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I INTRODUCTION 

 
The purpose of this brief chapter is to establish the Volterra formulation of effective 

connectivity from a conceptual and neurobiological point of view.  Recall from the previous 

chapter that the generalised convolution representation of dynamic systems, afforded by 

Volterra expansions, is just anther way of describing the input-output behaviour of systems 

that have an equivalent state-space representation.  In the next chapter we will deal with 
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state-space representations in more detail.  Before proceeding to explicit input-state-output 

models we will look at why the Volterra formulation can be so useful. 

 

A The brain and dynamic systems 

The brain can be regarded as an ensemble of connected dynamical systems and as such 

conforms to some simple principles relating the inputs and outputs of its constituent parts.  

The ensuing implications, for the way we think about, and measure, neuronal interactions can 

be quite profound.  These range from implications for which aspects of neuronal activity are 

important to measure and how to characterise coupling among neuronal populations, to 

implications pertaining to dynamic instability and complexity, that is necessary for adaptive 

self-organisation. 

   This chapter focuses on the first issue by looking at neuronal interactions, coupling and 

implicit neuronal codes from a dynamical perspective.  By considering the brain in this light 

one can show that a sufficient description of neuronal activity must comprise activity at the 

current time and its recent history.  This history constitutes a neuronal transient.  Such 

transients represent an essential metric of neuronal interactions and, implicitly, a code 

employed in the functional integration of brain systems.  The nature of transients, expressed 

conjointly in different neuronal populations, reflects the underlying coupling among brain 

systems.  A complete description of this coupling, or effective connectivity, can be expressed 

in terms of generalised convolution kernels [Volterra kernels] that embody high-order or 

nonlinear interactions.  This coupling may be synchronous, and possibly oscillatory, or 

asynchronous.  A critical distinction between synchronous and asynchronous coupling is that 

the former is essentially linear and the latter is nonlinear.  The nonlinear nature of 

asynchronous coupling enables context-sensitive interactions that characterise real brain 

dynamics, suggesting that it plays an important role in functional integration. 

   Brain states are inherently labile, with a complexity and transience that renders their 

invariant characteristics elusive.  The position adopted in this chapter is that the best 

approach is to embrace these dynamical aspects.  Its aim is to introduce the notion of 

neuronal transients and the underlying framework (Friston 2000).  The central tenet is that 

the dynamics of neuronal systems can be viewed as a succession of transient spatiotemporal 

patterns of activity.  These transients are shaped by the brain's anatomical infrastructure, 

principally connections, which have been selected to ensure the adaptive nature of the 

resulting dynamics.  Although rather obvious, this formulation embodies one fundamental 

point; namely that any description of brain state should have an explicit temporal dimension.  
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In other words, measures of brain activity are only meaningful when specified over periods 

of time.  This is particularly important in relation to fast dynamic interactions among 

neuronal populations that are characterised by synchrony.  Synchronisation has become 

popular in the past years (e.g. Gray and Singer 1991, Eckhorn et al. 1992, Engel et al 1991) 

and yet represents only one possible sort of interaction. 

   This chapter is divided into four sections.  In the first we review the conceptual basis of 

neuronal transients.  This section uses an equivalence, between two mathematical 

formulations of nonlinear systems, to show that descriptions of brain dynamics, in terms of 

(i) neuronal transients and (ii) the coupling among interacting brain systems, is complete and 

sufficient.  The second section uses this equivalence to motivate a taxonomy of neuronal 

codes and establish the relationship among neuronal transients, asynchronous coupling, 

dynamic correlations and nonlinear interactions.  In the third section we illustrate nonlinear 

coupling using magnetoencephalography (MEG) data.  The final section discusses some 

neurobiological mechanisms that might mediate nonlinear coupling. 

 

 

II.  NEURONAL TRANSIENTS 

 

The assertion that meaningful measures of brain dynamics have a temporal domain is neither 

new nor contentious (e.g. von der Malsburg 1983, Optican and Richmond 1987, Engel et al 

1991, Aertsen et al 1994, Freeman and Barrie 1994, Abeles et al 1995, deCharms and 

Merzenich 1996).  A straightforward analysis demonstrates its veracity: Suppose that one 

wanted to posit some variables x that represented a complete and self-consistent description 

of brain activity.  In short, everything needed to determine the evolution of the brain's state, 

at a particular place and time, was embodied in these measurements.  Consider a component 

of the brain (e.g. a neuron or neuronal population).  If such a set of variables existed for this 

component system they would satisfy some immensely complicated nonlinear state equation 
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where x is a huge vector of state variables which range from depolarisation at every point in 

the dendritic tree to the phosphorylation status of every relevant enzyme, from the 

biochemical status of every glial cell compartment to every aspect of gene expression..  u(t) 
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represents a set of inputs conveyed by afferent from other regions.  Eq(1) simply says that the 

changes in the state variables are nonlinear functions of the variables themselves and some 

inputs.  The vast majority of these variables are hidden and not measurable directly.  

