate that a 'colour' mode and 'motion' mode would interact to 

produce a second order mode reflecting.  (i) Reciprocal interactions between extrastriate 

areas functionally specialised for colour and motion, (ii) interactions in lower visual areas 

mediated by convergent backwards efferents or (iii) interactions in the pulvinar mediated by 

cortico-thalamic loops). 

 

1 Data acquisition and experimental design 

A young subject was scanned under four different conditions, in 6 scan epochs, intercalated 

with a low-level (visual fixation) baseline condition.  The four conditions were repeated 8 

times in a pseudo-random order giving 384 scans in total or 32 stimulation/baseline epoch 

pairs.  The four experimental conditions comprised the presentation of (i) radially moving 

dots and (ii) stationary dots, using (i) luminance contrast and (ii) chromatic contrast in a two 

by two-factorial design.  Luminance contrast was established using isochromatic stimuli (red 

dots on a red background or green dots on a green background).  Hue contrast was obtained 

by using red (or green) dots on a green (or red) background and establishing isoluminance 

with flicker photometry.  In the two movement conditions the dots moved radially from the 

centre of the screen, at 8 degrees per second to the periphery, where they vanished.  This 

creates the impression of optical flow.  By using these stimuli we hoped to excite activity in a 

visual motion system and one specialised for colour processing.  Any interaction between 

these systems would be expressed in terms of motion-sensitive responses that depended on 

the hue or luminance contrast subtending that motion. 

 

2 Nonlinear PCA 

The data were reduced to an eight-dimensional subspace using SVD and entered into a 

nonlinear PCA using two causes.  The functional attribution of the resulting sources was 

established by looking at the expression of the corresponding first-order modes over the four 

conditions (right lower panels in Figure 5).  This expression is simply the score on the first 

                                                 
1 Although an example of nonlinear PCA, the generative model actually used finessed Eq(10) with a nonlinear 
function of the second order terms. 
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principal component over all 32 epoch-related responses for each cause.  The first mode is 

clearly a motion-sensitive mode but one that embodies some colour preference in the sense 

that the motion-dependent responses of this system are accentuated in the presence of colour 

cues.  This was not quite what we had anticipated; the first-order effect contains what would 

functionally be called an interaction between motion and colour processing.  The second 

source appears to be concerned exclusively with colour processing.  The corresponding 

anatomical profiles are shown in Figure 5 (left panels).  The first-order mode, that shows 

both motion and colour-related responses shows high loadings in bilateral motion sensitive 

complex V5 (Brodmann Areas 19 and 37 at the occipto-temporal junction) and areas 

traditionally associated with colour processing (V4 - the lingual gyrus).  The second first 

order mode is most prominent in the hippocampus, parahippocampal and related lingual 

cortices on both sides.  In summary the two first-order modes comprise: (i) an extrastriate 

cortical system including V5 and V4 that is responds to motion, and preferentially so when 

motion is supported by colour cues.  (ii) A [para]hippocampal/lingual system that is 

concerned exclusively with colour processing, above and beyond that accounted for by the 

first system.  The critical question is where do these modes interact? 

   The interaction between the extrastriate and [para]hippocampal/lingual systems conforms 

to the second order mode in the lower panels.  This mode is highlights the pulvinar of the 

thalamus and V5 bilaterally.  This is a pleasing result in that it clearly implicates the 

thalamus in the integration of extrastriate and [para]hippocampal systems.  This integration 

being mediated by recurrent [sub]cortico-thalamic connections.  It is also a result that would 

not have obtained from a conventional SPM analysis.  Indeed we looked for an interaction 

between motion and colour processing and did not see any such effect in the pulvinar. 

 

E. Summary 

We have reviewed eigenimage analysis and generalisations based on nonlinear and non-

Gaussian generative models.  All the techniques above are essentially descriptive, in that 

they do not allow one to make any statistical inferences about the characterisations that 

obtain.  In the second half of this chapter we turn to multivariate techniques that do embody 

statistical inference and explicit hypothesis testing.  We will introduce canonical images that 

can be thought of as statistically informed eigenimages pertaining to a particular effect 

introduced by experimental design.  We have seen that patterns can be identified using the 

generalised eigenvalue solution that are maximally expressed in one covariance structure 

relative to another.  Consider now using this approach where the first covariance matrix 



reflected the effects we were interested in, and the second embodied covariances due to error.  

