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I INTRODUCTION 

 

In the previous chapter we dealt with functional connectivity and different ways of 

summarising patterns of correlations among brain systems.  In this chapter we turn to 

effective connectivity and the models of mechanisms that might mediate these 

correlations. 

   Brain function depends upon interactions among its components that range from 

individual cell compartments to neuronal populations.  As described in Chapter 18 

(Functional Integration), anatomical and physiological studies of connectivity in vivo 

speak to a hierarchy of specialised regions that process increasingly abstract features, 

from simple edges in V1, through colour and motion in V4 and V5 respectively to face 

recognition in the fusiform gyrus.  The implicitly specialised regions are connected, 

allowing distributed and reentrant neuronal information processing.  The selective 

responses, or specialisation, of a region is a function of its connectivity.  An important 

theme is this chapter is that these connections can change and show context-sensitivity.   

We will refer to these changes as plasticity, to describe physiological changes in the 

influence different brain systems have on each other.  The formation of distributed 

networks, through dynamic interactions, is the basis of functional integration, which is 

itself, time and context-dependent.  Changes in connectivity are important for 

development, learning, perception and adaptive response to injury.  

   Given the importance of changes in connectivity, we will consider two classes of 

experimental factors or input to the brain. The first class evokes responses directly but the 

second has a more subtle effect, and can induce input-dependent changes in connectivity 

that modulates responses to the first.  We will refer to the second class of inputs as 

“contextual”.  For example, augmented neuronal responses associated with attending to a 

stimulus can be attributed to the changes induced in connectivity by attention. The 

distinction between inputs that evoke responses and those that modulate effective 

connectivity is the motivation for developing models that accommodate contextual 

changes in connection strength.  
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This chapter is divided into four sections. First, we motivate a Systems Identification 

approach, where brain responses are parameterised within the framework of a 

mathematical model.  The State-Space representation is used to illustrate coupling within 

a system and interactions with experimental factors. To demonstrate how connectivity 

can be modulated experimentally, and how the notion of effective connectivity emerges 

as a natural metric, a Bilinear State-Space Model (BSSM) is derived to approximate 

generic nonlinear networks.  In Section III we describe the theory behind different 

approaches to estimating functional integration, looking at Static and Dynamic models. 

We conclude, in Section IV, with some remarks on strategies and the features of models 

that have proved useful in modelling connectivity to date. 

 

A. Notation 

Lower case letters will be used for scalars and vectors and upper case for matrices.  If x is 

a normally distributed random variable with mean µ and variance 2σ , we write x ~ 

( )2,~ σµNx .  A time series of observations at voxel i is written, yi.  An image at time t 

is written yt and the value of the ith voxel at time t is i
ty .  The total number of voxels and 

scans are N and T respectively. We use exp(X), TX , 1−X  and +X  to denote the matrix 

exponential, transpose, inverse and pseudoinverse. We also write yx×  to denote the 

Hadamard product between two vectors (in Matlab this is an array or element-by-element 

multiplication with x.*y).  The first-order derivative of time dependent variable, x(t), with 

respect to time ( tx(t) ∂∂ ) is denoted by x& . 

 

II IDENTIFICATION OF DYNAMIC SYSTEMS 

 

System identification (SI) is the use of observed data to estimate the parameters of 

mathematical models representing a physical system. The mathematical models may be 

linear or nonlinear, in discrete or continuous time and parameterised in the time or 

frequency domain. The aim is to construct a mathematical description of a systems 

response to input.  Models may be divided into two main categories: those that invoke 

hidden states and those that quantify relationships between inputs and outputs without 
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hidden states, effectively treating the system as a black box (see Juang, 2001) for a 

comprehensive account).  Examples of the former include State-Space Models (SSM) and 

Hidden Markov Models (HMM), whereas the latter include Generalised Convolution 

Models (Bendat, 1998) and Autoregressive Models (Chatfield, 1996).  

There are two main requirements of a biologically plausible model of functional 

integration: that it is dynamic and nonlinear.  Dynamic, because the brain is a physical 

system extended in time, meaning that the state of the brain now effects its state in the 

future.  We will see the benefits and problems that stem from relaxing this requirement 

later.  In addition, biological systems depend on nonlinear phenomena for much of their 

characteristic behaviour (Scott, 1999). Examples include the neuronal dynamics of action 

potentials (Dayan and Abbott, 2001), population dynamics in co-evolutionary systems 

(Glass and Kaplan, 2000) and limit cycles in physiological systems (Glass, 2001). The 

motivation for appealing to nonlinear dynamic models is that their non-additive 

characteristics enable them to reproduce highly complex behaviour, of the sort we 

observe in biological systems.  However, nonlinear models are often mathematically 

intractable, calling for approximation techniques. 

   Linear dynamic models, on the other hand, can be analysed in closed form.  

Consequently, there exists a large body of theory for handling them. This is due to their 

adherence to the Principle of Superposition, which means that the systems response to 

input is additive.  There are no interactions between different inputs or between inputs 

and the intrinsic states of the system such that the response is a weighted linear mixture 

of inputs.  A system that violates this principle would respond in a non-additive manner 

i.e. with more or less than a linear combination of inputs.  Such a system is, by definition, 

nonlinear.  However, there is a price for the ease with which linear models can be 

analysed, as their behavioural repertoire is limited to exponential decay and growth, 

oscillation or a combination of these.  Examples of sub-additive responses are ubiquitous 

in physiology (e.g. saturation).  With increasing input many biological systems (e.g. 

biochemical reactions or synaptic input) reach a saturation point where further input does 

not generate a further response. 

   A useful compromise is to make linear approximations to a generic nonlinear model.  

These models have the advantage that they capture essential nonlinear features while 
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remaining mathematically tractable.  This strategy has engendered bilinear models (Rao, 

1992), where nonlinear interaction terms are limited to interactions that can be modelled 

as the product of two variables (input or intrinsic states). Despite constraints on higher 

order nonlinearities, bilinear models can easily model plasticity in effective connections.  

   We will use a bilinear state-space representation to illustrate the concepts of linear and 

bilinear coupling and how they may be used to model effective connectivity.  The 

introduction of unknown variables hidden states) may appear to complicate the problem, 

but this is not the case as long-range order, within observed time series, can be modelled 

through interactions among the states. 

 

A Approximating nonlinear functions 

Any sufficiently smooth function, )(xf , of a scalar quantity x may be approximated in 

the neighbourhood of an expansion point, 0x , using the Taylor series expansion  
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where  the thn order derivatives evaluated at 0x . These values are coefficients that scale 

the contribution of their respective terms. The derivatives are used as they map a local 

change in nxx )( 0−  onto a change in f(x).  The degree of nonlinearity of f determines the 

rate of convergence, with weakly nonlinear functions converging rapidly.  The series 

converges to the exact function with inclusion of higher order terms.  A simple example 

is shown in Figure 1 

 

Figure 1 about here 

 

When these ideas are extended to bivariate nonlinear functions, where )(x,uf  depends 

on two quantities x and u, the corresponding Taylor series includes increasingly complex 

(high-order) terms (products of x and u).  The linear and bilinear approximations are 

given by fL and  fBL.  



 6

. 

