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I INTRODUCTION 
 

In this chapter we apply the system identification techniques described in Chapter 17 

(Classical and Bayesian Inference) to the bilinear state-space models of effective 

connectivity introduced in Chapter 19 (Effective connectivity).  By using a bilinear 

approximation, to the dynamics of any system, the parameters of the implicit causal 

model reduce to three sets.  These comprise parameters that (i) mediate the influence of 

extrinsic inputs on the states, (ii) mediate intrinsic coupling among the states and (iii) 

[bilinear] parameters that allow the inputs to modulate that coupling.   

    We describe this approach for the analysis of effective connectivity using 

experimentally designed inputs and fMRI responses.  In this context, the coupling 

parameters correspond to effective connectivity and the bilinear parameters reflect the 

changes in connectivity induced by inputs.  The ensuing framework allows one to 

characterise fMRI experiments, conceptually, as an experimental manipulation of 

integration among brain regions (by contextual or trial-free inputs, like time or attentional 

set) that is revealed using evoked responses (to perturbations or trial-bound inputs like 

stimuli). 

   As with previous analyses of effective connectivity, the focus is on experimentally 

induced changes in coupling (c.f. psychophysiologic interactions).  However, unlike 

previous approaches in neuroimaging, the causal model ascribes responses to designed 

deterministic inputs, as opposed to treating inputs as unknown and stochastic.   



A Background 
 
This chapter is about modelling interactions among neuronal populations, at a cortical 

level, using neuroimaging (hemodynamic or electromagnetic) time series.  It presents the 

motivation and procedures for dynamic causal modelling of evoked brain responses.  The 

aim of this modelling is to estimate, and make inferences about, the coupling among 

brain areas and how that coupling is influenced by changes in experimental context (e.g. 

time or cognitive set).  Dynamic causal modelling represents a fundamental departure 

from existing approaches to effective connectivity because it employs a more plausible 

generative model of measured brain responses that embraces their nonlinear and dynamic 

nature.  

   The basic idea is to construct a reasonably realistic neuronal model of interacting 

cortical regions or nodes.  This model is then supplemented with a forward model of how 

neuronal or synaptic activity is transformed into a measured response.  This enables the 

parameters of the neuronal model (i.e. effective connectivity) to be estimated from 

observed data.  These supplementary models may be forward models of electromagnetic 

measurements or hemodynamic models of fMRI measurements.  In this chapter we will 

focus on fMRI.  Responses are evoked by known deterministic inputs that embody 

designed changes in stimulation or context.  This is accomplished by using a dynamic 

input-state-output model with multiple inputs and outputs.  The inputs correspond to 

conventional stimulus functions that encode experimental manipulations.  The state 

variables cover both the neuronal activities and other neurophysiological or biophysical 

variables needed to form the outputs.  The outputs are measured electromagnetic or 

hemodynamic responses over the brain regions considered. 

   Intuitively, this scheme regards an experiment as a designed perturbation of neuronal 

dynamics that are promulgated and distributed throughout a system of coupled 

anatomical nodes to change region-specific neuronal activity.  These changes engender, 

through a measurement-specific forward model, responses that are used to identify the 

architecture and time constants of the system at the neuronal level.  This represents a 

departure from conventional approaches (e.g. structural equation modelling and 

autoregression models; McIntosh & Gonzalez-Lima 1994; Büchel & Friston 1997; 

Harrison et al submitted), in which one assumes the observed responses are driven by 



endogenous or intrinsic noise (i.e. innovations).  In contradistinction, dynamic causal 

models assume the responses are driven by designed changes in inputs.  An important 

conceptual aspect of dynamic causal models, for neuroimaging, pertains to how the 

experimental inputs enter the model and cause neuronal responses.  We have established 

in previous chapters that experimental variables can illicit responses in one of two ways.  

First, they can elicit responses through direct influences on specific anatomical nodes.  

This would be appropriate, for example, in modelling sensory evoked responses in early 

visual cortices.  The second class of input exerts its effect vicariously, through a 

modulation of the coupling among nodes.  These sorts of experimental variables would 

normally be more enduring; for example attention to a particular attribute or the 

maintenance of some perceptual set.  These distinctions are seen most clearly in relation 

to existing analyses and experimental designs. 

 

B DCM and existing approaches 

The central ideal, behind dynamic causal modelling (DCM), is to treat the brain as a 

deterministic nonlinear dynamic system that is subject to inputs and produces outputs.  

Effective connectivity is parameterised in terms of coupling among unobserved brain 

states (e.g. neuronal activity in different regions).  The objective is to estimate these 

parameters by perturbing the system and measuring the response.  This is in 

contradistinction to established methods, for estimating effective connectivity from 

neurophysiological time-series, which include structural equation modelling and models 

based on multivariate auto-regressive processes.  In these models, there is no designed 

perturbation and the inputs are treated as unknown and stochastic.  Multivariate 

autoregression models and their spectral equivalents like coherence analysis, not only 

assume the system is driven by stochastic innovations, but are restricted to linear 

interactions.  Structural equation modelling assumes the interactions are linear and, 

furthermore, instantaneous in the sense that structural equation models are not time-series 

models.  In short, dynamic causal modelling is distinguished from alternative approaches 

not just by accommodating the nonlinear and dynamic aspects of neuronal interactions, 

but by framing the estimation problem in terms of perturbations that accommodate 

experimentally designed inputs.  This is a critical departure from conventional 



approaches to causal modelling in neuroimaging and, importantly, brings the analysis of 

effective connectivity much closer to the analysis of region-specific effects.  Dynamic 

causal modelling calls upon the same experimental design principles to elicit region-

specific interactions that we use in conventional experiments to elicit region-specific 

activations.  In fact, as shown later, the convolution model, used in the standard analysis 

of fMRI time-series, is a special and simple case of DCM that ensues when the coupling 

among regions is discounted.  In DCM the causal or explanatory variables that comprise 

the conventional design matrix become the inputs and the parameters become measures 

of effective connectivity.  Although DCM can be framed as a generalisation of the linear 

models used in conventional analyses to cover bilinear models (see below), it also 

represents an attempt to embed more plausible forward models of how neuronal 

dynamics respond to inputs and produces measured responses.  This reflects the growing 

appreciation of the role that neuronal models may have to play in understanding 

measured brain responses (see Horwitz et al 2001 for a discussion) 