This corresponds to canonical image analysis, and is considered in the following sections. 

 

 

IV. MANCOVA AND CANONICAL IMAGE ANALYSIS 

 

A Introduction 

In the following sections we review multivariate approaches to the analysis of functional 

imaging studies.  The exemplar analysis described uses standard multivariate techniques to 

make statistical inferences about activation effects and to describe their important features.  

Specifically, we introduce multivariate analysis of covariance (ManCova) and canonical 

variates analysis (CVA) to characterise activation effects.  This approach characterises the 

brain's response in terms of functionally connected and distributed systems in a similar 

fashion to eigenimage analysis.  Eigenimages figure in the current analysis in the following 

way.  A problematic issue in multivariate analysis of functional imaging data is that the 

number of samples (i.e. scans) is usually very small in relation to the number of components 

(i.e. voxels) of the observations.  This issue is resolved by analysing the data, not in terms of 

voxels, but in terms of eigenimages, because the number of eigenimages is much smaller 

than the number of voxels.  The importance of the multivariate analysis that ensues can be 

summarised as follows:.  (i) Unlike eigenimage analysis, it provides for statistical inferences 

(based on classical p-values) about the significance of the brain's response in terms of some 

hypothesis.  (ii) The approach implicitly takes account of spatial correlations in the data 

without making any assumptions.  (iii) The canonical variate analysis produces generalised 

eigenimages (canonical images) that capture the activation effects, while suppressing the 

effects of noise or error.  (iv) The theoretical basis is well established and can be found in 

most introductory texts on multivariate analysis (see also Friston et al 1996c). 

   Although useful, in a descriptive sense, eigenimage analysis and related approaches are not 

generally considered as 'statistical' methods that can be used to make statistical inferences; 

they are mathematical devices that simply identify prominent patterns of correlations or 

functional connectivity.  It must be said, however, that large sample, asymptotic, multivariate 

normal theory could be used to make some inferences about the relative contributions of each 

eigenimage (e.g. tests for non-sphericity) if a sufficient number of scans were available.  In 

what follows we observe that multivariate analysis of covariance (ManCova) with canonical 

variate analysis combines some features of statistical parametric mapping and eigenimage 



analysis.  Unlike statistical parametric mapping, ManCova is multivariate.  In other words, it 

considers as one observation all voxels in a single scan.  The importance of this multivariate 

approach is that effects, due to activations, confounding effects and error effects, are assessed 

both in terms of effects at each voxel and interactions among voxels.  This means one does 

not have to assume anything about spatial correlations (c.f. stationariness with Gaussian field 

models) to assess the significance of an activation effect.  Unlike statistical parametric 

mapping these correlations are explicitly included in the analysis.  The price one pays for 

adopting a multivariate approach is that inferences cannot be made about regionally specific 

changes (c.f. statistical parametric mapping).  This is because the inference pertains to all the 

components (voxels) of a multivariate variable (not a particular voxel or set of voxels).  

Furthermore, because the spatial non-sphericity has to be estimated, without knowing the 

observations came from continuous spatially extended processes, the estimates are less 

efficient and inferences are less powerful. 

   In general, multivariate analyses are implemented in two steps.  First, the significance of a 

hypothesised effect is assessed in terms of a p-value and secondly, if justified, the exact 

nature of the effect is determined.  The analysis here conforms to this two-stage procedure.  

When the brain's response is assessed to be significant using ManCova, the nature of this 

response remains to be characterised.  Canonical variate analysis (CVA) is an appropriate 

way to do this.  The canonical images obtained with CVA are similar to eigenimages but are 

based on both the activation and error.  CVA is closely related to de-noising techniques in 

EEG and MEG time-series analyses that use a generalised eigenvalue solution.  Another way 

of looking at canonical images is to think of them as eigenimages that reflect functional 

connectivity due to activations, when spurious correlations due to error are explicitly 

discounted. 

