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Abstract

Rigid body registration is one of the simplest forms of image registration, so this
chapter provides an ideal framework for introducing some of the concepts that will
be used by the more complex registration methods described later. The shape of a
human brain changes very little with head movement, so rigid body transformations
can be used to model different head positions of the same subject. Registration
methods described in this chapter include within modality, or between different
modalities such as PET and MRI. Matching of two images is performed by finding
the rotations and translations that optimize some mutual function of the images.
Within modality registration generally involves matching the images by minimizing
the sum of squared difference between them. For between modality registration, the
matching criterion needs to be more complex.

2.1 Introduction

Image registration is important in many aspects of functional image analysis. In imaging neuro-
science, particularly for fMRI, the signal changes due to any hæmodynamic response can be small
compared to apparent signal differences that can result from subject movement. Subject head
movement in the scanner cannot be completely eliminated, so retrospective motion correction is
performed as a preprocessing step. This is especially important for experiments where subjects
may move in the scanner in a way that is correlated with the different conditions [12]. Even tiny
systematic differences can result in a significant signal accumulating over numerous scans. With-
out suitable corrections, artifacts arising from subject movement correlated with the experimental
paradigm may appear as activations. A second reason why motion correction is important is that
it increases sensitivity. The t-test is based on the signal change relative to the residual variance.
The residual variance is computed from the sum of squared differences between the data and the
linear model to which it is fitted. Movement artifacts add to this residual variance, and so reduce
the sensitivity of the test to true activations.

For studies of a single subject, sites of activation can be accurately localized by superimpos-
ing them on a high resolution structural image of the subject (typically a T1 weighted MRI).
This requires registration of the functional images with the structural image. As in the case of
movement correction, this is normally performed by optimizing a set of parameters describing
a rigid body transformation, but the matching criterion needs to be more complex because the
structural and functional images normally look very different. A further use for this registration
is that a more precise spatial normalization can be achieved by computing it from a more detailed
structural image. If the functional and structural images are in register, then a warp computed
from the structural image can be applied to the functional images.

Another application of rigid registration is within the field of morphometry, and involves
identifying shape changes within single subjects by subtracting coregistered images acquired at
different times. The changes could arise for a number of different reasons, but most are related
to pathology. Because the scans are of the same subject, the first step for this kind of analysis
involves registering the images together by a rigid body transformation.

At its simplest, image registration involves estimating a mapping between a pair of images.
One image is assumed to remain stationary (the reference image), whereas the other (the source
image) is spatially transformed to match it. In order to transform the source to match the
reference, it is necessary to determine a mapping from each voxel position in the reference to a
corresponding position in the source. The source is then re-sampled at the new positions. The
mapping can be thought of as a function of a set of estimated transformation parameters. A
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rigid-body transformation in three dimensions is defined by six parameters: three translations
and three rotations.

There are two steps involved in registering a pair of images together. There is the registration
itself, whereby the set of parameters describing a transformation is estimated. Then there is the
transformation, where one of the images is transformed according to the estimated parameters.
Performing the registration normally involves iteratively transforming the source image many
times, using different parameters, until some matching criterion is optimized.

First of all, this chapter will explain how images are transformed via the process of re-sampling.
This chapter is about about rigid registration of images, so the next section describes the pa-
rameterization of rigid-body transformations as a subset of the more general affine transforma-
tions. The final two sections describe methods of rigid-body registration, in both intra- and
inter-modality contexts. Intra-modality registration implies registration of images acquired using
the same modality and scanning sequence or contrast agent, whereas inter-modality registration
allows the registration of different modalities (e.g., T1 to T2 weighted MRI, or MRI to PET).

2.2 Re-sampling Images

An image transformation is usually implemented as a “pulling” operation (where pixel values are
pulled from the original image into their new location) rather than a “pushing” one (where the
pixels in the original image are pushed into their new location). This involves determining for
each voxel in the transformed image, the corresponding intensity in the original image. Usually,
this requires sampling between the centers of voxels, so some form of interpolation is needed.

2.2.1 Simple Interpolation

The simplest approach is to take the value of the closest voxel to the desired sample point. This
is referred to as nearest neighbor or zero-order hold re-sampling. This has the advantage that the
original voxel intensities are preserved, but the resulting image is degraded quite considerably,
resulting in the re-sampled image having a “blocky” appearance.

Another approach is to use trilinear interpolation (first-order hold) to re-sample the data. This
is slower than nearest neighbor, but the resulting images are less “blocky”. However, trilinear
interpolation has the effect of losing some high frequency information from the image.

Figure 2.1 will now be used to illustrate bilinear interpolation (the two dimensionsional versio
of trilinear interpolation). Assuming that there is a regular grid of pixels at co-ordinates xa, ya
to xp, yp, having intensities va to vp, and that the point to re-sample is at u. The value at points
r and s are first determined (using linear interpolation) as follows:

vr =
(xg − xr)vf + (xr − xf )vg

xg − xf
vs =

(xk − xs)vj + (xs − xj)vk
xk − xj

Then vu is determined by interpolating between vr and vs:

vu =
(yu − ys)vr + (yr − yu)vs

yr − ys

The extension of the approach to three dimensions is trivial.
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Figure 2.1: Illustration of image interpolation in two dimensions. Points a through to p represent
the original regular grid of pixels. Point u is the point who’s value is to be determined. Points q
to t are used as intermediates in the computation.