However, there are a small number of derived measurements y that can be made, 
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such as activities of whole cells or populations.  These activities could be measured in many 

ways, for example firing at the initial segment of an axon or local field potentials.  The 

problem is that a complete and sufficient description appears unattainable, given that the 

underlying state variables cannot be observed directly.  This is not the case.  The resolution 

of this apparent impasse rests upon two things.  (i) Firstly, a fundamental mathematical 

equivalence relating the inputs and outputs of a dynamical system and (ii) the fact that these 

measurable outputs constitute the inputs to other cells or populations. 

 

     Box 1 about here 

 

A Convolution and state-space representations 

Assume that every neuron in the brain is modelled by a nonlinear dynamical system of the 

sort described by Eq(1).  Under this assumption it can be shown that the output is a function 

of the recent history of its inputs.   
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where )( τ−tu represents the inputs in the recent past.  Furthermore, this relationship can be 

expressed as a Volterra series of the inputs (see Box 1).  The critical thing here is that we 

never need to know the underlying and 'hidden' variables that describe the details of each 

cell's electrochemical and biochemical status.  We only need to know the history of its 

inputs, which, of course, are the outputs of other cells.  Eq(3) is, in principle, a sufficient 

description of brain dynamics and involves the variables )()( σσ −=− tytu  that represent 

activity at all times σ  preceding the moment in question.  These are simply neuronal 

transients.  The degree of transience depends on how far back in time it is necessary to go to 

fully capture the brain's dynamics.  The sensible nature of Eq(3) can be readily seen.  For 

example, if we wanted to determine the behaviour of a cell in V1 (primary visual cortex) then 
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we would need to know the activity of all connected cells in the immediate vicinity over the 

last millisecond or so to account for propagation delays down afferent axons.  We would also 

need to know the activity in distant sources, like the lateral geniculate nucleus and higher 

cortical areas, some ten or more milliseconds ago.  In short we need the recent history of all 

inputs.   

   Transients can be expressed in terms of firing rates (e.g. chaotic oscillations, Freeman and 

Barrie 1994) or individual spikes (e.g. syn-fire chains, Abeles et al. 1994; 1995).  Transients 

are not just a mathematical abstraction, they have real implications at a number of levels: For 

example, the emergence of fast oscillatory interactions among simulated neuronal 

populations depends upon the time delays implicit in axonal transmission and the time-

constants of postsynaptic responses.  Another slightly more subtle aspect of this formulation 

is that changes in synaptic efficacy, such as short-term potentiation or depression, take some 

time to be mediated by intracellular mechanisms.  This means that the interaction between 

inputs at different times, that models these activity-dependent effects, again depends on the 

relevant history of activity 

 

1 levels of description 

The above arguments lead to a conceptual model of the brain that comprises a collection of 

dynamical systems (e.g. cells or populations of cells), each representing as an input-state-

output model, where the state remains forever hidden.  However the inputs and outputs are 

accessible and are causally related where the output of one system constitutes the input to 

another.  A complete description therefore comprises the nature of these relationships (the 

Volterra series corresponding to the function h) and the neuronal transients.  This constitutes 

a mesoscopic level of description that permits a degree of ‘black-boxness’ but with no loss of 

information. 

   The equivalence, in terms of specifying the behaviour of a neuronal system, between 

microscopic and mesoscopic levels of description is critical.  In short, the equivalence means 

that all the information inherent in unobservable microscopic variables that determine the 

response of a neuronal system is embodied in the history of its observable inputs and outputs.  

Although the microscopic level of description may be more mechanistically informative, 

from the point of view of response prediction, neuronal transients are an entirely equivalent 

representation1. 

                                                 
1We have focussed on the distinction between microscopic and mesoscopic levels of description.  The 
macroscopic level is reserved for approaches, exemplified by synergistics (Haken 1983), that characterise the 
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B Effective connectivity and Volterra kernels 

The first conclusion so far is that neuronal transients are necessary to specify brain dynamics.  