  This chapter can be regarded as an extension of previous work on the Bayesian 

identification of hemodynamic models (Friston 2002) to cover multiple regions.  In 

Chapter 17 (Classical and Bayesian inference) we focussed on the biophysical 

parameters of a hemodynamic response in a single region.  The most important parameter 

was the efficacy with which experimental inputs could elicit an activity-dependent 

vasodilatory signal.  In this chapter neuronal activity is modelled explicitly, allowing for 

interactions among the activities of multiple regions in generating the observed 

hemodynamic response.  The estimation procedure employed for DCM is formally 

identical to that described in Chapter 17 (Classical and Bayesian inference).   

 

C DCM and experimental design 

DCM is used to test the specific hypothesis that motivated the experimental design.  It is 

not an exploratory technique, as with all analyses of effective connectivity the results are 

specific to the tasks and stimuli employed during the experiment.  In DCM designed 

inputs can produce responses in one of two ways.  Inputs can elicit changes in the state 

variables (i.e. neuronal activity) directly.  For example, sensory input could be modelled 



as causing direct responses in primary visual or auditory areas.  The second way in which 

inputs effect the system is through changing the effective connectivity or interactions.  

Useful examples of this sort of effect would be the attentional modulation of connections 

between parietal and extrastriate areas.  Another ubiquitous example of this second sort 

of contextual input would be time.  Time-dependant changes in connectivity correspond 

to plasticity.  It is useful to regard experimental factors as inputs that belong to the class 

that produce evoked responses or to the class of contextual factors that induce changes in 

coupling (although, in principle, all inputs could do both).  The first class comprises trial- 

or stimulus-bound perturbations whereas the second establishes a context in which effects 

of the first sort evoke responses.  This second class is typically trial-free and induced by 

task instructions or other contextual changes.  Measured responses in high-order cortical 

areas are mediated by interactions among brain areas elicited by trial-bound 

perturbations.  These interactions can be modulated by other set-related or contextual 

factors that modulate the latent or intrinsic coupling among areas.  Figure 1 illustrates this 

schematically.  The important implication here, for experimental design in DCM, is that it 

should be multifactorial, with at least one factor controlling sensory perturbation and 

another factor manipulating the context in which the sensory evoked responses are 

promulgated throughout the system (c.f. psychophysiological interaction studies Friston 

et al 1997). 

   In this chapter we use bilinear approximations to any DCM.  The bilinear 

approximation reduces the parameters to three sets that control three distinct things.  

First, the direct or extrinsic influence of inputs on brain states in any particular area.  

Second; the intrinsic or latent connections that couple responses in one area to the state of 

others and, finally, change in this intrinsic coupling induced by inputs.  Although, in 

some instances, the relative strengths of intrinsic connections maybe of interest, most 

analyses of DCMs focus on the changes in connectivity embodied in the bilinear 

parameters.  The first set of parameters are generally of little interest in the context of 

DCM but are the primary focus in classical analyses of regionally specific effects.  In 

classical analyses the only way experimental effects can be expressed is though a direct 

or extrinsic influence on each voxel because mass-univariate models (e.g. SPM) preclude 

connections and their modulation. 



 

     Figure 1 about here 

 

DCM is used primarily to answer questions about the modulation of effective 

connectivity through inferences about the bilinear parameters described above.  They are 

bilinear in the sense that an input-dependent change in connectivity can be construed as a 

second-order interaction between the input and activity in a source region, when causing 

a response in a target region.  The key role of bilinear terms reflects the fact that the more 

interesting applications of effective connectivity address changes in connectivity induced 

by cognitive set or time.  In short, DCM with a bilinear approximation allows one to 

claim that an experimental manipulation has "activated a pathway" as opposed to a 

cortical region.  Bilinear terms correspond to psychophysiologic interaction terms in 

classical regression analyses of effective connectivity (Friston et al 1997) and those 

formed by moderator variables (Kenny & Judd 1984) in structural equation modelling 

(Büchel & Friston 1997).  This bilinear aspect speaks again to the importance of 

multifactorial designs that allow these interactions to be measured and the central role of 

the context in which region-specific responses are formed (see McIntosh 2000). 

 

D DCM and Inference 

Because DCMs are not restricted to linear or instantaneous systems they are necessarily 

complicated and, potentially, need a large number of free parameters.  This is why they 

have greater biological plausibility, in relation to alternative approaches.  However, this 

makes the estimation of the parameters more dependent upon constraints.  A natural way 

to embody the requisite constraints is within a Bayesian framework.  Consequently, 

dynamic causal models are estimated using Bayesian or conditional estimators and 

inferences about particular connections are made using the posterior or conditional 

density.  In other words, the estimation procedure provides the probability distribution of 

a coupling parameter in terms of its mean and standard deviation.  Having established 

this posterior density, the probability that the connection exceeds some specified 

threshold is easily computed.  Bayesian inferences like this are more straightforward and 



interpretable than corresponding classical inferences and furthermore eschew the multiple 

comparison problem.  The posterior density is computed using the likelihood and prior 

densities.  The likelihood of the data, given some parameters, is specified by the DCM (in 

one sense all models are simply ways of specifying the likelihood of an observation).  