2.2.2 Polynomial Interpolation

Rather than using only the 8 nearest neighbors (in 3D) to estimate the value at a point, more
neighbors can be used in order to fit a smooth function through the neighboring voxels, and then
read off the value of the function at the desired location. Polynomial interpolation is one such
approach (zero- and first-order hold interpolations are simply low order polynomial interpola-
tions). It is now illustrated how vq can be determined from pixels a to d. The coefficients (q) of
a polynomial that runs through these points can be obtained by computing:

q =


1 0 0 0
1 (xb − xa) (xb − xa)2 (xb − xa)3

1 (xc − xa) (xc − xa)2 (xc − xa)3

1 (xd − xa) (xd − xa)2 (xd − xa)3


−1 

va
vb
vc
vd


Then vq can be determined from these coefficients by:

vq =
[
1 (xq − xa) (xq − xa)2 (xq − xa)3

]
q

To determine vu, a similar polynomial would be fitted through points q, r, s and t. The
Vandermonde matrices required for polynomial interpolation are very ill conditioned, especially
for higher orders. A better way of doing polynomial interpolation involves using Lagrange polyno-
mials [see 22, 13]. Polynomial interpolation is a very crude approach, which has the disadvantage
that discontinuities arise when moving from different sets of nearest neighbors.
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Figure 2.2: Sinc function in two dimensions, both with (right) and without (left) a Hanning
window.

2.2.3 Windowed Sinc Interpolation

The optimum method of applying rigid-body transformations to images with minimal interpola-
tion artifact is to do it in Fourier space. In real space, the interpolation method that gives results
closest to a Fourier interpolation is sinc interpolation. This involves convolving the image with a
sinc function centered on the point to be re-sampled. To perform a pure sinc interpolation, every
voxel in the image should be used to sample a single point. This is not feasible due to speed
considerations, so an approximation using a limited number of nearest neighbors is used. Because
the sinc function extends to infinity, it is often truncated by modulating with a Hanning window
(see Figure 2.2). Because the function is separable, the implementation of sinc interpolation
is similar to that for polynomial interpolation, in that it is performed sequentially in the three
dimensions of the volume. For one dimension the windowed sinc function using the I nearest
neighbors would be:

I∑
i=1

vi

sin(πdi)
πdi

1
2 (1 + cos (2πdi/I))∑I

j=1
sin(πdj)
πdj

1
2 (1 + cos (2πdj/I))

where di is the distance from the center of the ith voxel to the point to be sampled, and vi is the
value of the ith voxel.

2.2.4 Generalized Interpolation

The methods described so far are all classical interpolation methods that locally convolve the
image with some form of interpolant1. Much more efficient re-sampling can be performed using
generalized interpolation [27], where the images are first transformed into something else before
applying the local convolution. Generalized interpolation methods model an image as a linear
combination of basis functions with local support, typically B-splines or o-Moms (maximal-order
interpolation of minimal support) basis functions (see Figure 2.3). Before re-sampling begins, an

1The polynomial interpolation can also be formulated this way by combining Equations 2.1 and 2.1 to eliminate
the intermediate q.
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Figure 2.3: This figure illustrates a one dimensional B-spline representation of an image, where
the image is assumed to be composed of a linear combination of B-spline basis functions. The
dotted lines are the individual basis functions, which sum to produce the interpolated function
(solid line).

image of basis function coefficients is produced, which involves a very fast deconvolution [29, 30].
Re-sampling at each new point then involves computing the appropriate linear combination of
basis functions, which can be thought of as a local convolution of the basis function coefficients.

B-splines are a family of functions of varying degree. Interpolation using B-splines of degree 0
or 1 (first and second order) is identical to nearest neighbor2 or linear interpolation respectively.
B-splines of degree n are given by:

βn(x) =
n∑
j=0

(−1)j(n+ 1)
(n+ 1− j)!j!

max
(
n+ 1

2
+ x− j, 0

)n
An nth degree B-spline has a local support of n+1, which means that during the final re-sampling
step, a linear combination of n+ 1 basis functions are needed to compute an interpolated value.
o-Moms are derived from B-splines, and consist of a linear combination of the B-spline and its
derivatives. They produce the most accurate interpolation for the least local support, but lack
some of the B-splines’ advantages. Unlike the o-Moms functions, a B-spline of order n is n − 1
times continuously differentiable.

2.2.5 Fourier Methods

Higher order interpolation is slow when many neighboring voxels are used, but there are faster
ways of interpolating when doing rigid-body transformations. Translations parallel to the axes
are trivial, as these simply involve convolving with a translated delta function. For translations
that are not whole numbers of pixels, the delta function is replaced by a sinc function centered

2Except with a slightly different treatment exactly in the center of two voxels.
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at the translation distance. The use of fast Fourier transforms means that the convolution can
be performed most rapidly as a multiplication in Fourier space. It is clear how translations can
be performed in this way, but rotations are less obvious. One way that rotations can be effected
involves replacing them by a series of shears [7] (see Section 2.3.4). A shear simply involves
translating different rows or columns of an image by different amounts, so each shear can be
performed as a series of one dimensional convolutions.