The second conclusion is that a complete model of the influence one neuronal population 

exerts over another should take the form of a Volterra series2.  This implies that a complete 

characterisation of these influences (i.e. effective connectivity) comprises the Volterra 

kernels that are applied to the inputs to yield the outputs.  Effective connectivity refers 

explicitly to "the influence that one neural system exerts over another, either at a synaptic 

(i.e. synaptic efficacy) or population level" (Friston 1995a).  It has been proposed (Aertsen 

and Preißl 1991) that "the notion of effective connectivity should be understood as the 

experiment- and time-dependent, simplest possible circuit diagram that would replicate the 

observed timing relationships between the recorded neurons".  See the previous chapter. 

   If effective connectivity is the influence that one neural system exerts over another it 

should be possible, given the effective connectivity and the afferent activity, to predict the 

response of a recipient population.  This is precisely what Volterra kernels do.  Any model of 

effective connectivity can be expressed as a Volterra series and any measure of effective 

connectivity can be reduced to a set of Volterra kernels (see Box 1).  An important aspect of 

effective connectivity is its context-sensitivity.  Effective connectivity is simply the 'effect' 

that input has on the output of a target system.  This effect will be sensitive to other inputs, 

its own history and, of course, the microscopic state and causal architecture intrinsic to the 

target population.  This intrinsic dynamical structure is embodied in the Volterra kernels.  In 

short, Volterra kernels are synonymous with effective connectivity because they characterise 

the measurable effect that an input has on its target.  An example of using Volterra kernels, 

to characterise context-sensitive changes in effective connectivity, was provided in the 

previous chapter (see Figure 16).  This example used hemodynamic responses to changes in 

neuronal activity as measured with functional magnetic resonance imaging (fMRI). 

 

 

                                                                                                                                                       
spatiotemporal evolution of brain dynamics in terms of a small number of macroscopic order parameters [see 
Kelso (1995) for an engaging exposition].  Order parameters are created and determined by the co-operation of 
microscopic quantities and yet, at the same time, govern the behaviour of the whole system.  See Jirsa et al 
(1995) for a nice example. 
 
2 An important qualification here is that each system is 'controllable'.  Systems which are not 'controlled' have 
quasi-periodic or chaotic behaviours that are maintained by interactions among the states of the system.  
Although an important issue at the microscopic level, it is fairly easy to show that the mean field approximation 
to any ensemble of subsystems is controllable. 
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III.  NEURONAL CODES 

 

Functional integration refers to the concerted interactions among neuronal populations that 

mediate perceptual binding, sensorimotor integration and cognition.  It pertains to the 

mechanisms of, and constraints under which, the state of one population influences that of 

another.  It has been suggested by many that functional integration, among neuronal 

populations, uses transient dynamics that represent a temporal 'code'.  A compelling proposal 

is that population responses, encoding a percept, become organised in time, through 

reciprocal interactions, to discharge in synchrony (von der Malsburg 1985, Singer 1994).   

The use of the term 'encoding' here speaks directly to the notion of codes.  Here a neuronal 

code is taken to be a metric that reveals interactions among neuronal systems by enabling 

some prediction of the response in one population given the same sort of measure in 

another3.  Clearly, from the previous section, neuronal transients represent the most generic 

form of code because, given the Volterra kernels, the output can, in principle, be predicted 

exactly.  Neuronal transients have a number of attributes (e.g. inter-spike interval, duration, 

mean level of firing, predominant frequency etc.) and any of these could be contenders for a 

more parsimonious code.  The problem of identifying possible codes can be reduced to 

identifying the form the Volterra kernels in Box 1 can take.  If we know their form then we 

can say which aspects of the input will cause a response.  Conversely, it follows that the 

different forms of kernels should specify the various codes that might be encountered.  This 

is quite an important point and leads to a clear formulation of what can and cannot constitute 

a code.  We will review different codes in terms of the different sorts of kernels that could 

mediate them. 

 

A Instantaneous vs. temporal codes 

The first kernel characteristic that engenders a coding taxonomy is kernel depth.  The 

limiting case here is when the kernels support shrinks to a point in time.  This means that the 

only relevant history is the immediate activity of inputs (all earlier activities are 'ignored' by 

the kernel).  In this case the activity in any unit is simply a nonlinear function of current 

activities elsewhere.  An example of this is instantaneous rate coding. 

                                                 
3 Although the term code is not being used to denote anything that 'codes' for something in the environment, it 
could be used to define some aspect of an evoked transient that expresses a high mutual information with a 
stimulus parameter (e.g. Optican and Richmond 1987, Tovee et al 1993). 
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   Rate coding considers spike-trains as stochastic processes whose first order moments (i.e. 

mean activity) describe neuronal interactions.  These moments may be in terms of spikes 

themselves or other compound events (e.g. the average rate of bursting, Bair et al 1994).  