 

ux
fb

cubxu axx,uf

u
fc

x
fa

cu axx,uf

BL

L

∂∂
∂

=

++=

∂
∂

=

∂
∂

=

+=

2

)(

)(

    2 

 

For clarity, the expansion point 0x  = 0 and the series have been centred so that 

0)()( 00 == ufxf . The approximation, fL, depends on linear terms in x and u scaled by 

coefficients a and c, calculated from first order derivatives. The first-order terms of fBL 

are the same as fL, however, the third term is composed of the product of x and u, which 

is scaled by b, the second order derivative with respect to both variables. This term 

introduces nonlinearity into fBL.  Note that the bilinear form does not include quadratic 

functions of x or u. The resulting approximation has the appealing property of being both 

linear in x and u, but allowing for a modulation of x by u. Changes in f(x,u) are no longer 

only a linear sum of changes in x and u, but include a contribution from a new variable 

xu. 

   We can now replace the scalar quantities with vectors where [ ]Tnxxx ,,1 K=  and 

[ ]Tmuuu ,,1 K= .   x is an n×1 vector containing n different state variables and u is an m×1 

vector containing m input variables. The linear and bilinear approximations can be 

written in matrix form, as 
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The coefficients, are matrices as opposed to scalar terms.  They look more complicated, 

but the same operation is being applied to all the elements of the matrix coefficients. A 

and Bj are n×n and C is n×m.  For example, 
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B Linear Dynamic Models 

The equations above can be used to model the dynamics of a physical system.  See Figure 

2 for a simple illustration. 

 

Figure 2 about here 

A physical system can be modelled by a number of states and inputs.  The states are 

contained in x, called the state vector, and inputs in u, the input vector. Generally, x and u 

can vary with time, denoted by x(t) and u(t).  The number of states and inputs in the 

model are given by n and m respectively. Each state defines a co-ordinate in state-space 

within which the behaviour of the system is represented as a trajectory.  The temporal 

evolution of the states is modelled by a state equation, which is the first order temporal 

derivative of the state vector, written as (t)x&  and can therefore be approximated by a 

Taylor series as above 

 

CuΑx(x,u)fx L +==&     5 

 

A linear Dynamic System (LDS) is shown in Figure 3.  The figure consists of two states, 

)(1 tx  and )(2 tx , and external inputs, )(1 tu  and )(2 tu , coupled through a state equation 

parameterised by matrices A and C. As the model contains two states and two inputs, 

these matrices are both 2×2. 
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Figure 3 about here 

 

A contains parameters that determine interactions among states (labelled inter-state in 

Figure 3) and the influence a states own activity has on itself (for example, the damping 

term in a linearly damped harmonic oscillator), while the elements of C couple inputs 

with states.  The state equation describes the influences among states and their response 

to input, thereby providing a complete description of the dynamics of the system, 

otherwise known as the system’s equation of motion.  These models are sometimes called 

Linear Time Invariant (LTI) systems as A and C do not change with time.  Eq(5) can be 

re-written as 

 

Jz(t)z(t) =      6 

 

Where z(t) is a (n+1)×1 vector and J is a (n+1)×(n+1) matrix. This is a linear equation, 

which can be solved using standard linear techniques (Boas, 1983), such as the matrix 

exponential method (see Appendix A.I) 

. 

C Bilinear Dynamic Models 

Linear models have dominated scientific models, despite much nonlinearity around us, 

because they are good first approximations to many phenomena.  However, they remain 

restricted and sometimes unrealistic descriptions.  The use of bilinear models represents a 

substantial break with linearity.  The model in Figure 4 has been augmented to illustrate 

the simple steps needed to formulate a bilinear model.  The state equation can be 

modelled by an equation of the same form as fBL, whose essential feature is the bilinear 

interaction involving the product of an input with a state.  This can be written 
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The critical difference is the addition of B that is now modulated by u(t) which, when 

added to A, models input-dependent changes to the intrinsic connectivity of the network.  

This is illustrated in Figure 4 where the coupling coefficient a21 is modulated by the 

product 2
2
21ub .  The modified matrix A~  operates on the state vector and determines the 

response of the model.  The difference is that A~  changes with time because it is a 

function of time-varying input, which distinguishes it from the LTI model above.   

   It helps to consider a specific example.  If u2 is binary, the model in Figure 4 effectively 

consists of two LTI models.  The models behaviour, i.e. x(t), will be characterised by two 

linear systems switching from one to the other. The moment the system switches from 

one linear mode will be determined by changes in u2.  For instance, if the two linear 

models were linearly damped harmonic oscillators, each with markedly different 

characteristic behaviours, i.e. period of oscillation, a switch from one state to another 

would be accompanied by changes in the oscillation of the states.  In short, the dynamics 

of x represents a simple two-state system. 

 

Figure 4 about here 

 

The benefit of constraining the model to include only bilinear terms is that we have 

circumvented the issue of intractability of nonlinear models, yet retaining a uniquely 

nonlinear feature: input-dependent modulation of intrinsic dynamics. Inputs can now be 

divided into two classes: perturbing and contextual.  Perturbing inputs (e.g. u1 in Figure 

3) influence states directly, without modulating model parameters.  The effects of these 

inputs are distributed according to the intrinsic connections of the model, whereas 

contextual inputs (e.g. u2 in Figure 3) reconfigure the response of the model to 

perturbations.  Time and input-dependent changes in connectivity are a central feature of 

plasticity and are the motivation for using bilinear state-space models (BSSMs). 

 

D Metrics of connectivity 

Effective connectivity is defined as the influence a neuron (or neuronal population) has 

on another (Friston and Price, 2001).  It is a dynamic quantity, used to identify degrees of 
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influence within a physical system, in response to external forces.  At the neuronal level 

this is equivalent to the effect pre-synaptic activity has on post-synaptic responses, 

otherwise known as synaptic efficacy.  Models of effective connectivity are designed to 

identify a suitable metric of influence among interconnected components (or regions of 

interest) in the brain.  We shall see, throughout the chapter, how measures of effective 

connectivity identify dynamic structure within data, induced through experimental design 

and constrained by the operational principles at work within the brain, and how they 

emerge as a natural metric of plasticity.  

   Given the two-state BSSM network in Figure 4 each state’s equation is given by  

 

11122
2
21211111 )( ucxubaxax +++=&  

2221122222 ucxaxax ++=&  

 

Taking derivatives of x&  with respect to each state  
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This operation discloses the coupling between the two regions (states) i.e. the direct 

influence one region has on another.  Generally this may be linear or nonlinear, however, 

it is reduced to a simple function in a bilinear model, described by 12k  and 21k .  The 

coupling from 1x  to 2x  is linear, represented by a constant term, 12a .  However, the 

interaction between 2u  and 2x  induces nonlinearities in the network, rendering 21k  a 

function of 2u .  The degree of influence 2x  has on 1x  therefore depends on 2u .  This 

effect may be quantified by taking derivatives with respect to 2u , the contextual input.  
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As for the first-order derivative, h(x,u), a second order derivative, may be a nonlinear 

function of the states and input for an arbitrarily nonlinear equation of motion.  However, 

it reduces to a constant term in the bilinear model. 

  The first and second-order derivatives quantify dynamic characteristics within a 

network. Therefore they are equivalent to first and second order effective connectivity, or 

obligatory and modulatory influences (Bûchel and Friston, 2000).  This distinction 

highlights two important issues: the difference between perturbing and contextual input 

and how to derive a practical measure of connectivity.  As illustrated in Figure 4, external 

input can be categorised by way of its effect on the intrinsic states of a system.  Either 

input modulates a systems intrinsic connectivity or it perturbs the states directly.  The 

former we have coined contextual and the latter perturbing.  Both evoke a response. 