 

B. Dimension reduction and eigenimages 

The first step in multivariate analysis is to ensure that the dimensionality (number of 

components or voxels) of the data is smaller than the number of observations.  Clearly for 

images this is not the case, because there are more voxels than scans; therefore the data have 

to be transformed.  The dimension reduction proposed here is straightforward and uses the 

scan-dependent expression Y of eigenimages as a reduced set of components for each 

multivariate observation (scan).  Where: 
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As above M is a large matrix of adjusted voxel values with one column for each voxel and 

one row for each scan.  Here 'adjusted' implies mean correction and removal of any 

confounds using linear regression.  The eigenimages constitute the columns of U, another 

unitary orthonormal matrix, and their expression over scans corresponds to the columns of 

the matrix Y.  Y has one column for each eigenimage and one row for each scan.  In our work 

we use only the j columns of Y and U associated with eigenvalues greater than unity (after 

normalising each eigenvalue by the average eigenvalue).    

 

 

C. The general linear model revisited 

Recall the general linear model from previous chapters: 

 

εβ += XY       14 

where the errors are assumed to be independent and identically normally distributed.  The 

design matrix X has one column for every effect (factor or covariate) in the model.  The 

design matrix can contain both covariates and indicator variables reflecting an experimental 

design.  β  is the parameter matrix with one column vector of parameters for each mode.   

Each column of X has an associated unknown parameter.  Some of these parameters will be 

of interest, the remaining parameters will not.  We will partition the model accordingly.: 

 

εββ ++= 0011 XXY       15 

 

where 1X  represents a matrix of 0s or 1s depending on the level or presence of some 

interesting condition or treatment effect (e.g. the presence of a particular cognitive 

component) or the columns of 1X  might contain covariates of interest that could explain the 

observed variance in Y (e.g. dose of apomorphine or 'time on target').  0X   corresponds to a 

matrix of indicator variables denoting effects that are not of any interest (e.g. of being a 

particular subject or block effect) or covariates of no interest  (i.e. 'nuisance variables' such as 

global activity or confounding time effects).  

 



D. Statistical inference 

Significance is assessed by testing the null hypothesis that the effects of interest do not 

significantly reduce the error variance when compared to the remaining effects alone (or 

alternatively the null hypothesis that 1β  is zero).  The null hypothesis is tested in the 

following way.  The sum of squares and products matrix (SSPM) due to error is obtained 

from the difference between actual and estimated values of the response: 

 

)ˆ()ˆ( ββ XYXYS T
R −−=      16 

 

where the sums of squares and products due to effects of interest is given by 

 

)ˆ()ˆ( 1111 ββ XXS T
T =       17 

 

The error sum of squares and products under the null hypothesis i.e. after discounting the 

effects of interest are given by: 

 

)ˆ()ˆ( 00000 ββ XYXYS T −−=     18 

 

The significance can now be tested with: 

0S
SR=λ       19 

 

This is Wilk's statistic (known as Wilk's Lambda).  A special case of this test is Hotelling's 

T2 test and applies when one simply compares one condition with another, i.e. 1X  has only 

one column (Chatfield and Collins 1980).  Under the null hypothesis, after transformation, λ  

has Chi-squared distribution with degrees of freedom jh.  The transformation is given by: 

 
2~ln)2/)1((( jhhjv χλ+−−−     20

  

where v  are the degrees of freedom associated with error terms, equal to the number of scans 

(n) minus the number of effects modelled = n - rank(X).  j is the number of eigenimages in 



the j-variate response variable and h are the degrees of freedom associated with effects of 

interest = rank( 1X ). 

 

E. Characterising the effect 

Having established that the effects of interest are significant (e.g. differences among two or 

more activation conditions) the final step is to characterise these effects in terms of their 

spatial topography.  This characterisation uses canonical variates analysis or CVA.  The 

objective is to find a linear combination (compound or contrast) of the components of Y, in 

this case the eigenimages, that best express the activation effects when compared to error 

effects.  More exactly we want to find c1 such that the variance ratio: 
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is maximised.  Let 11 Ycz =  where 1z  is the first canonical variate and 1c  is a canonical 

image (defined in the space of the spatial modes) that maximises this ratio.  2c  is the second 

canonical image that maximises the ratio subject to the constraints 0=j
T
i cc  (and so on).  