Interactions based on rate coding are usually assessed in terms of cross-correlations.  From 

the dynamical perspective instantaneous rate codes are considered insufficient.  This is 

because they predict nothing about a cell, or population, response unless one knows the 

microscopic state of that cell or population. 

   The distinction between rate and temporal coding (see Shadlen & Newsome 1995, de 

Ruyter van Steveninck 1997) centres on whether the precise timing of individual spikes is 

sufficient to facilitate meaningful neuronal interactions.  In temporal coding the exact time at 

which an individual spike occurs is the important measure and the spike-train is considered 

as a point process.  There are clear examples of temporal codes that have predictive validity; 

for example, the primary cortical representation of sounds by the co-ordination of action 

potential timing (deCharms and Merzenich 1996).  These codes depend on the relative timing 

of action potentials and implicitly, an extended temporal frame of reference.  They therefore 

fall into the class of transient codes, where selective responses to particular inter-spike 

intervals are modelled by temporally extended second order kernels.  A nice example is 

provided by de Ruyter van Steveninck et al (1997) who show that the temporal patterning of 

spike trains, elicited in fly motion-sensitive neurons by natural stimuli, can carry twice the 

amount of information than an equivalent [Poisson] rate code. 

 

B Transient codes: Synchronous vs. asynchronous 

The second distinction, assuming the kernels have a non-trivial depth, is whether they 

comprise high order terms or not.  Expansions that encompass just first-order terms are only 

capable of meditating linear or synchronous interactions.  Higher-order kernels confer 

nonlinearity on the influence of an input that leads to asynchronous interactions.  

Mathematically, if there are only first-order terms then the Fourier transform of the Volterra 

kernel completely specifies the relationship (the transfer function) between the spectral 

density of input and output in a way that precludes interactions among frequencies, or indeed 

inputs.  In other words, the expression of any frequency in a recipient cell is predicted 

exactly by the expression of the same frequency in the source (after some scaling by the 

transfer function). 

 

1 Synchronous codes 
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The proposal most pertinent to these forms of code is that population responses, participating 

in the encoding of a percept, become organised in time through reciprocal interactions so that 

they come to discharge in synchrony (von der Malsburg 1985, Singer 1994) with regular 

periodic bursting.  It should be noted that synchronisation does not necessarily imply 

oscillations.  However, synchronised activity is usually inferred operationally by oscillations 

implied by the periodic modulation of cross-correlograms of separable spike trains (e.g. Gray 

and Singer 1991, Eckhorn et al. 1992) or measures of coherence in multichannel electrical 

and neuromagnetic time-series (e.g. Llinas et al 1994).  The underlying mechanism of these 

frequency-specific interactions is usually attributed to phase-locking among neuronal 

populations (e.g. Sporns et al 1992; Aertsen and Preißl 1991).  The key aspect of these 

measures is that they refer to the extended temporal structure of synchronised firing patterns, 

either in terms of spiking (e.g. syn-fire chains, Abeles et al 1994, Lumer et al 1997) or 

oscillations in the ensuing population dynamics (e.g. Singer 1994). 

   Many aspects of functional integration and feature linking in the brain are thought to be 

mediated by synchronised dynamics among neuronal populations (Singer 1994).  

Synchronisation reflects the direct, reciprocal exchange of signals between two populations, 

whereby the activity in one population influences the second, such that the dynamics become 

entrained and mutually reinforcing.  In this way the binding of different features of an object 

may be accomplished, in the temporal domain, through the transient synchronisation of 

oscillatory responses.  This 'dynamical linking' defines their short-lived functional 

association.  Physiological evidence is compatible with this theory (e.g. Engel et al 1991, 

Fries et al 1997).  Synchronisation of oscillatory responses occurs within as well as among 

visual areas, for example between homologous areas of the left and right hemispheres and 

between areas at different levels of the visuomotor pathway (Engel et al 1991, Roelfsema et 

al 1997).  Synchronisation in the visual cortex appears to depend on stimulus properties, such 

as continuity, orientation and motion coherence. 

   The problem with synchronisation is that there is nothing essentially dynamic about 

synchronous interactions per se.  As argued by Erb and Aertsen (1992) "the question might 

not be so much how the brain functions by virtue of oscillations, as most researchers working 

on cortical oscillations seem to assume, but rather how it manages to do so in spite of them".  

In order to establish dynamic cell assemblies it is necessary to create and destroy 

synchronised couplings.  It is precisely these dynamic aspects that speak to changes in 

synchrony (e.g. Desmedt and Tomberg 1994) and the asynchronous transitions between 

synchronous states as the more pertinent phenomenon.  In other words, it is the successive 
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reformulation of dynamic cell assemblies, through nonlinear or asynchronous interactions, 

that is at the heart of 'dynamical linking'  (Singer 1994). 