However, contextual inputs enable the model to represent contextual changes by 

modulation of the intrinsic connectivity.  This is a subtle but crucial difference.  

Practically, models of this nature can be used to infer levels of effective connectivity 

through estimating parameters such as 12a  and 2
21b  from real data. 

   A caveat is necessary at this point.  All models require some form of a priori 

knowledge.  Factoring this into a model fairly will always be cause for some debate.  This 

is because what is ‘fair’ for one model may not be for another.  However, for progress to 

be made a strategy has to be formulated and appraised to assess its value in the context of 

the data.  Models of effective connectivity generally require an anatomical model to 

specify which regions are connected.  A simplified but sufficient anatomical model can 

be based on lesion studies or anatomical data from animal models.  A mathematical 

model, such as that described above i.e. an equation of motion representing the brain as a 

connected physical system, is necessary to model how the different regions in the 

anatomical model interact.  These mathematical models can become very complicated 

and mathematically intractable.  Models can be simplified by approximating methods, as 

we saw with the bilinear model, and making assumptions, such as ignoring temporally 

distant effects of neuronal events i.e. assuming only instantaneous effects of disparate 

brain regions on each other.  This may sound a little abstract at the moment but we will 

see later how this assumption allows us to make progress by rendering the models 



 12

tractable. Even though simple models may be criticised for being biological implausible, 

progress can be incremental.  In the next section we will discuss various models for 

measuring connectivity from PET and fMRI data, highlighting their heuristics, and 

assumptions.  

 

E Relevance to neurophysiology 

Figure 5 portrays a model of the visual and attention systems.  The model posits photic 

stimulation as an input, or cause in the environment, which perturbs the brain evoking a 

response that depends on its current state of connectivity.  This connectivity embodies a 

context, such as attentional set or memory (i.e. whether the stimulus is salient).  

Perceptual learning, or changes in attention induce a reconfiguration of synaptic 

efficacies and connectivity in terms of ensemble responses (see Chapter 22: Dynamic 

Causal Modelling).  In the model, these are examples of contextual input that enable the 

brain to respond differently to the same perturbing stimulus i.e. the difference between a 

novel visual image or the recognition of a stimulus that has recently become salient. 

   Having described the basis for modelling the brain as a physical interconnected system 

and establishing a fundamental distinction between inputs that change states and those 

that change [parameters] connections, we now turn to some specific examples.  We will 

start with simple models and work back towards the dynamic models described in this 

section. 

 

Figure 5 about here 

 

III LINEAR MODELS OF EFFECTIVE CONNECTIVITY 

 

The objective of an effective connectivity analysis is to estimate parameters that represent 

influences among regions that may changes over time, and with respect to experimental 

tasks.  Neuroimaging data is usually processed into a voxel-based time-series 

representation of an index of neuronal activity (rCBF or BOLD for PET and fMRI 

respectively).  Structure exists in the experimental design, neurophysiological data and 

critically the theoretical assumptions used to model the observed responses.  For 
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example, the spatial and temporal order within the data provide essential insights into the 

underlying generative processes and is clearly the rationale of an empirical approach. 

Models also contain structure, as they represent the theoretical constructs and 

assumptions needed to identify operational principles responsible for generating the data. 

   Identifying a complete and biologically plausible mathematical model requires a high 

level of sophistication. However, some progress can be made by modelling relationships 

in the data alone (among voxels or regions), without invoking hidden states and ignoring 

the consequent temporal correlations. This last simplification makes the mathematics 

much easier but discards temporal information and is biologically unrealistic. We will 

call these models ‘static’ as they model interactions among regions as occurring 

instantaneously and do not encompass the influence previous states have on current 

responses.  Static models are reviewed before turning to more realistic, ‘dynamic’ 

models. Both are important in the development of a plausible metric of effective 

connectivity, the former establishing an historical benchmark to validate the latter.  In 

what follows we describe the development of approaches, demonstrated through different 

models, designed to represent dynamic interactions as measured through neuroimaging 

data. 

 

A Linear Models 

After measuring an index of neuronal activity at each voxel in the brain, over the duration 

of an experiment, the next step is to assess, on the basis of these data, if there is any 

reason to believe that different regions of the brain influence each other.  

  Our first model is linear and assumes that i
ty  is statistically independent of i

τty −  for 

arbitrary τ.  This is a valid assumption for PET data as the sampling rate is slow relative 

to neuronal dynamics.  In fact, data are acquired while holding brain states constant using 

an appropriate task or stimulus.  Each measurement is therefore assumed to represent 

some average brain state.  Mathematically, this means the rate of change of the states is 

assumed to be zero.  For fMRI time-series, however, this assumption is generally violated 

(and certainly for electrophysiological measurements).  As the sampling rate of 

measurement increases, so does the dynamic character of the data.  This is the motivation 

for dynamic models of fMRI responses. 
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   In static linear models the activity of each voxel is modelled as a linear mixture activity 

in all voxels plus some error.  This can be written 
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for one region at one time, all regions at one time, and all the data, respectively.  The 

problem with this formulation is that the trivial solution 1=iiβ  completely accounts for 

the data.  We will see later how structural equation modelling deals with this by setting 

self-connections to zero.  However, one also can finesse this problem using singular 

value decomposition (SVD).  Multivariate techniques like SVD are usually thought of as 

summarising the covariance structure of data or functional connectivity (see the previous 

chapter). The ensuing eigenimages can be regarded as spatial modes that are functionally 

and effectively disconnected from each other. 

   Figure 6 illustrates a SVD of an arbitrary matrix M (of size n×m, where n>m) into an 

equivalent form using the relation USΜV = , where V  is a set of eigenvectors that form 

a natural co-ordinate system. 

 

Figure 6 about here 
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A plot of the variance components of an SVD, for a typical PET data set (that used in the 

previous chapter: Functional Connectivity), is shown in Figure 6.  The spectrum shows 

a rapid decrease in the eigenvalues after the first few components (Friston et al., 1993).  

This indicates spatiotemporal order within the data1.  Such order is a consequence of 

coherent modes of distributed activity induced by task-related changes that are 

responsible for generating the data.  One could regard the eigenvalues TSS=λ  as indices 

of self-functional connectivity.  However, static linear models also afford a perspective 

on effective connectivity.  One can take these eigenimages to represent their influence on 

a voxel-specific measurement at the ith voxel.  If the expression of the modes is given by 

USY =  then 
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where T
iV  is the ith row of V.  Compare this with Eq(8).  In other words, the eigenimages 

can be interpreted as the effective connectivity between the voxel in question and the 

mode corresponding to the eigenimage. 

   In summary, this perspective on eigenimage analysis furnishes a measure of 

connectivity between the voxel i and the rest of the brain in terms of spatiotemporal 

eigenmodes, as opposed to separate voxels.  However, this interpretation is limited to 

linear, time invariant connection strengths.  Next we describe how linear models can be 

used to approximate nonlinear systems by including interaction, or bilinear, terms. 

 

B Modelling nonlinearities 

Linear models cannot be used to estimate changes in connectivity (induced by 

modulatory interactions among populations of neurons or contextual inputs).  However, 

introducing interaction terms can attain a dynamic representation.  This requires a simple 

extension to Eq(8); the addition of a new variable, calculated from the product of two 

                                                 
1 A white noise process would have a homogeneous eigenvalue spectrum. 
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voxels or regions (indexed by j and k). We will refer to this new variable as the bilinear 

term, written as k
t

j
t yy  for scalar and kj yy ×  (the Hadamard product) for vectors.  The 

idea is that now the model can be used to estimate the effect this new term has on activity 

in the ith voxel. 
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where 1b  and 2b  are model parameters, which scale the effect of their respective terms. 