The prior densities on the connectivity parameters offer suitable constraints to ensure 

robust and efficient estimation.  These priors harness some natural constraints about the 

dynamics of coupled systems (see below) but also allow the user to specify which 

connections are likely to be present and those which are not.  An important use of prior 

constraints, of this sort, is the restriction of where inputs can elicit extrinsic responses.  It 

is interesting to reflect that conventional analyses suppose that all inputs have 

unconstrained access to all brain regions.  This is because classical models assume 

activations are caused directly by experimental factors, as opposed to being mediated by 

afferents from other brain areas. 

   Additional constraints, on the intrinsic connections and their modulation by contextual 

inputs, can also be specified but they are not necessary.  These additional constraints can 

be used to finesse a model by making it more parsimonious, allowing one to focus on a 

particular connection.  We will provide examples of this below.  Unlike structural 

equation modelling, there are no limits on the number of connections that can be 

modelled because the assumptions and estimations scheme used by dynamic causal 

modelling are completely different, relying upon known inputs. 

 

E Overview 

This chapter comprises a theoretical section and three sections demonstrating the use and 

validity of DCM.  In the theoretical section we present the conceptual and mathematical 

fundaments that are used in the remaining sections.  The later sections address the face, 

predictive and construct validity of DCM respectively.  Face validity entails the 

estimation and inference procedure identifies what it is supposed to.  The subsequent 

section on predictive validity uses empirical data from an fMRI study of single word 

processing at different rates.  These data were obtained consecutively in a series of 

contiguous sessions.  This allowed us to repeat the DCM using independent realisations 



of the same paradigm.  Predictive validity, over the multiple sessions, was assessed in 

terms of the consistency of the effective connectivity estimates and their posterior 

densities.  The final section on construct validity revisits changes in connection strengths 

among parietal and extrastriate areas induced by attention to optic flow stimuli.  We have 

established previously attentionally mediated increases in effective connectivity using 

both structural equation modelling and a Volterra formulation of effective connectivity 

(Büchel and Friston 1997, Friston and Büchel 2000).  Our aim here is to show that 

dynamic causal modelling led us to the same conclusions.  This chapter ends with a brief 

discussion of dynamic causal modelling, its limitations and potential applications.  

 

II THEORY 

 
In this section we present the theoretical motivation and operational details upon which 

DCM rests.  In brief, DCM is a fairly standard nonlinear system identification procedure 

using Bayesian estimation of the parameters of deterministic input-state-output dynamic 

systems.  In this chapter the system can be construed as a number of interacting brain 

regions.  We will focus on a particular form for the dynamics that corresponds to a 

bilinear approximation to any analytic system.  However, the idea behind DCM is not 

restricted to bilinear forms. 

   This section is divided into three parts.  First, we describe the DCM itself, then consider 

the nature of priors on the parameters of the DCM and finally summarise the estimation 

procedure used to find the posterior distribution of these parameters.  The estimation 

conforms to the posterior density analysis under Gaussian assumptions described in 

Chapter 17 (Classical and Bayesian inference.  In the previous chapter we were 

primarily concerned with estimating the efficacy with which input elicits a vasodilatory 

signal, presumably mediated by neuronal responses to the input.  The causal models in 

this chapter can be regarded as a collection of hemodynamic models, one for each area, in 

which the experimental inputs are supplemented with neural activity from other areas.  

The parameters of interest now embrace not only the direct efficacy of experimental 

inputs but also the efficacy of neuronal input from distal regions, i.e. effective 

connectivity (see Figure 1). 



   The posterior density analysis finds the maximum or mode of the posterior density of 

the parameters (i.e. the most likely coupling parameters given the data) by performing a 

gradient assent on the log posterior.  The log posterior requires both likelihood and prior 

terms.  The likelihood obtains from Gaussian assumptions about the errors in the 

observation model implied by the DCM.  This likelihood or forward model is described 

in the next subsection.  By combining the ensuing likelihood with priors on the coupling 

and hemodynamic parameters, described in the second subsection, one can form an 

expression for the posterior density that is used in the estimation.  

 

A Dynamic Causal Models 

The dynamic causal model is a multiple-input multiple-output (MIMO) system that 

comprises m inputs and   l outputs with one output per region.  The m inputs correspond 

to designed causes (e.g. boxcar or stick stimulus functions).  The inputs are exactly the 

same as those used to form design matrices in conventional analyses of fMRI and can be 

expanded in the usual way when necessary (e.g. using polynomials or temporal basis 

functions).  In principle, each input could have direct access to every region.  However, 

in practice the extrinsic effects of inputs are usually restricted to a single input region.  

Each of the l regions produces a measured output that corresponds to the observed BOLD 

signal.  These l time-series would normally be taken as the average or first eigenvariate of 

key regions, selected on the basis of a conventional analysis.  Each region has five state 

variables.  Four of these are of secondary importance and correspond to the state 

variables of the hemodynamic model first presented in Friston et al (2000) and described 

in previous chapters.  These hemodynamic states comprise a vasodilatory signal, 

normalised flow, normalised venous volume, and normalised deoxyhemoglobin content.  

These variables are required to compute the observed BOLD response and are not 

influenced by the states of other regions. 

   Central to the estimation of effective connectivity or coupling parameters are the first 

state variables of each region.  These correspond to average neuronal or synaptic activity 

and are a function of the neuronal states of other brain regions.  We will deal first with 



the equations for the neuronal states and then briefly reprise the differential equations that 

constitute the hemodynamic model for each region. 