 

2 Asynchronous codes 

An alternative perspective on neuronal codes is provided by dynamic correlations (Aertsen et 

al 1994) as exemplified in Vaadia et al (1995).  A fundamental phenomenon, observed by 

Vaadia et al (1995), is that, following behaviourally salient events, the degree of coherent 

firing between two neurons can change profoundly and systematically over the ensuing 

second or so.  One implication is that a complete model of neuronal interactions has to 

accommodate dynamic changes in correlations, modulated on time-scales of 100-1000ms.  

Neuronal transients provide a simple explanation for this temporally modulated coherence or 

dynamic correlation.  Imagine that two neurons respond to an event with a similar transient.  

For example, if two neurons respond to an event with decreased firing for 400ms, and this 

decrease was correlated over epochs, then positive correlations between the two firing rates 

would be seen for the first 400 of the epoch, and then fade away, exhibiting a dynamic 

modulation of coherence.  In other words, a transient modulation of covariance can be 

equivalently formulated as covariance in the expression of transients.  The generality of this 

equivalence can be established using singular value decomposition (SVD) of the joint-

peristimulus time histogram (J-PSTH) as described in Friston (1995b).  This is simply a 

mathematical device to show that dynamic changes in coherence are equivalent to the 

coherent expression of neural transients.  In itself it is not important, in the sense that 

dynamic correlations are just as valid a characterisation as neuronal transients and indeed 

may provide more intuitive insights into how this phenomenon is mediated (e.g. Riehle et al 

1997).  A more important observation is that J-PSTHs can be asymmetric about the leading 

diagonal.  This suggests that coupled transients in two units can have a different patterning of 

activity.  This can only be explained by asynchronous or nonlinear coupling. 

 

C Summary 

In summary, the critical distinction between synchronous and asynchronous coupling is the 

difference between linear and nonlinear interactions among units or populations4.  This 

difference is reduces to the existence of high-order Volterra kernels in the mediating the 

                                                 
4 The term 'generalised synchrony' has been introduced to include nonlinear inter-dependencies (see Schiff et al 
1996).  Generalised synchrony subsumes synchronous and asynchronous coupling.  An elegant method for 
making inferences about generalised synchrony is described in Schiff et al (1996).  This approach is 
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input-output behaviour of coupled cortical regions.  There is a close connection between 

asynchronous/nonlinear coupling and the expression of distinct transients in two brain 

regions: Both would be expressed as dynamic correlations, or, in the EEG, as event-related 

changes in synchronisation (e.g.. induced oscillations).  If the full transient model is correct 

then important transactions among cortical areas will be overlooked by techniques that are 

predicated on rate coding (e.g. correlations, covariance patterns, spatial modes etc.) or 

synchronisation models (e.g. coherence analysis and cross-correlograms).  Clearly the critical 

issue here is whether there is direct evidence for nonlinear or asynchronous coupling that 

would render high-order Volterra kernels necessary. 

 

 

IV. EVIDENCE FOR NONLINEAR COUPLING 

 

Why is asynchronous coupling so important?  The reason is that asynchronous interactions 

embody all the nonlinear interactions implicit in functional integration and it is these that 

mediate the context-sensitive nature of neuronal interactions.  Nonlinear interactions among 

cortical areas render the effective connectivity among them inherently dynamic and 

contextual.  Compelling examples of context-sensitive interactions include the attentional 

modulation of evoked responses in functionally specialised sensory areas (e.g. Treue and 

Maunsell 1996) and other contextually dependent dynamics [see Phillips and Singer (1997)].  

Whole classes of empirical phenomena such as extra-classical receptive field effects rely on 

nonlinear or asynchronous interactions. 

 

A Nonlinear coupling and asynchronous interactions 

If the temporal structures of recurring transients in two parts of the brain are distinct, then the 

prevalence of certain frequencies in one cortical area should predict the expression of 

different frequencies in another.  In contrast, synchronisation posits the expression of the 

same frequencies.  Correlations among different frequencies therefore provide a basis for 

discriminating between synchronous and asynchronous coupling. 

   Consider time-series from two neuronal populations or cortical areas.  Synchrony requires 

that the expression of a particular frequency (e.g. 40 Hz) in one time series will be coupled 

with the expression of the same frequency in the other.  In other words, the modulation of 

                                                                                                                                                       
particularly interesting from our point of view because it calls upon the recent history of the dynamics through 
the use of temporal embedding to reconstruct the attractors analysed. 
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this frequency in one area can be explained or predicted by its modulation in the second.   