The matrix of canonical images ],[ 1 hccc K=  is given by solution of the generalised 

eigenvalue problem: 

 

     λcScS RT =       22 

 

where λ  is a diagonal matrix of eigenvalues.  Voxel-space canonical images are obtained by 

rotating the canonical image in the columns of c back into voxel-space with the original 

eigenimages VcC = .  The columns of C now contain the voxel values of the canonical 

images.  The kth column of C (the kth canonical image) has an associated canonical value 

equal to the kth leading diagonal element of λ  times r/h.  Note that the 'activation' effect is a 

multivariate one, with j components or canonical images.  Normally only a few of these 

components have large canonical values and only these need to be reported.  There are 

procedures based on distributional approximations of λ  that allow inferences about the 

dimensionality of a response (number of canonical images).  We refer the interested reader to 

Chatfield and Collins (1980) for further details. 

 



1 Relationship to Eigenimage Analysis 

When applied to adjusted data eigenimages correspond to the eigenvectors of TS .  These 

have an interesting relationship to the canonical images: On rearranging Eq(22), we note that 

the canonical images are eigenvectors of TR SS 1− .   In other words, an eigenimage analysis of 

an activation study returns the eigenvectors that express the most variance due to the effects 

of interest.  A canonical image, on the other hand, expresses the greatest amount of variance 

due to the effects of interest relative to error.  In this sense, a CVA can be considered an 

eigenimage analysis that is 'informed' by the estimates of error and their correlations over 

voxels. 

 

F An illustrative application 

In this section we consider an application of the above theory to the word generation study in 

normal subjects, used in previous sections.  We assessed the significance of condition-

dependent effects by treating each of the 12 scans as a different condition.  Note that we do 

not consider the word generation (or word shadowing) conditions as replications of the same 

condition.  In other words, the first time one performs a word generation task is a different 

condition from the second time and so on.  The (alternative) hypothesis adopted here states 

that there is a significant difference among the 12 conditions, but does not constrain the 

nature of this difference to a particular form.  The most important differences will emerge 

from the CVA.  Clearly one might hope that these differences will be due to word generation, 

but they might not be.  This hypothesis should be compared with a more constrained 

hypothesis that considers the conditions as six replications of word shadowing and word 

generation.  This latter hypothesis is more directed and explicitly compares word shadowing 

with word generation.  This comparison could be tested in a single subject.  The point is that 

the generality afforded by the current framework allows one to test very constrained (i.e. 

specific) hypotheses or rather general hypotheses about some unspecified activation effect1.  

We choose the latter case here because it places more emphasis on canonical images as 

descriptions of what has actually occurred during the experiment. 

   The design matrix partition for effects of interest 1X  had 12 columns representing the 12 

different conditions.  We designated subject effects, time and global activity as uninteresting 

confounds 0X .  The adjusted data were reduced to 60 eigenvectors as described above.  The 

first 14 eigenvectors had (normalised) eigenvalues greater than unity and were used in the 



subsequent analysis.  The resulting matrix data Y, with 60 rows (one for each scan) and 14 

columns (one for each eigenimage) was subject to ManCova.  The significance of the 

condition effects was assessed with Wilk's Lambda.  The threshold for condition or 

activation effects was set at p = 0.02.  In other words the probability of there being no 

differences among the 12 conditions was 2%. 

 

1 Canonical Variates Analysis 

The first canonical image and its canonical variate are shown in Figure 6.  The upper panels 

show this system to include anterior cingulate and Broca's area, with more moderate 

expression in the left posterior infero-temporal regions (right).  The positive components of 

this canonical image (left) implicate ventro-medial prefrontal cortex and bitemporal regions 

(right greater than left).  One important aspect of these canonical images is their highly 

distributed yet structured nature, reflecting the distributed integration of many brain areas.   

The canonical variate expressed in terms of mean condition effects is seen in the lower panel 

of Figure 6.  It is pleasing to note that the first canonical variate corresponds to the difference 

between word shadowing and verbal fluency.   