 

1 Neuronal State Equations 

Restricting ourselves to the neuronal states T
lzzz ],,[ 1 K=  one can posit any arbitrary 

form or model for effective connectivity 
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Where F is some nonlinear function describing the neurophysiological influences that 

activity in all l brain regions z and inputs u exert upon changes in the others.  θ  are the 

parameters of the model whose posterior density we require for inference.  It is not 

necessary to specify the form of equation (1) because its bilinear approximation provides 

a natural and useful re-parameterisation in terms of effective connectivity.  The bilinear 

form of (1) is: 
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The Jacobian or connectivity matrix A represents the first-order connectivity among the 

regions in the absence of input.  Effective connectivity is the influence that one neuronal 

system exerts over another in terms of inducing a response zz ∂∂& .  In DCM a response is 

defined in terms of a change in activity with time z& .  This latent connectivity can be 

thought of as the intrinsic coupling in the absence of experimental perturbations.  Notice 

that the state, which is perturbed, depends on the experimental design (e.g. baseline or 



control state) and therefore the intrinsic coupling is specific to each experiment.  The 

matrices jB  are effectively the change in intrinsic coupling induced by the jth input.  

They encode the input-sensitive changes in zz ∂∂&  or, equivalently, the modulation of 

effective connectivity by experimental manipulations.  Because jB  are second-order 

derivatives these terms are referred to as bilinear.  Finally, the matrix C embodies the 

extrinsic influences of inputs on neuronal activity.  The parameters },,{ CBA jc =θ  are 

the connectivity or coupling matrices that we wish to identify and define the functional 

architecture and interactions among brain regions at a neuronal level.  Figure 2 shows an 

example of a specific architecture to demonstrate the relationship between the matrix 

form of the bilinear model and the underlying state equations for each region.  Notice that 

the units of connections are per unit time and therefore correspond to rates.  Because we 

are in a dynamical setting a strong connection means an influence that is expressed 

quickly or with a small time constant.  It is useful to appreciate this when interpreting 

estimates and thresholds quantitatively.  This is will be illustrated below. 

   The neuronal activity in each region causes changes in volume and deoxyhemoglobin 

to engender the observed BOLD response y as described next. 

 

     Figure 2 about here 

 

2 Hemodynamic State Equations 

The remaining state variables of each region are biophysical states engendering the 

BOLD signal and mediate the translation of neuronal activity into hemodynamic 

responses.  Hemodynamic states are a function of, and only of, the neuronal state of each 

region.  The state-equations have been described in Chapters 11 (Hemodynamic 

modelling and Chapter 17 (Classical and Bayesian inference). and constitute a 

hemodynamic model that embeds the Balloon-Windkessel model (Buxton et al 1998, 

Mandeville et al 1999).  A list of the biophysical parameters },,,,{ ρατγκθ =h  is 

provided in Table 1 and a schematic of the hemodynamic model is shown in Figure 3 that 

contains the state-equations and output nonlinearity (i.e. Equation 42 in Chapter 17: 

Classical and Bayesian inference).   



 

    Figure 3 about here 

 

3 The model 

Combining the neuronal states with the hemodynamic states },,,,{ qvfszx =  gives us a 

full forward model specified by the neuronal state equation (2) and the hemodynamic 

equations in Figure 3  
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with parameters },{ hc θθθ = . For any set of parameters and inputs, the state equation 

can be integrated and passed though the output nonlinearity to give the predicted 

response ),( θuh .  This integration can be made quite expedient by capitalising on the 

sparsity of stimulus functions commonly employed in fMRI designs.  See Chapter 17 

(Classical and Bayesian inference).  Integrating (3) is equivalent to a generalised 

convolution of the inputs with the systems Volterra kernels.  These kernels are easily 

derived from the Volterra expansion of (3) (Bendat.1990), 
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either by numerical differentiation or analytically through bilinear approximations (see 

Friston 2002).  k
iκ  is the kth order kernel for region i.  For simplicity, (4) has been 

written for a single input.  The kernels are simply a re-parameterisation of the model.  We 

will use these kernels to characterise regional impulse responses at neuronal and 

hemodynamic levels later. 



   The forward can be made into an observation model by adding error and confounding 

or nuisance effects )(tX  to give εβθ ++= Xuhy ),( .  Here β  are the unknown 

coefficients of the confounds.  In the examples used below, )(tX  comprised a low order 

discrete cosine set, modelling low frequency drifts and a constant term.  Following the 

approach described in Chapter 17 (Classical and Bayesian inference) we note 
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This local linear approximation then enters an EM scheme as described previously 

 

Until convergence { 

E-step   

( )

( )

yyy

T
y

y

y

T
y

ii

y

y

y

yCJC

JCJC

C

Q
C

XJ
J

hy
y

h
J

θθθ

εθ
β

θ

εθ

θ

ε
θθ

θ

θ

ηηη

η

η

λ

ηη

η
θ

η

∆+←

=










∆

=












=












=













−

−
=

∂

∂
=

−

−−

∑

1

11

0

0
        ,

01
        ,

)(

)(

  

          6 

M-Step  



 

λλ
λλ

λ

λ

εθεε

∂
∂

∂
∂

−←

−=
∂
∂

+−=
∂
∂

−=

−

−−−

FF

PQPQtrF

yPQPyPQtrF
CJCJCCP

ji
ij

i
TT

i
i

T
y

1

2

2

2
1

2

2

2
1

2
1

1
|

11

}{

}{

  

) 

 

These expressions are formally the same as equations (47) and (48) in Chapter 17 

(Classical and Bayesian inference) but for the addition of confounding effects in X.  

These confounds are treated as fixed effects with infinite prior variance, which does not 

need to appear explicitly in (6). 