Conversely, asynchronous coupling suggests that the power at a reference frequency, say 40 

Hz, can be predicted by the spectral density in the second time-series at frequencies other 

than 40 Hz.  These predictions can be tested empirically using standard time-frequency and 

regression analyses as described in Friston (2000).  Figure 1 shows an example of this sort of 

analysis, revealing the dynamic changes in spectral density between 8 and 64 Hz over 16 

seconds.  The cross-correlation matrix of the time-dependent expression of different 

frequencies in the parietal and prefrontal regions is shown in the lower left panel.  There is 

anecdotal evidence here for both synchronous and asynchronous coupling.  Synchronous 

coupling, based upon the co-modulation of the same frequencies, is manifest as hot-spots 

along, or near, the leading diagonal of the cross-correlation matrix (e.g. around 20Hz).   

More interesting are correlations between high frequencies in one time-series and low 

frequencies in another.  In particular note that the frequency modulation at about 34Hz in the 

parietal region (second time-series) could be explained by several frequencies in the 

prefrontal region.  The most profound correlations are with lower frequencies in the first 

time-series (26Hz).  Using a simple regression framework, statistical inferences can be made 

about the coupling within and between different frequencies (see Friston 2000 for details).  A 

regression analysis shows that coupling at 34Hz has significant synchronous and 

asynchronous components, where as the coupling at 48Hz is purely asynchronous  (middle 

and right peaks in the graphs) i.e. a coupling between beta dynamics in the premotor region 

and gamma dynamics in the parietal region. 

 

     Figure 1 about here 

 

 

V.  THE NEURAL BASIS OF NONLINEAR COUPLING 

 

In Friston (1997) it was suggested that, from a neurobiological perspective, the distinction 

between nonlinear [asynchronous] and linear [synchronous] interactions could be viewed in 

the following way.  Synchronisation emerges from the reciprocal exchange of signals 

between two populations, where each drives the other, such that the dynamics become 

entrained and mutually reinforcing.  In asynchronous coding the afferents from one 

population exert a modulatory influence, not on the activity of the second, but on the 

interactions within it (e.g. a modulation of effective connectivity or synaptic efficacies within 
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the target population) leading to changes in the dynamics intrinsic to the second population.  

In this model there is no necessary synchrony between the intrinsic dynamics that ensue and 

the temporal pattern of modulatory input.  To test this hypothesis one would need to 

demonstrate that asynchronous coupling emerges when extrinsic connections are changed 

from driving connections to modulatory connections.  Clearly this cannot be done in the real 

brain.  However, we can use computational techniques to create a biologically realistic model 

of interacting populations and test this hypothesis directly. 

 

A. Interactions between simulated populations 

Two populations were simulated using the model described in Friston (2000).  This model 

simulates entire neuronal populations in a deterministic fashion based on known 

neurophysiological mechanisms.  In particular we modelled three sorts of synapse, fast 

inhibitory (GABA), fast excitatory (AMPA) and slower voltage-dependent synapses 

(NMDA).  Connections intrinsic to each population used only GABA and AMPA-like 

synapses.  Simulated glutaminergic extrinsic connections between the two populations used 

either driving AMPA-like synapses or modulatory NMDA-like synapses.  Transmission 

delays for extrinsic connections were fixed at 8ms.  By using realistic time constants the 

characteristic oscillatory dynamics of each population were expressed in the gamma range. 

 

     Figure 2 about here 

 

The results of coupling two populations with unidirectional AMPA-like connections are 

shown in the top of Figure 2 in terms of the simulated local field potentials (LFP).  

Occasional transients in the driving population were evoked by injecting a depolarising 

current, of the same magnitude, at random intervals (dotted lines).  The tight synchronised 

coupling that ensues is evident.  This example highlights the point that near-linear coupling 

can arise even in the context of loosely coupled, highly nonlinear neuronal oscillators of the 

sort modelled here.  Contrast these entrained dynamics under driving connections with those 

that emerge when the connection is modulatory or NMDA-like (lower panel in Figure 2).  

Here there is no synchrony and, as predicted, fast transients of an oscillatory nature are 

facilitated by the low frequency input from the first population that has a lower frequency 

(c.f. the MEG analyses above).  This is a nice example of asynchronous coupling that is 

underpinned by nonlinear modulatory interactions between neuronal populations.  The nature 

of the coupling can be characterised using the time-frequency analysis (identical in every 
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detail) applied to the neuromagnetic data of the previous section.  The results for the NMDA 

simulation are presented in Figure 3.  The cross-correlation matrix resembles that obtained 

with the MEG data in Figure 1.  Both in terms of the variance, and inference, asynchronous 

coupling supervenes at most frequencies but, as in the real data, mixed coupling is also 

evident.  These results can be taken as a heuristic conformation of the notion that 

modulatory, in this case voltage-dependent, interactions are sufficiently nonlinear to account 

for the emergence of asynchronous coupling. 