    Recall that the eigenimage in Figure 2 reflects the main pattern of correlations evoked by 

the mean condition effects and should be compared with the first canonical image in Figure 

6.  The differences between these characterisations of activation effects are informative: The 

eigenimage is totally insensitive to the reliability or error attributable to differential 

activation from subject to subject whereas the canonical image does reflect these variations.  

For example, the absence of the posterior cingulate in the canonical image and its relative 

prominence in the eigenimage suggests that this region is implicated in some subjects but not 

in others.  The subjects that engage the posterior cingulate must do so to some considerable 

degree because the average effects (represented by the eigenimage) are quite substantial.  

Conversely, the medial prefrontal cortical deactivations are a more pronounced feature of 

activation effects than would have been inferred on the basis of the eigenimage analysis.  

These observations beg the question 'which is the best characterisation of functional 

anatomy'?  Obviously there is no simple answer but the question speaks to an important 

point.  A canonical image characterises a response relative to error, by partitioning the 

observed variance into effects of interest and a residual variation about these effects.  

Experimental design, a hypothesis, and the inferences that are sought determine this 

                                                                                                                                                       
1 This is in analogy to the use of the SPM{F}, relative to more constrained hypotheses tested with SPM{T}, in 
conventional mass-univariate approaches. 



partitioning.  An eigenimage does not embody any concept of error and is not constrained by 

any hypothesis. 

 

G Multivariate models 

CVA rests upon i.i.d. assumptions about the errors over time.  Violation of these assumptions 

has motivated the study of multivariate linear models (MLMs) for neuroimaging that allow 

for temporal non-sphericity (see Worsley et al 1997).  Although MLMs are important this 

book has chosen to focus more on univariate models.  There is a reason for this: Any MLM 

can be reformulated as a univariate model by simply vectorising the multivariate response.  

For example the MLM; 
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can be rearranged to give a univariate model 
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where ⊗  denotes the Kronecker Tensor product.  Here Vvec ⊗Σ=))(cov( ε , where Σ  are 

the covariances among components and V encodes the temporal correlations.  In MLMs Σ  is 

unconstrained and requires full estimation (in terms of RS ).  Therefore, any MLM and its 

univariate version are exactly equivalent, if we place constraints on the non-sphericity of the 

errors that ensure it has the form V⊗Σ .  This speaks to an important point; any multivariate 

analysis can proceed in a univariate setting with appropriate constraints on the non-

sphericity.  In fact MLMs are special cases that assume the covariances factorise into V⊗Σ  

and Σ  is unconstrained.  In neuroimaging there are obvious constraints on the form of Σ  

because this embodies the spatial covariances.  Random field theory harnesses these 

constraints.  MLMs do not and are therefore less sensitive. 

 

 



V. SUMMARY 

 

This chapter has described multivariate approaches to the analysis of functional imaging 

studies.  These use standard multivariate techniques to describe or make statistical inferences 

about distributed activation effects and characterise important features of functional 

connectivity.  The multivariate approach differs fundamentally from statistical parametric 

mapping, because the concept of a separate voxel or region of interest ceases to have 

meaning.  In this sense inference is about the whole image volume not any component of it.  

This feature precludes statistical inferences about regional effects made without reference to 

changes elsewhere in the brain.  This fundamental difference ensures that mass-univariate 

and multivariate approaches are likely to be regarded as distinct and complementary 

approaches to functional imaging data (see Kherif et al 2002). 

  In this chapter we have used correlations among brain measurements to identify systems 

that respond in a coherent fashion.  This identification proceeds without reference to the 

mechanisms that may mediate distributed and integrated responses.  In the next chapter we 

turn to models of effective connectivity that ground the nature of these interactions. 
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Legends for Figures 

 

Figure 1 

Schematic illustrating a simple spectral decomposition or singular-decomposition of a 

multivariate time-series.  The original time series is shown in the upper panel with time 

running along the x axis.  The first three eigenvariates and eigenvectors are shown in the 

middle panels together with the spectrum [hence spectral decomposition] of singular values.  

The eigenvalues are the square of the singular values TSS=λ .  The lower panel shows the 

data reconstructed using only three principal components.  Because they capture most of the 

variance the reconstructed sequence is very similar to the original time-series. 