    Note that the prediction and observations encompass the entire experiment.  They are 

therefore large ln x 1 vectors whose elements run over regions and time.  Although the 

response variable could be viewed as a multivariate times-series it is treated as a single 

observation vector, whose error covariance embodies both temporal and interregional 

correlations.  iiQVC ∑=Σ⊗= λλε )( .  This covariance is parameterised by some 

covariance hyperparameters λ  In the examples below these correspond to region-specific 

error variances assuming the same temporal correlations ii VQ Σ⊗=  in which iΣ  is a l x 

l sparse matrix with the ith leading diagonal element equal to one.  

   Equation (6) enables us the estimate the conditional moments of the coupling 

parameters (and the hemodynamics parameters) plus the hyperparameters controlling 

observation error.  However, to proceed we need to specify the priors.  

 

B Priors 

In this context we use a fully Bayesian approach because (i) there are clear and necessary 

constraints on neuronal dynamics that can be used to motivate priors on the coupling 

parameters and (ii) empirically determined priors on the biophysical hemodynamic 



parameters are relatively easy to specify.  We will deal first with priors on the coupling 

parameters. 

1 Priors on the Coupling Parameters 

It is self evident that neuronal activity cannot diverge exponentially to infinite values.  

Therefore, we know that, in the absence of input, the dynamics must to return to a stable 

mode.  This means the largest real component of the eigenvalues of the intrinsic coupling 

matrix cannot exceed zero.  We use this constraint to establish a prior density on the 

coupling parameters A that ensures the system is dissipative. 

   If the largest real eigenvalue (Lyapunov exponent) is less than zero the stable mode is a 

point attractor.  If the largest Lyapunov exponent is zero the system will converge to a 

periodic attractor with oscillatory dynamics.  Therefore, it is sufficient to establish a 

probabilistic upper bound on the inter-regional coupling strengths; imposed by Gaussian 

priors that ensures the largest Lyapunov exponent is unlikely to exceed zero.  If the prior 

densities of each connection are independent then the prior density can be specified in 

terms of a variance for the off-diagonal elements of A.  This variance can then be chosen 

to render the probability of the principal exponent exceeding zero, less than some suitably 

small value. 

   The specification of priors on the connections can be finessed by a re-parameterisation 

of the coupling matrices A and jB .   
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This factorisation into a scalar and normalised coupling matrix renders the normalised 

couplings adimensional, such that strengths of connections among regions are relative to 

their self-connections.  From this point on, we will deal with normalised parameters.  

This particular factorisation enforces the same self-connection or temporal scaling σ  in 

all regions.  This is sensible given neuronal transients are likely to decay at a similar rate 

in different regions  (different factorisations could be employed in a different context). 

   Consider any set of )1( −ll  inter-regional connections with sum of squared values 

∑= 2
ijaξ .  For any given value of ξ  the largest Lyapunov exponent aλ  obtains when 

the connections strength are equal aaij = , for all ji ≠  in which case 
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This means that as the sum of squared connection strengths reaches )1( −= llξ , the 

maximum exponent attainable, approaches zero.  Consequently, if ξ  is constrained to be 

less than this threshold, we can set an upper bound on the probability that the principal 

exponent exceeds zero.  ξ  is constrained through the priors on ija .  If each connection 

has a prior Gaussian density with zero expectation and variance aC , then the sum of 

squares has a scaled Chi-squared distribution 2
)1(~ −llaC χξ  with degrees of freedom  

)1( −ll .  aC  is chosen to make ))1(( −> llp ξ  suitably small.  i.e. 

 

)1(
)1(

1 p
llCa −
−

= −
χφ

     9 

 

where χφ  is the cumulative 2
)1( −llχ  distribution and p is the required probability.  As the 

number of regions increases, the prior variance on connections decreases. 

   In addition to constraints on the normalised connections, the factorisation in (7) 

requires the temporal scaling parameter σ  to be greater than zero.  This is simply 

achieved through a non-central prior density specified in terms of its moments such that 



),(~ σσησ CN  where the expectation ση  controls the characteristic time constant of the 

system and the variance σC  is chosen to ensure )0( >σp  is small, i.e. 

 

 
2

1 )1( 







−

= − p
C

N
a φ

ησ      10 

 

Nφ  is the cumulative normal distribution and p the required probability. 

   In summary, priors on the connectivity parameters ensure that the system remains 

stable.  The spectrum of eigenvalues of the intrinsic coupling matrix determines the time-

constants of orthogonal modes or patterns of regional activity.  These are scaled by σ  

whose prior expectation controls the characteristic time-constants (i.e. those observed in 

the absence of coupling).  We will assume a value of one second.  The prior variance on 

this scaling parameter is chosen to make the probability it is less than zero suitably small 

(in our case 310− ).  The ensuing prior density can be expressed as a function of the 

implicit half-life σστ 2ln)( =z  by noting zz pp τσστ ∂∂= )()( .  See Figure 4.  This 

portrayal of the prior density shows that we expect regional transients with time constants 

in the range of a few hundred milliseconds to several seconds. 

  The prior distribution of individual connection strengths are assumed to be identically 

and independently distributed with a prior expectation of zero and a variance aC  that 

ensures the principal exponent has a very small probability of being greater than zero 

(here 210− ).  This variance decreases with the number of connections or regions.  To 

provide an intuition about how these priors keep the system from diverging 

exponentially, a quantitative example is shown in Figure 5.  Figure 5 shows the prior 

density of two connections that renders the probability of a positive exponent less than 
210− .  It can be seen that this density lies in a domain of parameter space encircled by 

regions in which the maximum Lyapunov exponent exceeds zero (bounded by dotted 

lines).  See the Figure legend for more details. 