 

     Figure 3 about here 

 

B. Modulatory interactions and nonlinear coupling 

In summary, asynchronous coupling is synonymous with nonlinear coupling.  Nonlinear 

coupling can be framed in terms of the modulation of intrinsic interactions, within a cortical 

area or neuronal population, by extrinsic input offered by afferents from other parts of the 

brain.  This mechanism predicts that the modulation of fast (e.g. gamma) activity in one 

cortical area can be predicted by much slower changes in other areas.  This form of coupling 

is very different from coherence or other measures of synchronous coupling and concerns the 

relationship between the first-order dynamics in one area and the second order dynamics 

(spectral density) expressed in another.  In terms of the above NMDA simulation, transient 

depolarisation in the modulating population causes a short-lived increased input to the 

second.  These afferents impinge on voltage-sensitive NMDA-like synapses with time 

constants (in the model) of about 100ms.  These synapses open and slowly close again, 

remaining open long after an afferent volley.  Because of their voltage-sensitive nature this 

input will have no effect on the dynamics intrinsic to the second population unless there is 

already a substantial degree of depolarisation.  If there is then, through self-excitation and 

inhibition, the concomitant opening of fast excitatory and inhibitory channels will generally 

increase membrane conductance, decrease the effective membrane time constants and lead to 

fast oscillatory transients.  This is what we observe in the lower panel of Figure 2.  In relation 

to the MEG analyses, the implied modulatory mechanisms, that may underpin this effect, are 

entirely consistent with the anatomy, laminar specificity and functional role attributed to 

prefrontal efferents (Rockland and Pandya 1979, Selemon and Goldman-Rakic 1988). 

 

 

VI CONCLUSION 
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In this chapter we have dealt with some interesting and interrelated aspects of effective 

connectivity, neuronal codes, nonlinear coupling, neuronal transients and dynamic 

correlations (e.g. induced oscillations).  The key points can be summarised as follows 

 

• Starting with the premise that the brain can be represented as an ensemble of 

connected input-state-output systems (e.g. cellular compartments, cells or populations 

of cells) there exists an equivalent input-output formulation in terms of a Volterra 

series.  This is simply a functional expansion of each system's inputs that produces its 

outputs (where the outputs to one system constitute the inputs to another). 

 

• The existence of this expansion suggests that the history of inputs, or neuronal 

transients, and the Volterra kernels are a complete and sufficient specification of 

brain dynamics (to the extent they are controllable).  This is the primary motivation 

for framing dynamics in terms of neuronal transients and using Volterra kernels to 

model effective connectivity. 

 

• The Volterra formulation provides constraints on the form that neuronal interactions 

and implicit codes must conform to.  There are two limiting cases; (i) when the kernel 

decays very quickly and (ii) when high order kernels disappear.  The first case 

corresponds to instantaneous codes (e.g. rate codes) and the second to synchronous 

interactions (e.g. synchrony codes). 

 

• High order kernels in the Volterra formulation of effective connectivity speak to 

nonlinear interactions and implicitly to asynchronous coupling.  Asynchronous 

coupling implies coupling among the expression of different frequencies. 

 

• Coupling among different frequencies is easy to demonstrate using neuromagnetic 

measurements of real brain dynamics.  This implies that nonlinear, asynchronous 

coupling is a prevalent component of functional integration. 

 

• High order kernels correspond to modulatory interactions that can be construed as a 

nonlinear effect of inputs that interact bilinearly with the intrinsic states of the 

recipient system.  This implies that driving connections may be linear and engender 
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synchronous interactions.  Conversely, modulatory connections, being nonlinear, may 

be revealed by asynchronous coupling and be expressed in high order kernels. 
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Box 1: Dynamical systems and Volterra kernels 
 

Input-state-output systems and Volterra series 

Neuronal systems are inherently nonlinear and lend themselves to modelling with nonlinear 

dynamical systems.  However due to the complexity of biological systems it is difficult to 

find analytic equations that describe them adequately.  Even if these equations were known 

the state variables are often not observable.  An alternative approach to identification is to 

adopt a very general model (Wray and Green 1994) and focus on the inputs and outputs.   