The quantity 1b  is equivalent to an element in jiβ  (Equation 8), however, 2b  is different 

as it parameterises the effect of a bilinear term k
t

j
t yy .  These two coefficients are the 

obligatory and modulatory effects discussed earlier.  Obligatory connections have a direct 

driving effect, but modulatory connections are subtler and introduce context into the 

model.  This is best illustrated with an example. 

   The model in Figure 7 (upper panel) is a simple nonlinear model.  It consists only of 

two variables but this is sufficient to illustrate nonlinearity and how we can measure it.  It 

consists of an input x, which generates an output y. The nonlinearity is due to an 

interaction between the input and output i.e. the model’s response y, depends on its 

current (intrinsic) activity y.  This simple model consists of a linear and bilinear term 

parameterised by 1b  and 2b  respectively. 

 

21 xybxby +=       10 

 

If the model contained the first term only, it would be linear and the relationship between 

input and output would be represented by a straight line in a plot of x and y. The addition 

of the second term introduces markedly nonlinear behaviour.  Plotting x and y for 

different values of 2b demonstrates this.  The input-output behaviour depends on 2b  and 

is reflected in the two different curves in Figure 7 (lower panel).  It helps to focus on the 

model’s response to a fixed input.  It is easily appreciated that the sensitivity of y to u (the 

slope) depends on 2b .  The key point is that data generated from such a process is not 
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distributed in a linear fashion, i.e. the dependence of y on x is not modelled with a straight 

line. We will describe next a piece-wise local linear approximation to modelling this very 

simple sort of nonlinearity.  

   First we need to consider how to estimate the parameters in Eq(10) from measurements 

of x and y. If we assume that the nonlinearities are weak about a local region of the data 

then the model can be approximated by 

 

lll xbbybxy =+≈ )( 21     11 

 

where ly  is a vector containing  values of y within a local range of the data and ly  is 

its average. If we assume that 1b  and 2b  are constant within this region then 21 byb +  

is also constant (abbreviated to lb ) and can be estimated from values of x and ly .  If y is 

partitioned into n divisions, then this procedure can be repeated for all n domains. 

Differences in values of lb  for different regions indicate nonlinearity in the data. 

 

Figures 6, 7 and 8 about here 

 

Let us turn to the illustration in Figure 8.  These data have been generated from the model 

in 7, with 8.02 =b , with added noise.  The data is distributed, roughly, into two sub-

groups.  Modelling the data as a linear process does not capture this feature. The 

characterisation can be finessed by partitioning the data, on the basis of ‘high’ and ‘low’ 

levels of response (denoted by highy  and lowy ).  A linear model, given by Eq(11) can then 

used each partition. 

 

highhighhigh xb)byx(by =+≈ 21     12 

lowlowlow xb)byx(by =+≈ 21  
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where we have assumed 1b  and 2b  are constant within the domains of high or low 

activity.  We then use the two values of ly  and lb  to estimate values of 1b  and 2b ,  

where 

highlow
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These coefficients serve as an index of linearity ( 1b ) and nonlinearity ( 2b ), and can be 

estimated from measured data.  Applying these ideas to neuroimaging data, 1b  and 2b , 

represent measures of obligatory and modulatory connectivity.  This approach of 

approximating nonlinear interactions was used in (Friston et al., 1995) to demonstrate 

asymmetrical nonlinear interactions between V1 and V2 from fMRI data during visual 

stimulation.   

   The inclusion of a bilinear term enabled us to introduce nonlinear behaviour into our 

model. The method of piece-wise linear approximation provided a way to measure this 

nonlinearity.  However, the bilinear term was only implicit.  Next, we model the bilinear 

term explicitly in a general linear model. These models have been called 

psychophysiological (and physio-physiological) interaction (PPI) models. 

 

C Psychophysiological Interactions 

The partitioning of data required above may seem arbitrary.  A way around this is to 

embed the interaction term into one linear model.  (Bûchel et al., 1996) discussed 

including a series of increasingly high-order interaction terms in a general linear model, 

each of which is constructed from the products of individual variables.  These are 

introduced as new explanatory variables and provide a means of modelling the difference 

in regression slopes without partitioning or splicing the data by hand.  In this way, 

standard linear regression techniques, implemented in SPM, can be used to estimate the 

magnitude and significance of these bilinear effects directly. 
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  Changing the symbols representing the jth and kth voxels in the previous equation to 1u  

and 2u , denoting input to a system whose response is yi, the prototype linear model is 
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The equation has been simplified by dividing the explanatory variables into those of 

interest and 0X , which contains all the other covariates.  The model’s parameters 

quantify the influence each explanatory variable has on iy  and can be estimated using 

standard linear techniques.  Extending the model to include a bilinear variable, denoted 

by 21 uu ×  (the Hadamard product), gives 
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The model is divided into bilinear term and linear terms. The corresponding parameters, 

Iβ  and Lβ  can be estimated as before.  Both the main-effect and interaction terms are 

included because the main effect of each covariate has to be modelled to properly assess 

the additional explanatory power afforded by the bilinear or PPI term.  Standard 

hypothesis testing of the bilinear term (testing 0:0 =βΗ I ) can be used to estimate the 

significance of its effect.  In this analysis, the data does not have to be divided, as input-

dependent changes in regression slope are modelled by the bilinear term. 

   Figure 9 illustrates two examples of bilinear effects in real data.  The study was a fMRI 

experiment investigating the modulatory effects of attention on visual responses to radial 

motion (see the figure legend and Büchel and Friston, 1997 for experimental details).  

The aim of both models was to quantify a top-down modulatory effect of attention on V1 

to V5 connectivity.  The left-hand model combines psychological data (attentional set) 

with physiological data (V1 and V5 activity) to model the interaction, whereas the right-
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hand model uses a physiological measure (PPC activity) a surrogate for the psychological 

effect.  These analyses correspond to psychophysiological and physio-physiological 

interactions respectively.  Both demonstrate a significant modulatory effect of attention 

(Büchel and Friston, 1997; Friston et al., 1997).  The lower diagram in Figure 9 is a 

regression analysis of the same data, divided according to attentional set, to demonstrate 

the difference in regression slopes. 

 

Figure 9 about here 

 

In this example, attention was modelled as a ‘contextual’ variable, while visual 

stimulation perturbed the system.  The latter evoked a response within the context of the 

former.  Using the example in Figure 9, visual stimuli evoke different responses 

depending on attentional set, modelled as a change in connectivity.  Attention appears to 

reconfigure connection strengths among prefrontal and primary cortical areas (Mesulam, 

1998).  The bilinear effect may take any appropriate form in PPI models, including, for 

example, psychological, physiological or pharmacological indices. These models 

emphasise the use of factorial experimental designs (Friston et al., 1997) and allow us to 

consider experimental inputs in a different light, distinguishing contextual input (one 

factor) from direct perturbation (another factor). PPI models have provided important 

evidence for the interactions among distributed brain systems and enabled inferences 

about task-dependent plasticity using a relatively simple procedure.  The next model we 

consider was developed explicitly with path analysis in mind but adopts a different 

approach to the estimation of model parameters.  This approach rests on the specification 

of priors or constraints on the connectivity. 