   Priors on the bilinear coupling parameters have the same form (zero mean and 

variance) as those for the intrinsic coupling parameters.  For consistency, these 

parameters are also normalised by σ  and are consequently adimensional.  Conversely, 



priors on the influences to extrinsic input are not scaled and are relatively uninformative 

with zero expectation and unit variance.  As noted in the introduction, additional 

constraints can be implemented by precluding certain connections.  This is achieved by 

setting their variance to zero. 

 

     Figure 5 about here 

 

2 Hemodynamic Priors 

The hemodynamic priors are based on those used in Friston (2002) and in Chapter 17 

(Classical and Bayesian inference).  In brief, the mean and variance of posterior 

estimates of the five biophysical parameters were computed over 128 voxels using the 

single word presentation data presented in the next section.  These means and variances 

(see Table 1) were used to specify Gaussian priors on the hemodynamic parameters.   

   Combining the prior densities on the coupling and hemodynamic parameters allows us 

to express the prior probability of the parameters in terms of their prior expectation θη  

and covariance θC  
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Where the prior covariances AC  and BC  contain leading diagonal elements aC  for all 

connections that are allowed to vary.  Having specified the priors, we are now in a 

position to form the posterior and proceed with estimation using (6). 

 



C Inference 

As noted above, the estimation scheme is a posterior density analysis under Gaussian 

assumptions.  In short, the estimation scheme provides the approximating Gaussian 

posterior density of the parameters )(θq  in terms of its expectation yθη and covariance 

yCθ .  The expectation is also known as the posterior mode or maximum a posteriori 

(MAP) estimator.  The marginal posterior probabilities are then used for inference that 

any particular parameter or contrast of parameters y
Tc θη  (e.g. average) exceeded a 

specified threshold γ .   
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As above Nφ  is the cumulative normal distribution.  In this chapter, we are primarily 

concerned with the coupling parameters cθ  and, among these, the bilinear terms.  The 

units of these parameters are Hz or per second (or adimensional if normalised) and the 

thresholds are specified as such.  In dynamical modelling, strength corresponds to a fast 

response with a small time constant. 

 

D Relationship to conventional analyses 

It is interesting to note that conventional analyses of fMRI data using linear convolution 

models are a special case of dynamic causal models using a bilinear approximation.  This 

is important because it provides a direct connection between DCM and classical models.  

If we allow inputs to be connected to all regions and discount interactions among regions 

by setting the prior variances on A and B to zero we produce a set of disconnected brain 

regions or voxels that respond to, and only to, extrinsic input.  The free parameters of 

interest reduce to the values of C, which reflect the ability of input to excite neural 

activity in each voxel.  By further setting the prior variances on the self connections (i.e. 

scaling parameter) and those on the hemodynamic parameters to zero we end up with a 



single-input-single-output model at each and every brain region that can be reformulated 

as a convolution model as described in Friston (2002).  For voxel i and input j the 

parameter ijc  can be estimated by simply convolving the input with iji c∂∂ 1κ  where 1
iκ  

is the first-order kernel meditating the influence of input j on output i.  The convolved 

inputs are then used to form a general linear model that can be estimated using least 

squares in the usual way.  This is precisely the approach adopted in classical analyses, in 

which iji C∂∂ 1κ  is the hemodynamic response function.  The key point here is that the 

general linear models used in typical data analyses are special cases of Bilinear models 

that embody more assumptions.  These assumptions enter through the use of highly 

precise priors that discount interactions among regions and prevent any variation in 

biophysical responses.  Having described the theoretical aspects of DCM we now turn to 

applications and assessing its validity. 

 

 

III. FACE VALIDITY - SIMULATIONS 

 

A Introduction 

In this section we use simulated data to establish the utility of the bilinear approximation 

and the robustness of the estimation scheme described in the previous section.  We 

deliberately chose an architecture that would be impossible to characterise using existing 

methods based on regression models (e.g. structural equation modelling).  This 

architecture embodies loops and reciprocal connections and poses the problem of 

vicarious input; the ambiguity between the direct influences of one area and influences 

that are mediated through others.   

 

1 The simulated system 

The architecture is depicted in Figure 6 and has been labelled so that it is consistent with 

the DCM characterised empirically in the next section.  The model comprises three 

regions; a primary (A1) and secondary (A2) auditory area and a higher-level region (A3).  

There are two inputs.  The first is a sensory input 1u  encoding the presentation of epochs 



of words at different frequencies.  The second input 2u  is contextual in nature and is 

simply an exponential function of the time elapsed since the start of each epoch (with a 

time constant of 8 seconds).  These inputs were based on a real experiment and are the 

same as those used in the empirical analyses of the next section.  The scaling of the inputs 

is important for the quantitative evaluation of the bilinear and extrinsic coupling 

parameters.  The convention adopted here is that inputs encoding events approximate 

delta functions such that their integral over time corresponds to the number of events that 

have occurred.  For event-free inputs, like the maintenance of a particular instructional 

set, the input is scaled to a maximum of unity, so that the integral reflects the number of 

seconds over which the input was prevalent.  The inputs were specified in time bins that 

were a sixteenth of the interval between scans (repetition time; TR = 1.7s). 