Consider the single input-single output (SISO) system 
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The Fliess fundamental formula (Fliess et al 1983) describes the causal relationship between 

the outputs and the recent history of the inputs.  This relationship can be expressed as a 

Volterra series which expresses the output y(t) as a nonlinear convolution of the inputs u(t), 

critically without reference to the state variables x(t).  This series is simply a functional 

Taylor expansion of y(t) in Eq(3) (main text). 
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were ),( 1 ii σσκ K  is the ith order kernel.  Volterra series have been described as a 'power 

series with memory' and are generally thought of as a high-order or 'nonlinear convolution' of 

the inputs to provide an output.  See Bendat (1990) for a fuller discussion. 

 

Volterra kernels and effective connectivity 

 Volterra kernels are essential in characterising the effective connectivity or influences that 

one neuronal system exerts over another because they represent the causal input-output 
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characteristics of the system in question.  Neurobiologically they have a simple and 

compelling interpretation – they are synonymous with effective connectivity: From B.2 
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It is evident that the first-order kernel embodies the response evoked by a change in input at 

1σ−t .  In other words, it is a time-dependant measure of driving efficacy.  Similarly the 

second order kernel reflects the modulatory influence of the input at 1σ−t  on the response 

evoked by input at 2σ−t .  And so on for higher orders. 
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Figure Legends 

 

Figure 1 

Time-frequency and regression analysis of MEG time-series designed to characterise the 

relative contribution of synchronous and asynchronous coupling.  Neuromagnetic data were 

acquired from a normal subject using a KENIKRON 37 channel MEG system at one-

millisecond intervals for periods of up to two minutes.  During this time the subject made 

volitional joystick movements to the left, every two seconds or so.  Paired epochs were taken 

from a left prefrontal and left parietal region.  Top panels: The two times series (plots) and 

their corresponding time-frequency profiles (images).  The first time-series comes from the 

left prefrontal region.  The second comes from the left superior parietal region.  Lower left 

panel: This is a simple characterisation of the coupling among frequencies in the two regions 

and represents the [squared] cross-correlations of the time-varying expression of different 

frequencies from the upper panels.  Lower right panels: These are the results of a linear 

regression analysis that partitions the variance in the second (parietal) time-series into 

components that can be attributed to synchronous (broken lines) and asynchronous (solid 

lines) contributions from the first (prefrontal) time series.  The upper graph shows the 

relative contribution in terms of the proportion of variance explained and in terms of the 

significance using a semi-log plot of the corresponding p-values (lower graph).  The dotted 

line in the latter corresponds to p = 0.05. 

   This example was chosen because it illustrates three sorts of coupling (synchronous, 

asynchronous and mixed).  From inspection of the cross correlation matrix it is evident that 

power in the beta range (20Hz) in the second time-series is correlated with similar frequency 

modulation in the first, albeit at a slightly lower frequency.  The resulting correlations appear 

just off the leading diagonal (broken line) on the upper left.  The proportion of variance 

explained by synchronous and asynchronous coupling is roughly the same and, in terms of 

significance, synchrony supervenes (see upper graph).  In contrast, the high correlations, 

between 48Hz in the second time-series and 26Hz in the first, are well away from the leading 

diagonal, with little evidence of correlations within either of these frequencies.  The 

regression analysis confirms that, at this frequency, asynchronous coupling prevails.  The 

variation at about 34Hz in the parietal region could be explained by several frequencies in 

the prefrontal region.  A formal analysis shows that both synchronous and asynchronous 

coupling coexist at this frequency (i.e. the middle peak in the graphs). 
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Figure 2 

Simulated local field potentials (LFP) of two coupled populations using two different sorts of 

postsynaptic responses (AMPA and NMDA-like) to connections from the first to the target 

population.  The dotted line shows the depolarisation effected by sporadic injections of 

current into the first population.  The key thing to note is that under AMPA-like or driving 

connections the second population is synchronously entrained by the first.  When the 

connections are modulatory or voltage-dependent (NMDA), the effects are much more subtle 

and resemble a frequency modulation.  These data were simulated using a biologically 

plausible model of excitatory and inhibitory subpopulations.  The model was deterministic 

with variables pertaining to the collective, probabilistic, behaviour of the subpopulations (c.f. 

a mean field treatment).  See Friston (2000) for details. 

 

Figure 3 

As for Figure 1, but here using the simulated data employing voltage-dependent NMDA-like 

connections.  The coupling here includes some profoundly asynchronous [nonlinear] 

components involving frequencies in the gamma range implicated in the analyses of real 

(MEG) data shown in Figure 1.  In particular note the asymmetrical cross-correlation matrix 

and the presence of asynchronous and mixed coupling implicit in the p-value plots on the 

lower right. 
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