2.3 Rigid-body Transformations

Rigid-body transformations consist of only rotations and translations, and leave given arrange-
ments unchanged. They are a subset of the more general affine3 transformations. For each point
(x1, x2, x3) in an image, an affine mapping can be defined into the co-ordinates of another space
(y1, y2, y3). This is expressed as:

y1 =
y2 =
y3 =

m11x1 + m12x2 + m13x3 + m14

m21x1 + m22x2 + m23x3 + m24

m31x1 + m32x2 + m33x3 + m34

which is often represented by a simple matrix multiplication (y = Mx):
y1

y2

y3

1

 =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1



x1

x2

x3

1


The elegance of formulating these transformations in terms of matrices is that several of them

can be combined, simply by multiplying the matrices together to form a single matrix. This
means that repeated re-sampling of data can be avoided when re-orienting an image. Inverse
affine transformations are obtained by inverting the transformation matrix.

2.3.1 Translations

If a point x is to be translated by q units, then the transformation is simply:

y = x + q

In matrix terms, this can be considered as:
y1

y2

y3

1

 =


1 0 0 q1

0 1 0 q2

0 0 1 q3

0 0 0 1



x1

x2

x3

1


2.3.2 Rotations

In two dimensions, a rotation is described by a single angle. Consider a point at co-ordinate
(x1, x2) on a two dimensional plane. A rotation of this point to new co-ordinates (y1, y2), by θ
radians around the origin, can be generated by the transformation:

y1 = cos(θ)x1 + sin(θ)x2

y2 = −sin(θ)x1 + cos(θ)x2

3Affine means that parallel lines remain parallel after the transformation.
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This is another example of an affine transformation. For the three dimensional case, there are
three orthogonal planes that an object can be rotated in. These planes of rotation are normally
expressed as being around the axes. A rotation of q1 radians about the first (x) axis is normally
called pitch, and is performed by:

y1

y2

y3

1

 =


1 0 0 0
0 cos(q1) sin(q1) 0
0 −sin(q1) cos(q1) 0
0 0 0 1



x1

x2

x3

1


Similarly, rotations about the second (y) and third (z) axes (called roll and yaw respectively) are
carried out by the following matrices:


cos(q2) 0 sin(q2) 0

0 1 0 0
−sin(q2) 0 cos(q2) 0

0 0 0 1

 and


cos(q3) sin(q3) 0 0
−sin(q3) cos(q3) 0 0

0 0 1 0
0 0 0 1

.

Rotations are combined by multiplying these matrices together in the appropriate order. The
order of the operations is important. For example, a rotation about the first axis of π/2 radians
followed by an equivalent rotation about the second would produce a very different result to that
obtained if the order of the operations was reversed.

2.3.3 Zooms

The affine transformations described so far will generate purely rigid-body mappings. Zooms
are needed to change the size of an image, or to work with images whose voxel sizes are not
isotropic, or differ between images. These represent scalings along the orthogonal axes, and can
be represented via: 

y1

y2

y3

1

 =


q1 0 0 0
0 q2 0 0
0 0 q3 0
0 0 0 1



x1

x2

x3

1


A single zoom by a factor of -1 will flip an image (see Section 2.3.7). Two flips in different

directions will merely rotate it by π radians (a rigid-body transformation). In fact, any affine
transformation with a negative determinant will render the image flipped.

2.3.4 Shears

Shearing by parameters q1, q2 and q3 can be performed by the following matrix:
1 q1 q2 0
0 1 q3 0
0 0 1 0
0 0 0 1


A shear by itself is not a rigid-body transformation, but it is possible to combine shears in

order to generate a rotation. In two dimensions, a matrix encoding a rotation of θ radians about



2.3. RIGID-BODY TRANSFORMATIONS 9

the origin (see Section 2.4) can be constructed by multiplying together three matrices that effect
shears [7]: cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0
0 0 1

 ≡
1 tan(θ/2) 0

0 1 0
0 0 1

 1 0 0
sin(θ) 1 0

0 0 1

1 tan(θ/2) 0
0 1 0
0 0 1


Rotations in three dimensions can be decomposed into four shears [6]. As shears can be performed
quickly as one dimensional convolutions, then these decompositions are very useful for doing
accurate and rapid rigid-body transformations of images.

2.3.5 Parameterizing a Rigid-body Transformation

When doing rigid registration of a pair of images, it is necessary to estimate six parameters
that describe the rigid-body transformation matrix. There are many ways of parameterizing this
transformation in terms of six parameters (q). One possible form is:

M = TR

where:

T =


1 0 0 q1

0 1 0 q2

0 0 1 q3

0 0 0 1


and:

R =


1 0 0 0
0 cos(q4) sin(q4) 0
0 −sin(q4) cos(q4) 0
0 0 0 1



cos(q5) 0 sin(q5) 0

0 1 0 0
−sin(q5) 0 cos(q5) 0

0 0 0 1



cos(q6) sin(q6) 0 0
−sin(q6) cos(q6) 0 0

0 0 1 0
0 0 0 1


Sometimes it is desirable to extract transformation parameters from a matrix. Extracting

these parameters q from M is relatively straightforward. Determining the translations is trivial,
as they are simply contained in the fourth column of M. This just leaves the rotations:

R =


c5c6 c5s6 s5 0

−s4s5c6 − c4s6 −s4s5s6 + c4c6 s4c5 0
−c4s5c6 + s4s6 −c4s5s6 − s4c6 c4c5 0

0 0 0 1


where s4, s5 and s6 are the sines, and c4, c5 and c6 are the cosines of parameters q4, q5 and q6

respectively. Therefore, provided that c5 is not zero:

q5 = sin−1(r13)
q4 = atan2(r23/cos(q5), r33/cos(q5)
q6 = atan2(r12/cos(q5), r11/cos(q5)

where atan2 is the four quadrant inverse tangent.
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2.3.6 Working with Volumes of Differing or Anisotropic Voxel Sizes

Voxel sizes need be considered during image registration. Often, the images (say f and g) will have
voxels that are anisotropic. The dimensions of the voxels are also likely to differ between images
of different modalities. For simplicity, a Euclidean space is used, where measures of distance are
expressed in millimeters. Rather than transforming the images into volumes with cubic voxels
that are the same size in all images, one can simply define affine transformation matrices that map
from voxel co-ordinates into this Euclidean space. For example, if image f is of size 128×128×43
and has voxels that are 2.1mm× 2.1mm× 2.45mm, the following matrix can be defined:

Mf =


2.1 0 0 −135.45
0 2.1 0 −135.45
0 0 2.45 −53.9
0 0 0 1


This transformation matrix maps voxel co-ordinates to a Euclidean space whose axes are parallel
to those of the image and distances are measured in millimeters, with the origin at the center of the
image volume (i.e. Mf

[
64.5 64.5 22 1

]T =
[
0 0 0 1

]T . A similar matrix can be defined
for g (Mg). Because modern MR image formats such as SPI (Standard Product Interconnect)
generally contain information about image orientations in their headers, it is possible to extract
this information to automatically compute values for Mf or Mg. This makes it possible to easily
register images together that were originally acquired in completely different orientations.

The objective of a rigid-body registration is to determine the affine transformation that maps
the co-ordinates of image g, to that of f . To accomplish this, a rigid-body transformation matrix
Mr is determined, such that Mf

−1Mr
−1Mg will map from voxels in g to those in f . The inverse

of this matrix maps from f to g. Once Mr has been determined, Mf can be set to MrMf . From
there onwards the mapping between the voxels of the two images can be achieved by Mf

−1Mg.
Similarly, if another image (h) is also registered with g in the same manner, then not only is
there a mapping from h to g (via Mg

−1Mh), but there is also one from h to f , which is simply
Mf
−1Mh (derived from Mf

−1MgMg
−1Mh).

2.3.7 Left- and Right-handed Co-ordinate Systems

Positions in space can be represented in either a left- or right-handed co-ordinate system (see
Figure 2.4), where one system is a mirror image of the other. For example, the system used by
the Talairach Atlas [26] is right-handed, because the first dimension (often referred to as the x
direction) increases from left to right, the second dimension goes from posterior to anterior (back
to front) and the third dimension increases from inferior to superior (bottom to top). The axes
can be rotated by any angle, and they still retain their handedness. An affine transformation
mapping between left and right-handed co-ordinate systems has a negative determinant, whereas
one that maps between co-ordinate systems of the same kind will have a positive determinant.
Because the left and right sides of a brain have similar appearances, care must be taken when re-
orienting image volumes. Consistency of the co-ordinate systems can be achieved by performing
any re-orientations using affine transformations, and checking the determinants of the matrices.

2.3.8 Rotating tensors

Diffusion tensor imaging (DTI) is becoming increasingly useful. These datasets are usually stored
as six images containing a scalar field for each unique tensor element. It is worth noting that
a rigid-body transformation of a DTI dataset is not a simple matter of rigidly rotating the
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Figure 2.4: Left- and right-handed co-ordinate systems. The thumb corresponds to the x-axis,
the index finger to the y-axis and the second finger to the z-axis.

individual scalar fields4. Once these fields have been re-sampled, the tensor represented at every
voxel position needs to be rotated. A 3 × 3 tensor T can be rotated by a 3 × 3 matrix R by
T′ = RTRT .

If DTI volumes are to be transformed using more complex warping models, then the local
derivatives of the deformations (Jacobian matrices) need to be computed at each voxel. Suitable
transformations can then be extracted from these derivatives, and applied to each element of the
re-sampled tensor field [1, 2].

2.4 Within-Modality Rigid Registration

Whenever several images of the same subject have been acquired, it is extremely useful to have
them all in register. Some of the simple benefits of this include allowing images to be averaged in
order to increase signal to noise, or to subtract one image from another to emphasize differences
between the images. Rigid5 registration is normally used for retrospectively registering images of
the same subject that have been collected at different times. Even if images were acquired during
the same scanning session, the subject may have moved slightly between acquisitions.