 

     Figure 6 about here 

 

The auditory input is connected to the primary area; the second input has no direct effect 

on activity but modulates the forward connections from A1 to A2 so that its influence 

shows adaptation during the epoch.  The second auditory area receives input from the 

first and sends signals to the higher area (A3).  In addition to reciprocal backward 

connection, in this simple auditory hierarchy, a connection from the lowest to the highest 

area has been included.  Finally, the first input (word presentation) modulates the self-

connections of the third region.  This influence has been included to show how bilinear 

effects can emulate nonlinear responses.  A bilinear modulation of the self-connection 

can augment or attenuate decay of synaptic activity rendering the average response to 

streams of stimuli rate-dependent.  This is because the bilinear effect will only be 

expressed if sufficient synaptic activity persists after the previous stimulus.  This, in turn, 

depends on a sufficiently fast presentation rate.  The resulting response emulates a 

saturation at high presentation rates or small stimulus onset asynchronies that has been 

observed empirically.  Critically, we are in a position to disambiguate between neuronal 

saturation, modelled by this bilinear term, and hemodynamic saturation, modelled by 

nonlinearities in the hemodynamic component of this DCM.  A significant bilinear self-

connection implies neuronal saturation above and beyond that attributable to 



hemodynamics.  Figure 7 illustrates this neuronal saturation by plotting the simulated 

response of A3 in the absence of saturation 01 =B  against the simulated response with 

4.01
3,3 −=b .  It is evident that there is a nonlinear sub-additive effect at high response 

levels.  It should be noted that true neuronal saturation of this sort is mediated by second 

order interactions among the states (i.e. neuronal activity).  However, as shown in Figure 

7 we can emulate these effects by using the first extrinsic input as a surrogate for 

neuronal inputs from other areas in the bilinear component of the model. 

 

     Figure 7 about here 

 

Using this model we simulated responses using the values for A, 1B , 2B and C given in 

Figure 6 and the prior expectations for the biophysical parameters given in Table 1.  The 

values of the coupling parameters were chosen to emulate those seen typically in practice.  

This ensured the simulated responses were realistic in relation to simulated noise.  After 

down-sampling these deterministic responses every 1.7 seconds (the TR of the empirical 

data used in the next section) we added known noise to produce simulated data.  These 

data comprised time-series of 256 observations with independent or serially correlated 

Gaussian noise based on an AR(1) process.  Unless otherwise stated, the noise had 0.5 

standard deviation and was i.i.d.  (independently and identically distributed).  The drift 

terms were formed from the first six components of a discrete cosine set mixed linearly 

with normal random coefficients, scaled by one over the order.  This emulates a 21 f  

plus white noise spectrum for the noise and drifts.  See the lower panel of Figure 6 for an 

exemplar data simulation with i.i.d.  noise of unit variance. 

 

2. Exemplar analysis 

The analysis described in the previous section was applied to the data shown in Figure 6.  

The priors on coupling parameters were augmented by setting the variance of the off-

diagonal elements of 1B  (saturation) and all but two connections in 2B  (adaptation) to 

zero.  These two connections were the first and second forward connections of this 

cortical hierarchy.  The first had simulated adaptation, whereas the second did not.  



Extrinsic input was restricted to the primary area A1 by setting the variances of all but 

11c  to zero.  We placed no further constraints on the intrinsic coupling parameters.  This 

is equivalent to allowing full connectivity.  This would be impossible with structural 

equation modelling.  The results are presented in Figure 8 in terms of the MAP or 

conditional expectations of the coupling parameters (upper panels) and the associated 

posterior probabilities (lower panels) using Eq(14).  It can be seen that the intrinsic 

coupling parameters are estimated reasonably accurately with a slight overestimation of 

the backward connection from A3 to A2.  The bilinear coupling parameters modelling 

adaptation are shown in the lower panels and the estimators have correctly identified the 

first forward connection as the locus of greatest adaptation.  The posterior probabilities 

suggest inferences about the coupling parameters would lead us to the veridical 

architecture if we considered only connections whose half life exceeded 4 seconds with 

90% confidence or more. 

 

    Figures 8 and 9 about here 

 

The MAP estimates allow us to compute the MAP kernels associated with each region 

both in terms of neuronal output and hemodynamics response using Eq (6).  The neuronal 

and hemodynamic kernels for the three regions are shown in Figure 9 (upper panels).  It 

is interesting to note that the regional variation in the form of the neuronal kernels is 

sufficient to induce differential onset and peak latencies, in the order of a second or so, in 

the hemodynamic kernels despite the fact that neuronal onset latencies are the same.  This 

difference in form is due to the network dynamics as activity is promulgated up the 

system and is recursively re-entered into lower levels   Notice also that the neuronal 

kernels have quite protracted dynamics compared to the characteristic neuronal time 

constants of each area (about a second).  This enduring activity, particularly in the higher 

two areas is a product of the network dynamics.  The MAP estimates also enable us to 

compute the predicted response (lower left panel) in each region and compare it to the 

true response without observation noise (lower right panel).  This comparison shows that 

the actual and predicted responses are very similar.   



   In Friston et al (2002) we repeated this estimation procedure to explore the face validity 

of the estimation scheme over a range of hyperparameters like noise levels, slice timing 

artifacts, extreme values of the biophysical parameters etc.  In general the scheme proved 

to be robust to most violations assessed.  Here we will just look at the effects of error 

variance on estimation because this speaks to some important features of Bayesian 

estimation in this context and the noise levels that can be tolerated. 

 

B. The effects of noise 

In this sub-section we investigate the sensitivity and specificity of posterior density 

estimates to the level of observation noise.  Data were simulated as described above and 

mixed with various levels of white noise.  For each noise level the posterior densities of 

the coupling parameters were estimated and plotted against the noise hyperparameter 

(expressed as its standard deviation) in terms of the posterior mean and 90% confidence 

intervals.  Figure 10 shows some key coupling parameters that include both zero and non-

zero connection strengths.  The solid lines represent the posterior expectation or MAP 

estimator and the broken lines indicate the true value.  The grey areas encompass the 90% 

confidence regions.  Characteristic behaviours of the estimation are apparent from these 

results.  As one might intuit, increasing the level of noise increases the uncertainty in the 

posterior estimates as reflected by an increase in the conditional variance and a widening 

of the confidence intervals.  This widening is, however, bounded by the prior variances to 

which the conditional variances asymptote, at very high levels of noise.  Concomitant 

with this effect is “shrinkage” of some posterior means to their prior expectation of zero.  