 

D Structural Equation Modelling 

Structural Equation Modelling (SEM), or path analysis, is a multivariate tool that is used 

to test hypotheses regarding the influences among interacting variables.  Its roots go back 

to the 1920s when Path Analysis was developed to quantify unidirectional causal flow in 

genetic data and developed further by social scientists in the 1960s (Maruyama, 1998).  It 

received criticism for the limitations inherent in the least squares method of estimating 
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model parameters, which motivated a general linear modelling approach from the 1970s 

onwards. It is now available in commercial software packages including LISREL, EQS 

and AMOS.  See (Maruyama, 1998) for an introduction to the basic ideas.  Researchers in 

functional imaging started to use it in the early 1990s (McIntosh and Gonzalez-Lima, 

1991;McIntosh and Gonzalez-Lima, 1992a; McIntosh and Gonzalez-Lima, 

1992b;McIntosh and Gonzalez-Lima, 1994).  It was applied first to animal auto-

radiographic data and later to human PET data, where, among other experiments, it was 

used to identify task-dependent differential activation of the dorsal and ventral visual 

pathways (McIntosh et al., 1994).  Many investigators have used SEM since then.  An 

example of its use to identify attentional modulation of effective connectivity between 

prefrontal and premotor cortices can found in (Rowe et al., 2002). 

   A SEM relates to the general linear model above in that it has the same form. There are, 

however, a number of modifications, some of which are illustrated in Figure 10.  The 

coupling matrix β , has been ‘pruned’ to include only paths of interest.  Critically, self-

connections are precluded.  The data matrix, Y, contains responses from regions of 

interest and possibly experimental or bilinear terms.  The model is 

 

ttt zyy += β       16 

 

The regional time-series Y are known but β  contains free parameters to be estimated.  

To simplify the model the residuals z  are assumed to be independent.  They are 

interpreted as driving each region stochastically from one measurement to another and, to 

reflect this, are sometimes called innovations. 

 

Figure 10 about here 

 

The free parameters are estimated using the covariance structure of the data, instead of 

minimising the sum of squared errors as described above.  The rationale is that the former 

reflects the global behaviour of the data, i.e. capturing relationships among variables, in 

contrast to the latter, that reflects the goodness of fit from the point of view of each 

region.  Practically, a cost function is constructed from the actual and implied covariance, 
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which is used as an objective function to estimate parameters.  The implied covariance, 

t
T
t yy , is easily computed by rearranging Eq(16) and assuming some value for the 

covariance of the innovations, t
T
t zz  
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Details are provided in Appendix A.2.  A gradient descent such as a Newton-Raphson 

scheme may be used to estimate parameters, where starting values can be estimated using 

OLS (McIntosh and Gonzalez-Lima, 1994).  

   Inferences about path coefficients rest on the notion of nested, or stacked, models.  A 

nested model consists of a free model within which any number of constrained models 

are ‘nested’.  In a free model, all parameters are free to take values that optimise the 

objective function, whereas a constrained model has one, or a number of parameters 

omitted, constrained to be zero or equal across models (i.e. attention and non-attention). 

By comparing the goodness of fit of each model against the others, 2χ  statistics can be 

derived (Bollen, 1989).  Hypotheses testing proceeds using this statistic.  For example, 

given a constrained model, which is defined by the omission of a pathway, hypothesis 

testing may be construed as evidence for or against the pathway by ‘nesting’ it in the free 

model.  If the difference in goodness of fit is highly unlikely to have occurred by chance, 

the connection can be declared significant.  Examples of models used by Büchel et al. 

using the attentional data set are shown in Figure 11.  Nonlinear SEM models are 

constructed by adding a bilinear term as an extra node.  A significant connection from a 

bilinear term represents the modulation of influence in exactly the same way as in a PPI.  

Büchel et al used SEM (Büchel and Friston, 1997) on the visual attention data set, 

validating the method by confirming conclusions reached using other regression models. 

 

Figure 11 about here 
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SEM is a regression analysis, which means that it shares the same deficiencies as the 

linear model approach described above i.e. temporal information is discounted2. 

However, it has enjoyed relative success and become established over the past decade, 

due in part, to its commercial availability as well as its intuitive appeal.  However, it 

usually requires a number of rather ad hoc procedures, such as partitioning the data to 

create nested models, or pruning the coupling matrix to render the solution tractable. 

These problems are confounded with an inability to capture nonlinear features and 

temporal dependencies.  By moving to more sophisticated models we acknowledge the 

effect of the history of input and embed a priori knowledge into models at a more 

plausible and mechanistic level.  These issues will be addressed in the following section.  

 

 

IV DYNAMIC MODELS 

 

The static models described above discount temporal information.  Consequently, 

permuted data sets produce the same path coefficients as the original permutation.  

Models that use the order in which data are produced are more natural candidates for the 

brain and include those that attempt to model its equations of motion, e.g. state-space 

models and generalised convolution models. In this section we will review Kalman 

Filtering, autoregression and generalised convolution models. 

 

A Kalman Filter 

The Kalman filter is used extensively in engineering to model dynamic data (Juang, 

2001).  It is based on a state-space model that invokes an extra set of [hidden] variables to 

generate data. These models are a powerful as long-range order, within observed data, is 

modelled through interactions among hidden states, instead of mapping input directly 

onto output (see below).  It is an ‘online’ procedure consisting of two steps: prediction 

and correction. The hidden states are estimated (prediction step) using the current 

information, which is updated (correction step) on receipt of each new measurement. 

                                                 
2 There exist versions of SEM that do model dynamic information, see (Cudeck, 2002) for details of 
Dynamic Factor Analysis 
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These two steps are repeated recursively as new information arrives. A simple example 

demonstrates intuitively how the filter works.  This example is taken from the source in 

reference (Ghahramani, 2002). 

Consider a series of data points, which we receive one at a time.  Say we wanted to 

calculate a running average with each new data point.  Given that the tht  variable is tx  

and the estimate of the mean (which we will call the ‘state’) after t values of x is tx̂  
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This can be rearranged, giving ( )11 ˆˆˆ −− −+= tttt xxKxx . where K is the Kalman Gain = 

t1 .  This illustrates the general form of a Kalman Filter: a prediction and a weighted 

correction.  This general mathematical form may be expressed in words as 

 









−

+







=








)x      (x          

ion errorK) predictWeighted (
x 

imateevious est
x

timateCurrent es

t-tt-t 11 ˆˆ
Pr

ˆ
 

 

The filter balances two types of information from a prediction (based on previous data) 

and an observation, weighted by their respective precisions.  This is performed optimally 

as the weighting using Bayes rule.  If the measured data is not reliable K goes to zero, 

weighting the prediction error less and relying more on the preceding prediction to afford 

a current one.  Conversely, if the dependence on sequential state values is unreliable, then 

K is large.  This emphasises information provided by the data when constructing an 

estimate of the current state. 
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   Quantities that require calculation in the forward recursion are Kalman Gain, mean and 

co-variance of prediction and correction matrices.  A backward recursive algorithm called 

the Kalman Smoother calculates the mean and co-variance of the states at time t, given all 

the data, which is a post hoc procedure to improve the estimates. Maximum likelihood 

estimators may be used to calculate these quantities.  A demonstration of the filter is 

shown in Figure 12, applied to the visual attention data. 