The most common application of within-modality registration in functional imaging is to re-
duce motion artifacts by realigning the volumes in image time-series. The objective of realignment
is to determine the rigid body transformations that best map the series of functional images to
the same space. This can be achieved by minimizing the sum of squared differences between each
of the images and a reference image, where the reference image could be one of the images in the
series. For slightly better results, this procedure could be repeated, but instead of matching to
one of the images from the series, the images would be registered to the mean of all the realigned
images. Because of the non-stationary variance in the images, a variance image could be com-
puted at the same time as the mean, in order to provide better weighting for the registration.

4It is worth noting that some interpolation methods are unsuitable for re-sampling the raw scalar fields, as the
introduction of sampling errors can cause the positive definite nature of the tensors to be lost.

5Or affine registration if voxel sizes are not accurately known.
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Voxels with a lot of variance should be given lower weighting, whereas those with less variance
should be weighted more highly.

Within-modality image registration is also useful for looking at shape differences of brains.
Morphometric studies sometimes involve looking at changes in brain shape over time, often to
study the progression of a disease such as Alzheimers, or to monitor tumor growth or shrinkage.
Differences between structural MR scans acquired at different times are identified, by first co-
registering the images and then looking at the difference between the registered images. Rigid
registration can also be used as a pre-processing step before using nonlinear registration methods
for identifying shape changes [8].

Image registration involves estimating a set of parameters describing a spatial transformation
that “best” match the images together. The goodness of the match is based on a cost function,
which is maximized or minimized using some optimization algorithm. This section deals with
registering images that have been collected using the same (or similar) modalities, allowing a
relatively simple cost function to be used. In this case, the cost function is the mean squared
difference between the images. Section 2.5 deals with the more complex task of registering images
with different contrasts.

2.4.1 Optimization

The objective of optimization is to determine the values for a set of parameters for which some
function of the parameters is minimized (or maximized). One of the simplest cases involves deter-
mining the optimum parameters for a model in order to minimize the sum of squared differences
between a model and a set of real world data (χ2). Normally there are many parameters, and it is
not possible to exhaustively search through the whole parameter space. The usual approach is to
make an initial parameter estimate, and begin iteratively searching from there. At each iteration,
the model is evaluated using the current parameter estimates, and χ2 computed. A judgement
is then made about how the parameter estimates should be modified, before continuing on to
the next iteration. The optimization is terminated when some convergence criterion is achieved
(usually when χ2 stops decreasing).

The image registration approach described here is essentially an optimization. One image (the
source image) is spatially transformed so that it matches another (the reference image), by mini-
mizing χ2. The parameters that are optimized are those that describe the spatial transformation
(although there are often other nuisance parameters required by the model, such as intensity
scaling parameters). A good algorithm to use for rigid registration [10, 34] is Gauss-Newton
optimization, and it is illustrated here.

Suppose that bi(q) is the function describing the difference between the source and reference
images at voxel i, when the vector of model parameters have values q. For each voxel, a first
approximation of Taylor’s Theorem can be used to estimate the value that this difference will
take if the parameters q are decreased by t:

bi(q− t) ' bi(q)− t1
∂bi(q)
∂q1

− t2
∂bi(q)
∂q2

. . .

This allows the construction of a set of simultaneous equations (of the form At ' b) for estimating
the values that t should assume to in order to minimize

∑
i bi(q− t)2:

∂b1(q)
∂q1

∂b1(q)
∂q2

. . .
∂b2(q)
∂q1

∂b2(q)
∂q2

. . .
...

...
. . .


t1t2

...

 '
b1(q)
b2(q)

...
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From this, an iterative scheme can be derived for improving the parameter estimates. For iteration
n, the parameters q are updated as:

q(n+1) = q(n) −
(
ATA

)−1
ATb (2.1)

where A =


∂b1(q)
∂q1

∂b1(q)
∂q2

. . .
∂b2(q)
∂q1

∂b2(q)
∂q2

. . .
...

...
. . .

 and b =

b1(q)
b2(q)

...

.

This process is repeated until χ2 can no longer be decreased - or for a fixed number of iterations.
There is no guarantee that the best global solution will be reached, because the algorithm can
get caught in a local minimum. To reduce this problem, the starting estimates for q should be
set as close as possible to the optimum solution. The number of potential local minima can also
be decreased by working with smooth images. This also has the effect of making the first order
Taylor approximation more accurate for larger displacements. Once the registration is close to
the final solution, it can continue with less smooth images.

In practice, ATA and ATb from Eqn. 2.1 are often computed ‘on the fly’ for each iteration. By
computing these matrices using only a few rows of A and b at a time, much less computer memory
is required than is necessary for storing the whole of matrix A. Also, the partial derivatives
∂bi(q)/∂qj can be rapidly computed from the gradients of the images using the chain rule (see
[32] for detailed information).

It should be noted that element i of ATb is equal to 1
2
∂χ2

∂qi
, and that element i, j of ATA is

approximately equal to 1
2
∂2χ2

∂qi∂qj
(one half of the Hessian matrix, often referred to as the curvature

matrix - see [22], Section 15.5 for a general description, or [32, 33] for more information related
to image registration). Another way of thinking about the optimization is that it fits a quadratic
function to the error surface at each iteration. Successive parameter estimates are chosen such
that they are at the minimum point of this quadratic (illustrated for a single parameter in Figure
2.5).