 

Figure 2 

Eigenimage analysis of the PET activation study of word generation Top: Positive and 

negative components of the first eigenimage (i.e. first column of V).  The maximum intensity 

projection display format is standard and provides three views of the brain (from the back, 

from the right and from the top).  Lower Left: Eigenvalues (singular values squared) of the 

functional connectivity matrix reflecting the relative amounts of variance accounted for by 

the 11 eigenimages associated with this data.  Only two eigenvalues are greater than unity 

and to all intents and purposes the changes characterising this time-series can be considered 

two-dimensional.  Lower right: The temporal eigenvariate reflecting the expression of this 

eigenimage over the 12 conditions (i.e. the first column of U). 

 

Figure 3 

Classical or metric scaling analysis of the functional topography of intrinsic word generation 

in normal subjects.  Top:  Anatomical regions categorised according to their colour.  The 

designation was by reference to the atlas of Talairach and Tournoux (1988).  Bottom: 

Regions plotted in a functional space following the scaling transformation.  In this space the 

proximity relationships reflect the functional connectivity among regions.  The colour of 

each voxel corresponds to the anatomical region it belongs to.  The brightness reflects the 

local density of points corresponding to voxels in anatomical space.  This density was 

estimated by binning the number of voxels in 0.02 'boxes' and smoothing with a Gaussian 

kernel of full width at half maximum of 3 boxes.  Each colour was scaled to its maximum 

brightness. 

 



Figure 4 

Generalised eigenimage analysis of schizophrenic and control subjects.  Top left and right: 

Positive and negative loadings of the first eigenimage that is maximally expressed in the 

control group and minimally expressed in the schizophrenic group.  This analysis used PET 

activation studies of word generation with six scans per subject and six subjects per group.  

The activation study involved three word generation conditions (word shadowing, semantic 

categorisation and verbal fluency) each of which was presented twice.  The grey scale is 

arbitrary and each image has been normalised to the image maximum.  The display format is 

standard and represents a maximum intensity projection.  This eigenimage is relatively less 

expressed in the schizophrenic data.  This point is made by expressing the amount of 

functional connectivity attributable to the eigenimage in (each subject in) both groups, using 

the appropriate 2-norm (lower panel). 

 

Figure 5 

Upper panel: Schematic of the neural net architecture used to estimate causes and modes.  

Feed-forward connections from the input layer to the hidden layer provide an estimate of the 

causes using some recognition model (the E-Step).  This estimate minimises prediction error 

under the constraints imposed by prior assumption about the causes.  The modes or 

parameters are updated in an M-Step.  The architecture is quite ubiquitous and when 

'unwrapped' discloses the hidden layer as a 'bottleneck' (see insert).  These 'bottleneck' 

architectures are characteristic of manifold learning algorithms like nonlinear PCA. 

Lower panel (left): Condition-specific expression of the two first orders modes ensuing from 

the visual processing fMRI study.  These data represent the degree to which the first 

principal component of epoch-related responses over the 32 photic stimulation/baseline pairs 

was expressed.  These condition-specific responses are plotted in terms of the four conditions 

for the two modes.  Motion - motion present.  Stat. - stationary dots.  Colour - isoluminant, 

chromatic contrast stimuli.  Isochr.  - isochromatic, luminance contrast stimuli. 

Lower panels (right): The axial slices have been selected to include the maxima of the 

corresponding spatial modes.  In this display format the modes have been thresholded at 1.64 

of each mode's standard deviation over all voxels.  The resulting excursion set has been 

superimposed onto a structural T1 weighted MRI image. 

 



Figure 6 

Top: The first canonical image displayed as maximum intensity projections of the positive 

and negative components.  The display format is standard and provides three views of the 

brain from the front, the back and the right hand side.  The grey scale is arbitrary and the 

space conforms to that described in the atlas of Talairach and Tournoux (1988).  Bottom:  

The expression of the first canonical image (i.e. the canonical variate) averaged over 

conditions.  The odd conditions correspond to word shadowing and the even conditions 

correspond to word generation.  This canonical variate is clearly sensitive to the differences 

evoked by these two tasks. 
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