   Static models can only model ‘snap-shots’ of path coefficients  (although a 'snap-shot' 

of a bilinear term introduces time-dependence through, for example, changes in PFC 

activity or attentional set).  In contrast, by modelling the path coefficient as a hidden 

state, to be estimated from observed data, the filter exposes fluctuations in the coupling, 

between V1 and V5, which rises and falls with attention (even though attentional status 

never entered the model). To understand how the filter was applied we start with our 

familiar linear observation model:  

 

)0( ,R~Nε
εβxy

t

tttt +=
     18 

 

To simplify notation y and x are univariate and are both known e.g. BOLD activity from 

V1 and V5.  β  is modelled as a state variable, observed vicariously through the BOLD 

responses, that is allowed to change with time (influenced by its own internal states and 

input) according to the update equation  

 

)0(
1

,Q~N
ββ

t

ttt

η
η+= −      19 

 

Where the subscript indexes the scan number, as tβ  can vary from scan to scan.  Given 

this extra state variable, the Kalman Filter can be used to estimate its dynamics.  Figure 

12 illustrates the model and plots the time dependent path coefficient, tβ , for V1 to V5 

connectivity. Note that if tη = 0 then 1−= tt ββ .  This is the static estimate from an 

ordinary regression analysis.  



 26

   The results of this analysis, also known as variable parameter regression, agree with 

previous analyses, in that there is task dependent variation in inter-regional connectivity. 

This variation has the same form as described by a BSSM of contextual input, but the 

variation is treated as random and unknown.  See Eq(19).  However, in general these 

changes in connectivity are induced experimentally by known and deterministic causes. 

   In Chapter 21 (Dynamic Causal Modelling) we return to state space models and 

reanalyse the attentional data set in a way that allows designed manipulations of attention 

to affect the models hidden states.  In dynamic casual modelling the states are dynamic 

variables (e.g. neuronal activity) and the effective connectivity corresponds to fixed 

parameters than can interact with time-varying states and inputs3.  The remainder of this 

chapter focuses on approaches that do not refer to hidden states, such as autoregression 

and Generalised Convolution Models. 

 

Figure 12 about here 

 

B Multivariate Autoregressive Models 

We are familiar with the notion that a time series of sequential measurements may 

contain temporal information: i.e. the order in which the data are generated is important. 

Temporal correlations therefore provide insight into the physical mechanisms generating 

them.  A simple and intuitive model of temporal order is an autoregressive (AR) model, 

where the value of a variable at time t depends on preceding values, up to time lag t-p 

(where p < t).  

   Parameters of AR models comprise regression coefficients, at successive time lags, that 

estimate the characteristic sequential dependencies of the system in a simple and effective 

manner, using measured data only.  This can be extended to include several variables 

with dependencies among variables at different lags.  These dependencies may be 

interpreted as the influence of one variable on another and can be recruited as measures 

of effective connectivity.  Models involving many variables are called Multivariate 

                                                 
3 This should be contrasted with the above application in which the connectivity itself was presumed to be a 
time-varying state. 
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Autoregressive (MAR) models and have been used to measure dependencies among 

regional activities as measured with fMRI (Harrison et al., 2003). 

   MAR models do not invoke hidden states.  Instead, correlations among measurements 

at different time lags are used to quantify the relationships.  This incorporates history into 

the model in a similar way to the Volterra approach described below.  MAR models are 

linear but can be extended to include bilinear interaction terms.  To understand MAR we 

will build up a model from a univariate AR model and eventually see that they conform 

to GLMs with time-lagged explanatory variables. 

   Consider one data at voxel i at time t modelled as a linear combination of time lags 

from t-1 to t-p.  
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w is a p×1 column vector containing the model parameters (AR coefficients) and et is 

Gaussian noise. The model of ty  is a linear mixture of preceding values.  This has the 

same form as the model in Eq(8) where the explanatory variables are now values over 

different time lags, instead of voxels.  We can extend the model to d regions contained in 

the row vector [ ]d
ttt yyy ,,1 K=  
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which has d×d model parameters at each time lag, describing interactions among all 

pairwise combinations of variables.  This is simple a GLM whose parameters can be 
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estimated in the usual way to give W, which is a p×(d×d) array of AR coefficient 

matrices.  As in previous sections the model can be augmented with bilinear interaction 

terms as in SEM.  See Figure 13 for a schematic of the model.  There are no inputs to the 

model, except for the error terms, which play the role of innovations (c.f. SEM).  This 

means that experimentally designed effects have no explicit role (unless they enter 

through bilinear terms).  However, the model attempts to identify relations between 

variables over time, which distinguishes it from static linear models of effective 

connectivity. 

 

 

Figure 13 about here 

 

The magnitude of p, or order of the model, becomes an issue when trying to avoid over 

fitting the data.  This is a common problem because a higher-order model will explain 

more of the data, in a least squares sense, without necessarily capturing the dynamics of 

the system any better than a more parsimonious, optimal model.  A procedure for 

choosing an optimal value of p is therefore necessary.  This can be achieved using a 

Bayesian approach (Penny and Roberts, 2002).  A Bayesian framework also allows for 

inferences about connection strengths to be made based on posterior probabilities (see 

Chapter 17: Classical and Bayesian Inference). 

   MAR was used to model the visual attention data.  The results are shown in Figure 14.  

Two models were estimated using three regions in each.  The motive was to validate the 

method against established procedures that demonstrated a modulatory influence of PFC 

on V5 to PPC connectivity and PPC on V1 to V5 connectivity.  The posterior densities of 

the weight matrix W are shown using their conditional means and variances. The 

probability that an individual parameter is different from zero can be inferred from these 

posterior distributions.  Parameters whose conditional density encompasses zero are less 

likely to have any influence.  Conversely, the more distal a density mass is from zero, the 

greater our certainty that the model supports an effect.  Non-zero parameters that 

characterise second order connectivity are circled in the figure. 
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Figure 14 about here 

 

MAR models have not been used as extensively as other models of effective connectivity. 

However they are an established technique for quantifying temporal dependencies within 

time series (Chatfield, 1996).  They are simple and intuitive models requiring no a priori 

knowledge of connectivity, as in SEM.  However, this could also be construed as a 

shortcoming, in that simple MAR models cannot harness a priori knowledge. 

 

C Generalised Convolution Models 

Up until now we have considered models based on the general linear model and simple 

state space models.  The former may be criticised for not embracing temporal information 

within data, which the Kalman Filter (an example of the latter) resolved by invoking 

hidden states. An alternative approach is to exclude hidden states and formulate a 

function that maps the history of input directly onto output.  This can be achieved by 

characterising the response (output) of a physical system over time to an idealised input 

(an impulse), called an Impulse Response Function (IRF) or Transfer Function (TF).  In 

the time domain this function comprises a kernel that quantifies the idealised response. 

This is convenient as it bypasses any characterisation of possible internal states 

generating the data.  However, it renders the system a ‘black box’, within which we have 

no model.  This is both the methods strength and weakness. 

   Once the IRF has been characterised from experimental data it can be used to model 

responses to arbitrary inputs.  For linear systems, adherent to the Principle of 

Superposition, this reduces to convolving the input with the IRF.  The modelled response 

depends on the input, without any reference to the interactions that may have produced it. 

An example, familiar to neuroimaging, is the Hemodynamic Response Function (HRF) 

used to model the hemodynamic response of the brain to experimental tasks.  However, 

we are interested in nonlinear models, which are obtained by generalising the notion of 

convolution models to include high-order interactions among inputs, an approach 

originally developed by Volterra in 1930 (Rieke et al., 1997).  