2.4.2 Implementation

This section is about estimating parameters that describe a rigid-body transformation, but the
principles can be extended to models that describe nonlinear warps. To register a source image
f to a reference image g, a six parameter rigid-body transformation (parameterized by q1 to q6)
would be used. To perform the registration, a number of points in the reference image (each
denoted by xi) are compared with points in the source image (denoted by Mxi, where M is
the rigid-body transformation matrix constructed from the six parameters). The images may be
scaled differently, so an additional intensity scaling parameter (q7) may be included in the model.
The parameters (q) are optimized by minimizing the sum of squared differences6 between the
images according to the algorithm described in Sections 2.3.5 and 2.4.1 (Eqn. 2.1). The function
that is minimized is: ∑

i

(f(Mxi)− q7g(xi))2

6Strictly speaking, it is the mean squared difference that is minimized, rather than the sum of squared differ-
ences. Inevitably, some values of Mxi will lie outside the domain of f , so nothing is known about what the image
intensity should be at these points. The computations are only performed for points where both xi and Mxi lie
within the field of view of the images.
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Figure 2.5: The optimization can be thought of as fitting a series of quadratics to the error
surface. Each parameter update is such that it falls at the minimum of the quadratic.

where M = Mf
−1Mr

−1Mg, and Mr is constructed from parameters q (refer to Section 2.3.6).
Vector b is generated for each iteration as:

b =

f(Mx1)− q7g(x1)
f(Mx2)− q7g(x2)

...


Each column of matrix A is constructed by differentiating b with respect to parameters q1 to q7:

A =


∂f(Mx1)
∂q1

∂f(Mx1)
∂q2

. . . ∂f(Mx1)
∂q6

−g(x1)
∂f(Mx2)
∂q1

∂f(Mx2)
∂q2

. . . ∂f(Mx2)
∂q6

−g(x2)
...

...
. . .

...
...


Because non-singular affine transformations are easily invertible, it is possible to make the

registration more robust by also considering what happens with the inverse transformation. By
swapping around the source and reference image, the registration problem also becomes one of
minimizing: ∑

j

(g(M−1yj)− q−1
7 f(yj))2

In theory, a more robust solution could be achieved by simultaneously including the inverse
transformation to make the registration problem symmetric [34]. The cost function would then
be:

λ1

∑
i

(f(Mxi)− q7g(xi))2 + λ2

∑
j

(g(M−1yj)− q−1
7 f(yj))2
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Normally, the intensity scaling of the image pair will be similar, so equal values for the weighting
factors (λ1 and λ2) can be used. Matrix A and vector b would then be formulated as:

b =



λ
1
2
1 (f(Mx1)− q7g(x1))

λ
1
2
1 (f(Mx2)− q7g(x2))

...

λ
1
2
2 (g(M−1y1)− q−1

7 f(y1))

λ
1
2
2 (g(M−1y2)− q−1

7 f(y2))
...


and

A =



λ
1
2
1
∂f(Mx1)
∂q1

. . . λ
1
2
1
∂f(Mx1)
∂q6

−λ
1
2
1 g(x1)

λ
1
2
1
∂f(Mx2)
∂q1

. . . λ
1
2
1
∂f(Mx2)
∂q6

−λ
1
2
1 g(x2)

...
. . .

...
...

λ
1
2
2
∂g(M−1y1)

∂q1
. . . λ

1
2
2
∂g(M−1y1)

∂q6
λ

1
2
2 q
−2
7 f(y1)

λ
1
2
2
∂g(M−1y2)

∂q1
. . . λ

1
2
2
∂g(M−1y2)

∂q6
λ

1
2
2 q
−2
7 f(y2)

...
. . .

...
...



2.4.3 Residual Artifacts from PET and fMRI

Even after realignment, there may still be some motion related artifacts remaining in functional
data. After retrospective realignment of PET images with large movements, the primary source of
error is due to incorrect attenuation correction. In emission tomography methods, many photons
are not detected because they are attenuated by the subject’s head. Normally, a transmission
scan (using a moving radioactive source external to the subject) is acquired before collecting
the emission scans. The ratio of the number of detected photon pairs from the source, with
and without a head in the field of view, produces a map of the proportion of photons that are
absorbed along any line-of-response. If a subject moves between the transmission and emission
scans, then the applied attenuation correction is incorrect because the emission scan is no longer
aligned with the transmission scan. There are methods for correcting these errors [4], but they
are beyond the scope of this book.

In fMRI, there are many sources of motion related artifacts. The most obvious ones are:

• Interpolation error from the re-sampling algorithm used to transform the images can be one
of the main sources of motion related artifacts. When the image series is re-sampled, it is
important to use a very accurate interpolation method.

• When MR images are reconstructed, the final images are usually the modulus of the initially
complex data, resulting in any voxels that should be negative being rendered positive. This
has implications when the images are re-sampled, because it leads to errors at the edge of
the brain that cannot be corrected however good the interpolation method is. Possible ways
to circumvent this problem are to work with complex data, or possibly to apply a low pass
filter to the complex data before taking the modulus.

• The sensitivity (slice selection) profile of each slice also plays a role in introducing artifacts
[20].
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• fMRI images are spatially distorted, and the amount of distortion depends partly upon the
position of the subject’s head within the magnetic field. Relatively large subject movements
result in the brain images changing shape, and these shape changes cannot be corrected by
a rigid body transformation [15, 3].

• Each fMRI volume of a series is currently acquired a plane at a time over a period of a
few seconds. Subject movement between acquiring the first and last plane of any volume is
another reason why the images may not strictly obey the rules of rigid body motion.

• After a slice is magnetized, the excited tissue takes time to recover to its original state,
and the amount of recovery that has taken place will influence the intensity of the tissue in
the image. Out of plane movement will result in a slightly different part of the brain being
excited during each repeat. This means that the spin excitation will vary in a way that is
related to head motion, and so leads to more movement related artifacts [11].

• Nyquist ghost artifacts in MR images do not obey the same rigid body rules as the head,
so a rigid rotation to align the head will not mean that the ghosts are aligned. The same
also applies to other image artifacts such as those arising due to chemical shifts.

• The accuracy of the estimated registration parameters is normally in the region of tens
of µm. This is dependent upon many factors, including the effects just mentioned. Even
the signal changes elicited by the experiment can have a slight effect (a few µm) on the
estimated parameters [9].

These problems cannot be corrected by simple image realignment, and so may be sources of
possible stimulus correlated motion artifacts. Systematic movement artifacts resulting in a signal
change of only one or two percent can lead to highly significant false positives over an experiment
with many scans. This is especially important for experiments where some conditions may cause
slight head movements (such as motor tasks, or speech), because these movements are likely to
be highly correlated with the experimental design. In cases like this, it is difficult to separate true
activations from stimulus correlated motion artifacts. Providing there are enough images in the
series and the movements are small, some of these artifacts can be removed by using an ANCOVA
model to remove any signal that is correlated with functions of the movement parameters [11].
However, when the estimates of the movement parameters are related to the the experimental
design, it is likely that much of the true fMRI signal will also be lost. These are still unresolved
problems.

2.5 Between-Modality Rigid Registration

The combination of multiple imaging modalities can provide enhanced information that is not
readily apparent on inspection of individual image modalities. For studies of a single subject, sites
of activation can be accurately localized by superimposing them on a high resolution structural
image of the subject (typically a T1 weighted MRI). This requires registration of the functional
images with the structural image. A further possible use for this registration is that a more precise
spatial normalization can be achieved by computing it from a more detailed structural image. If
the functional and structural images are in register, then a warp computed from the structural
image can be applied to the functional images. Normally a rigid-body model is used for registering
images of the same subject, but because fMRI images are usually severely distorted – particularly
in the phase encode direction [15, 14] – it is often preferable to do non-linear registration [23, 16].
Rigid registration models require voxel sizes to be accurately known. This is a problem that is
particularly apparent when registering images from different scanners.
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Two images from the same subject acquired using the same modality or scanning sequences
generally look similar, so it suffices to find the rigid-body transformation parameters that minimize
the sum of squared differences between them. However, for co-registration between modalities
there is nothing quite as obvious to minimize, as there is no linear relationship between the image
intensities (see Figure 2.9).

Older methods of registration involved the manual identification of homologous landmarks in
the images. These landmarks are aligned together, thus bringing the images into registration.
This is time-consuming, requires a degree of experience, and can be rather subjective. One of
the first widely used semi-automatic co-registration methods was that known as the “head-hat”
approach [21]. This method involved extracting brain surfaces of the two images, and then
matching the surfaces together. There are also a number of other between-modality registration
methods that involve partitioning the images, of finding common features between them, and
then registering them together, but they are beyond the scope of this chapter.

The first intensity based inter-modal registration method was AIR [35], which has been widely
used for a number of years for registering PET and MR images. This method uses a variance
of intensity ratios (VIR) cost function, and involves dividing the MR images into a number of
partitions based on intensity. The registration is approximately based on minimizing the variance
of the corresponding PET voxel intensities for each partition. It makes a number of assumptions
about how the PET intensity varies with the MRI intensity, which are generally valid within the
brain, but do not work when non-brain tissue is included. Because of this, the method has the
disadvantage of requiring the MR images to be pre-processed, which normally involves editing to
remove non-brain tissue. For a review of a number of inter-modality registration approaches up
until the mid 1990s, see [36].

2.5.1 Information Theoretic Approaches

The most recent voxel-similarity measures to be used for inter-modal (as well as intra-modal
[18]) registration have been based on information theory. These measures are based on joint
probability distributions of intensities in the images, usually discretely represented in the form
of 2D joint histograms. Once constructed, the joint histogram is normalized so that the bins
integrate to unity.