The generalised nonlinear state and observation equations are, respectively 
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These can be reformulated to relate output, ))u(t()(y τht −=  to input u(t), without 

reference to the states x(t).  Where h is a nonlinear function, which can be expanded into 

a series of functionals (functions of functions, see below)  
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where n is the order of the series and may take any positive integer to infinity.  This is 

known as a Volterra series. Under certain conditions, h converges as n increases (Fliess et 

al., 1983) and can provide a complete description of a system given enough terms.  To 

understand this we need to consider the Taylor Series expansion as a means of 

constructing an approximation to a general nonlinear function (see Figure 1).  Any 

sufficiently smooth nonlinear function can be approximated, within the neighbourhood of 

an expansion point 0x , by scaling increasingly high-order terms of coefficients computed 

from derivatives of the function about 0x  (see Equation 1).  The Volterra series is a 

Taylor series expansion, where high order terms are constructed from variables modelling 

interactions and scaled by time-varying coefficients.  The Volterra series is a power-

series expansion where the coefficients of Eq(1) are now functions, known as kernels. 

The kernels are functions of time and as the series involves functions of functions they 

are known as functionals.  

  An increase in accuracy of the approximation is achieved by considering higher order 

terms, as demonstrated by deriving linear and bilinear SSMs.  The same is true of the 

linear and bilinear convolution models 
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The HRF derives from a linear convolution model.  The systems IRF and the occurrences 

of experimental trials are therefore represented by h1 and u(t), respectively.  The linear 

model is distinguished by its compliance with the Principle of Superposition: given two 

input impulses, the response is simply the sum of the two responses.  By including the 

second-order kernel, non-additive responses can be modelled.  Practically, this means that 

the timing of inputs is important in that different pairs of inputs may produce different 

responses.  The Volterra approach is a generalisation of the convolution method, which 

convolves increasingly high-order interactions with multidimensional kernels to 

approximate the non-additive component of a systems response.     

   Kernels scale the effect each input, in the past, has on the current value of y(t).  As 

such, Volterra series have been described as ‘power series with memory’.  Sequential 

terms embody increasingly complex interactions among inputs up to arbitrary order.  The 

series converges with increasing terms, which, for weakly nonlinear systems, is assumed 

to occur after the second order term.  Nonlinear behaviour is modelled using these 

interactions, scaled throughout their history.  A diagram of a bilinear convolution model 

is shown in Figure 15. 

 

Figure 15 about here 

 

The first and second-order kernels quantify the linear and bilinear responses, 

consequentially they are equivalent to first and second-order effective connectivity 

respectively (Friston, 2000).  The kernels are also related mathematically to the bilinear 

State-space representation (see Chapter 23: Mathematical Appendix).  For every state-

space representation there is an equivalent set of kernels and an equivalent generalised 

convolution representation. 
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   Having established that Volterra kernels are a metric of effective connectivity, we need 

to estimate them from experimental data.  By reformulating the model using an 

appropriate basis set, kernels can be reconstructed from estimated coefficients.  The HRF 

is modelled well by Gamma functions and this is the reason for choosing them to 

approximate Volterra kernels.  The Volterra kernels, for a general dynamic system (of 

any arbitrary form or complexity), are difficult to compute unless the underlying 

generative process leading to the data is well characterised, as is the HRF.  

   A bilinear convolution model can be reformulated by convolving the basis set ib  with 

the inputs. 
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These are then used as explanatory variables in a GLM 
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where y(t) and )(txi  are known and ij0 g and  , igg  are to be estimated.  The kernels are 

given by  
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The unknowns in Eq(24) can be estimated using a GLM and used to reconstruct the 

original kernels from Eq(25).  This method was applied to the attentional data set used 

previously.  The model consisted of inputs from three regions: putamen, V1/2 complex 

and PPC, to V5, as shown in Figure 16.  BOLD recordings from these regions were used 



 33

as an index of neuronal activity, representing input to V5.  The lower panel illustrates 

responses to simulated inputs, using the empirically determined kernels.  It shows the 

response of V5 to an impulse from V2 and provides a direct comparison of V5 responses 

to the same input from V2, but with and without PFC activity.  The influence of PFC is 

clear.  This is due to its modulatory influence on V2 to V5 connectivity and is an example 

of second order effective connectivity. 

 

Figure 16 about here 

 

The Volterra method has many useful qualities.  It approximates nonlinear behaviour 

without arbitrarily partitioning the data using temporal information within the familiar 

framework of a generalised convolution model.  Kernels may be estimated using a GLM 

and inferences made under parametric assumptions.  Furthermore, kernels contain the 

dynamic information we require to measure effective connectivity.  However, kernels 

characterise an ideal response, generalised to accommodate nonlinear behaviour, which is 

effectively a summary of the system as a whole.  It should also be noted that Volterra 

series are only local approximations around an expansion point.  Although they may be 

extremely good approximations for some systems they may not be for others.  For 

instance, Volterra series cannot capture the behaviour of periodic or chaotic dynamics.  A 

major weakness of the method is that we have no notion of the internal mechanisms that 

generated the data, and this is one motivation for returning to state-space models (see 

Chapter 22: Dynamic Causal Modelling). 

 

 

V CONCLUSION 

 

This chapter has described different methods of modelling inter-regional coupling using 

information in neuroimaging data.  The development and application of these methods is 

motivated by the central importance of changes in effective connectivity in development, 

cognition and pathology.  We have portrayed the models in a historical fashion; from the 

first linear observation models to bilinear terms of regression and convolution models.  In 
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the next two chapters we will revisit Volterra-based and bilinear state space models.  The 

emphasis has been on the bilinearity within imaging data and how different models 

attempt to extract this information.  Bilinear models are a practical extension to linear 

models, capturing plasticity induced by environmental and neurophysiological changes, 

while retaining mathematical tractability. 

 

 

APPENDICES 

 

A.1: Matrix exponential method for integrating state equations 

Variables x, u and z are time dependent (i.e. are functions of time), however, for 

simplicity, the time dependence has been omitted. Consider any the differential equation 
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for constant input.  z(t) can be calculated iteratively over epochs of time during which u 

is stationary.  The stability of the solution depends on the eigenvalues of J, with negative 

values resulting in stable solutions (Boas, 1983). 

 

A.2: SEM objective function 

The observed covariance calculated from the data is 

 

YY
N-

S T

1
1

=       A.3 

 

where N is the number of observations.  The covariance implied by the SEM 

 

( ) ( ) 11 11 −− −−= ββ zzΣ T
t

T     A.4 

 

where zzT
t  is diagonal, as the innovations are assumed to be independent.  An objective 

function comparing S and Σ is the Maximum Likelihood function shown below.  Note 

that a Weighted Least Squares function may be used for non-Gaussian data (Büchel and 

Friston, 1997) to reduce discrepancy between the implied and estimated covariance 

matrices 

 

-pS)-trace(SΣFML ||log||log 1−Σ−=    A.5 
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Figure Legends 

 

Figure 1 

Approximations to )ln()( xxf =  about x0 = 1 using Taylor series expansions, where 

1)(1 −= xxf  and 2
2 )1(2/1)1()( −−−= xxxf  are the first and second-order 

approximations.  The improvement about x0 for higher order approximations is apparent. 

 

Figure 2 

The function f(x) models a simple one-state (x) linear dynamical system i.e. )(xfx =& .  