The first information theoretic measure to be proposed was the entropy of the joint probability
distribution [24], which should be minimized when the images are in register:

H(f ,g) = −
∫∞
−∞

∫∞
−∞ P (f ,g) logP (f ,g)dfdg

The discrete representation of the probability distributions is from a joint histogram (that has
been normalized to sum to unity), which can be considered as an I by J matrix P. The entropy
is then computed from the histogram according to:

H(f ,g) =
∑J
j=1

∑I
i=1 pij log pij

In practice, the entropy measure was found to produce poor registration results, but shortly
afterwards, a more robust measure of registration quality was introduced. This was based on
mutual information (MI) [5, 31] (also known as Shannon information), which is given by:

I(f ,g) = H(f) +H(g)−H(f ,g)

where H(f ,g) is the joint entropy of the images, and H(f) and H(g) are their marginalized
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entropies given by:

H(f) = −
∫∞
−∞ P (f) logP (f)df

H(g) = −
∫∞
−∞ P (g) logP (g)dg

MI is a measure of dependence of one image on the other, and can be considered as the
distance (Kullback-Leibler divergence) between the joint distribution (P (f ,g)) and the distribu-
tion assuming complete independence (P (f)P (g)). When the two distributions are identical, this
distance (and the mutual information) is zero. After rearranging, the expression for MI becomes:

I(f ,g) = KL(P (f ,g)||P (f)P (g)) =
∫ ∞
−∞

∫ ∞
−∞

P (f ,g) log
(

P (f ,g)
P (f)P (g)

)
dfdg

It is assumed that the MI between the images is maximized when they are in register (see
Figure 2.6). One problem though, is that MI is biased by the amount of overlap between the
images (although it is still less influenced than the joint entropy). When there is less overlap,
fewer samples are used to construct a joint histogram, meaning that it is more “spiky”. This
produces a slightly higher measure of MI. One overlap invariant information theoretic measure
[25] that can be used for registration is:

Ĩ(f ,g) =
H(f) +H(g)
H(f ,g)

Another useful measure [19] is:

Ĩ(f ,g) = 2H(f ,g)−H(f)−H(g)

and also the entropy correlation coefficient [19] [see 22, page 634 for more information]:

U(f ,g) = 2
H(f) +H(g)−H(f ,g)

H(f) +H(g)

2.5.2 Implementation Details

Generating a joint histogram involves scanning through the voxels of the reference image and find-
ing the corresponding points of the source. The appropriate bin in the histogram is incremented
by one for each of these point pairs. Pairs are ignored if the corresponding voxel is unavailable
because it lies outside the image volume. The co-ordinate of the corresponding point rarely lies
at an actual voxel center, meaning that interpolation is required.

Many developers use partial volume interpolation [5], rather than interpolating the images
themselves, but this can make the MI cost function particularly susceptible to interpolation
artifact (see Figure 2.8). The MI tends to be higher when voxel centers are sampled, where one is
added to a single histogram bin. MI is lower when sampling in the center of the eight neighbors,
as an eighth is added to eight bins. These artifacts are especially prominent when fewer point
pairs are used to generate the histograms.

A simpler alternative is to interpolate the images themselves, but this can lead to new intensity
values in the histograms, which also cause interpolation artifacts. This artifact largely occurs
because of aliasing after integer represented images are rescaled so that they have values between
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Figure 2.6: An illustration of how the joint histogram of an image pair changes as they are
displaced relative to each other (note that the pictures show log(1 +N), where N is the count in
each histogram bin). The MI of the images is also shown.



20 CHAPTER 2. RIGID BODY REGISTRATION

Figure 2.7: Rescaling an image can lead to aliasing artifacts in its histogram. Above: histogram
based on original integer intensity values, simulated to have a Gaussian distribution. Below: the
histogram after the intensities are rescaled to between zero and 63 shows aliasing artifacts.

zero and I−1, where I is the number of bins in the histogram (see Figure 2.7). If care is taken at
this stage, then interpolation of the image intensities becomes less of a problem. Another method
of reducing these artifacts is to not sample the reference image on a regular grid, by (for example)
introducing a random jitter to the sampled points [17].

Histograms contain noise, especially if a relatively small number of points are sampled in
order to generate them. The optimum binning to use is still not fully resolved, and is likely to
vary from application to application, but most researchers use histograms ranging between about
16× 16 and 256× 256. Smoothing a histogram has a similar effect to using fewer bins. Another
alternative is to use a continuous representation of the joint probability distribution, such as a
Parzen window density estimate [31], or possibly even a Gaussian mixture model representation.

Section 2.4.1 introduced a method of optimization based on the first and second derivatives
of the cost function. Similar principles have been be applied to minimizing the VIR cost function
[35], and also to maximizing MI [28]7. However, the most widely adopted scheme for maximizing
MI is Powell’s Method [see 22, , page 415], which involves a series of successive line searches.
Failures occasionally arise if the voxel similarity measure does not vary smoothly with changes
to the parameter estimates. This can happen because of interpolation artifact, or if insufficient
data contributes to the joint histogram. Alternatively, the algorithm can get caught within a
local optimum, so it is important to assign starting estimates that approximately register the
images. The required accuracy of the starting estimates depends on the particular images, but

7This paper uses Levenberg-Marquardt optimization [22], which is a stabilized version of the Gauss-Newton
method
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Figure 2.8: The mutual information cost function can be particularly susceptible to interpolation
artifacts. This figure shows a plot of the MI between two images when they are translated with
respect to each other. The dotted and dot-dashed lines show it computed using partial volume
interpolation at high and lower sampling densities. The solid and dashed lines show MI computed
by interpolating the images themselves.

an approximate figure for many brain images with a good field of view would be in the region of
about 5cm for translations and 15o for rotations.
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[27] P. Thévenaz, T. Blu, and M. Unser. Interpolation revisited. IEEE Transactions on Medical
Imaging, 19(7):739–758, 2000.
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