The state starts at the value 0x  where it decreases (i.e. the value of f(x) < 0) at the rate 

0x& .  After a period of time the state has decreased to 1x  with a rate of 1x& .  The state 

continues to change until f(x) = 0, when 0=nx& .  The overall behaviour of the model is 

that the state decreases exponentially with time.  A familiar example is radioactive decay, 

where the state is the number of radioactive atoms.  Their rate of decay is not uniform, 

but varies linearly with the number of atoms. 

 

Figure 3 

Linear Dynamic System (LDS) with two states, x1 and x2, and inputs, u1 and u2, 

determined by the time invariant matrices A and C in the state equation.  The state 

equation contains terms for intrinsic connectivity and how states are connected to 

external inputs.  These are parameterised by the elements in matrices A and C 

respectively.  A contains elements that model influences among states (inter-state) and on 

themselves (for example, the damping term in the model of a linearly damped harmonic 

oscillator). 

 

Figure 4 

A bilinear dynamic model similar to Figure 3.  However, input u2 can interact with 

coupling coefficients a21 rendering matrix )(~ tA  time-dependent.  This induces input-

dependent modulation of the coupling parameters, with the consequence of different 
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responses to other inputs i.e. u1.  All connections that are not shown correspond to zero 

elements in the matrices. 

 

Figure 5 

A model of functional integration between the visual and attention systems.  Sensory 

input has an effect directly on the primary visual cortex, while contextual inputs, such as 

motion or attention to the stimulus, modulate pathways between nodes in the extended 

network.  In this way, contextual input (e.g. induced by instructional set) may activate (or 

deactivate) pathways, which in turn determine the response of the system to stimulus-

bound inputs. 

 

Figure 6 

Upper panel: Singular Value Decomposition (SVD).  The technique converts an arbitrary 

matrix, such as M, into an equivalent form, consisting of a mixture of eigenimages 

(eigenvectors) and scaled by a variance component. Lower panel: Eigenspectrum of a 

typical PET data set is shown to demonstrate that the majority of variance is captured by 

the first few eigenvectors. 

 

Figure 7 

Piece-wise local linear approximation of a simple nonlinear relation between x (input) 

and y (response).  (a) A simple nonlinear model is shown.  Nonlinearity in the response is 

generated from a bilinear term xy , which models a non-additive interaction between 

input and intrinsic activity.  The model is noise free for simplicity.  The interaction term 

is scaled by 2b , effectively quantifying the model’s sensitivity to input at different levels 

of intrinsic activity.  (b) Plots of input and output data at different values of 2b  disclose 

the model’s sensitivity to 2b .  At a fixed input, x = u, the response varies dependent on its 

value.  The key point is that data generated from such processes are not distributed in a 

linear fashion.   
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Figure 8 

Data has been generated from the model in Figure 7 ( 8.02 =b ) and noise added.  This 

illustrates how an index of nonlinearity can be constructed by partitioning the data.  Data 

in y is divided into two ranges, where all values of y greater than 1 were grouped into 

highy  and all values lower than 1 into lowy  (their averages are denoted by 

lowhigh yy   and ).  The linear relationship between x and y within each of these ranges 

can be estimated using the approximation at the bottom of the figure.  The value of lb  

reflects local sensitivity to global nonlinearities.  An index of linear and nonlinear 

features of the data can be approximated through estimates of 1b  and 2b , which are 

calculated from values of ly  (known data) and lb  (calculated from data).   

 

Figure 9 

(a) Extended statistical model including interaction terms used to model 

Psychophysiological and Physio-physiological Interactions (PPI).  Subjects were asked to 

make a judgement regarding changes in velocity of a radially moving stimulus or to just 

observe the stimulus.  The velocity of the actual stimulus remained constant, so that only 

the attentional set was manipulated.  Comparisons of connectivity among the primary 

visual cortex (V1/2 complex and V5) and Posterior Parietal Cortex (PPC) during the 

different cognitive states were assessed.  Bilinear terms are denoted by PPI.  The left 

model examines the modulatory influence of attentional set (U) on V1 and V5 coupling, 

while the right assesses PPC activity-dependent modulation of the same connection.  (b) 

This panel demonstrates the change in sensitivity of V5 to V1 input, depending on 

attentional set, using the method illustrated in Figure 8 i.e. partitioning the data and 

regressing V5 on V1.  The lower graph shows the difference in regression slopes and 

their variance (2 standard deviations).  

 

Figure 10 

A SEM is used to estimate path coefficients for a specific network of connections, by 

‘pruning’ the coupling matrix. The figure illustrates that a particular connectivity is 



 39

specified, which is usually based on a prior anatomical model.  tx  may contain 

physiological, psychological data or interaction terms (to estimate to the influence of 

‘contextual’ input on first-order coupling).  The innovations tz  are assumed to be 

independent, and can be interpreted as driving inputs to each node. 

 

Figure 11 

Inference about connection strengths proceeds using nested models.  Parameters from 

Free and Constrained models are compared with a χ2 statistic.  Two examples are given, 

first comparing coupling coefficients during attention and non-attention and testing if 

they are the same.  The second tests for the significance of a connection strength between 

an interaction term and PPC activity (see Büchel and Friston, 1997). 

 

Figure 12 

State-space model of the path coefficient between V1 and V5.  The connection strength is 

modelled as a hidden variable that changes with time according to the update equation 

(upper panel).  Changes in βt are estimated using the Kalman Filter and Smoother, which 

reveal fluctuations that match changes in the attentional set (lower panel). 

 

Figure 13 

Temporal and inter-variable relationships may be modelled as a Multivariate 

Autoregressive process.  The figure shows time-lagged data where the arrows imply 

statistical dependence.  The equation representing the model, including all time points, is 

given beneath the figure.  W contains estimates of temporal dependence, which may be 

used as a metric of coupling.  Y may contain physiological, psychological data or 

interaction terms. 

 

Figure 14 

Results of two MAR models applied to the visual attention data set.  Each panel contains 

posterior density estimates of W over time lags (x-axis) for each connection.  The mean 

and 2 standard deviations for each posterior density are shown.  Diagonal elements 

quantify autocorrelations and off diagonals the cross-correlations.  The regions used in 
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each model are: V1/2, V5 and PPIV1×PPC and V5, PPC and PPIV5×PFC. The models support 

coupling between the interaction terms and V5 and PPC respectively. 

 

Figure 15 

A bilinear convolution model of a simple network consisting of two inputs and an output.  

Linear contributions from each input are estimated by the first order kernel h1.  However, 

non-additive responses, due to nonlinear interactions within the system, are modelled by 

the second order kernel, h2. 

 

Figure 16 

Top:  Brain regions and connections comprising the model.  Bottom: Characterisation of 

the effects of V2 inputs on V5 and their modulation by posterior parietal cortex (PPC).  

The broken lines represent estimates of V5 responses when PPC activity is zero, 

according to a second order Volterra model of effective connectivity with inputs to V5 

from V2, PPC and the pulvinar (PUL).  The solid curves represent the same response 

when PPC activity is one standard deviation of its between-condition variation.  It is 

evident that V2 has an activating effect on V5 and that PPC increases the responsiveness 

of V5 to these inputs.  The insert shows all the voxels in V5 that evidenced a modulatory 

effect (p < 0.05 uncorrected).  These voxels were identified by thresholding a statistical 

parametric map of the F statistic testing for the contribution of second order kernels 

involving V2 and PPC (treating all other terms as nuisance variables).  The data were 

obtained from with fMRI under identical stimulus conditions (visual motion subtended 

by radially moving dots) whilst manipulating the attentional component of the task 

(detection of velocity changes). 
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