Put simply, when the data become very noisy the estimation relies more heavily upon 

priors and the prior expectation is given more weight.  This is why priors of the sort used 

here are referred to as “shrinkage priors”.  These simulations suggest that for this level of 

evoked response, noise levels between 0-2 permit the connection strengths can be 

identified with a fair degree of precision and accuracy.  Noise levels in typical fMRI 

experiments are about 0.5-1.5.  The units of signal and noise are adimensional and 

correspond to percentage whole brain mean.  Pleasingly, noise did not lead to false 

inferences in the sense that the posterior densities always encompassed the true values 

even at high levels of noise (Figure 10). 



 

     Figure 10 about here 

 

 

IV PREDICTIVE VALIDITY – AN ANALYSIS OF SINGLE WORD PROCESSING 

 

A Introduction 

In this section we illustrate the predictive validity of DCM by showing that reproducible 

results can be obtained from independent data.  The data set we used was especially 

designed for these sorts of analyses, comprising over 1,200 scans with a relatively short 

TR of 1.7 seconds.  This necessitated a limited field of coverage but provided relatively 

high temporal acuity.  The paradigm was a passive listening task, using epochs of single 

words presented at different rates.  These data have been used previously to characterise 

nonlinear aspects of hemodynamics (e.g. Friston et al 1998, 2000, and 2002).  Details of 

the experimental paradigm and acquisition parameters are provided in the legend to 

Figure 11.  These data were acquired in consecutive sessions of a 120 scans enabling us 

to analyse the entire time-series or each session independently.  We first present the 

results obtained by concatenating all the sessions into a single data sequence.  We then 

revisit the data, analysing each session independently to provide 10 independent 

conditional estimates of the coupling parameters to assess reproducibility and mutual 

predictability.   

 

    Figure 11 about here 

 

B Analysis of the complete time-series 

Three regions were selected using maxima of the SPM{F} following a conventional SPM 

analysis (see Figure 11).  The three maxima were those that were closest to the primary 

and secondary auditory areas and Wernicke's area in accord with the anatomic 

designations provided in the atlas of Talairach and Tournoux (1988).  Region-specific 

time-series comprised the first eigenvariate of all voxels within a 4mm-radius sphere 

centred on each location.  The anatomical locations are shown in Figure 11.  As in the 



simulations there were two inputs corresponding to a delta function for the occurrence of 

an aurally presented word and a parametric input modelling within-epoch adaptation.  

The outputs of the system were the three eigenvariate time-series from each region.  As in 

the previous section we allowed for a fully connected system.  In other words, each 

region was potentially connected to every other region.  Generally, one would impose 

constraints on highly unlikely or implausible connections by setting their prior variance 

to zero.  However, we wanted to demonstrate that dynamic causal modelling can be 

applied to connectivity graphs that would be impossible to analyse with structural 

equation modelling.  The auditory input was connected to A1.  In addition, auditory input 

entered bilinearly to emulate saturation, as in the simulations.  The contextual input, 

modelling putative adaptation, was allowed to exert influences over all intrinsic 

connections.  From a neurobiological perspective an interesting question is whether 

plasticity can be demonstrated in forward connections or backward connections.  

Plasticity, in this instance, entails a time-dependent increase or decrease in effective 

connectivity and would be inferred by significant bilinear coupling parameters associated 

with the second input. 

 

    Figures 12 and 13 about here 

 

The inputs, outputs and priors on the DCM parameters were entered into the Bayesian 

estimation procedure as described above.  Drifts were modelled with the first 40 

components of a discrete cosine set, corresponding to X in Eq(6).  The results of this 

analysis, in terms of the posterior densities and ensuing Bayesian inference are presented 

in Figures 12 and 13.  Bayesian inferences were based upon the probability that the 

coupling parameters exceeded 0.0866.  This corresponds to a half-life of 8 seconds.  

Intuitively, this means that we only consider the influences, of one region on another, to 

be meaningfully large if this influence is expressed within a time frame of 8 seconds or 

less.  The results show that the most probable architecture, given the inputs and data, 

conforms to a simple hierarchy of forward connections where A1 influences A2 and WA, 

whereas A2 sends connections just to WA (Figure 12).  Although backward connections 

between WA and A2 were estimated to be greater than our threshold with 82% 



confidence they are not shown in Figure 12 (which is restricted to posterior probabilities 

of 90% or more).  Saturation could be inferred in A1 and WA with a high degree of 

confidence with 1
11b  and 1

33b  being greater than .5.  Significant plasticity or time-

dependent changes were expressed predominantly in the forward connections, 

particularly that between A1 and A3 i.e. 37.02
13 =b .  The conditional estimates are shown 

in more detail in Figure 13 along with the conditional fitted responses and associated 

kernels.  A full posterior density analysis for a particular contrast of effects is shown in 

Figure 13a (lower panel).  This contrast tested for the average plasticity over all forward 

and backward connections and demonstrates that we can be virtually certain plasticity 

was greater than zero. 

   This analysis illustrates three things.  First, the DCM has defined a hierarchical 

architecture that is a sufficient explanation for the data and is indeed, the most likely 

given the data.  This hierarchical structure was not part of the prior constraints because 

we allowed for a fully connected system.  Second, the significant bilinear effects of 

auditory stimulation suggest there is measurable neuronal saturation above and beyond 

that attributable to hemodynamic nonlinearities.  This is quite significant because such 

disambiguation is usually impossible given just hemodynamic responses.  Finally, we 

were able to show time-dependent decreases in effective connectivity in forward 

connections from A1.  Although this experiment was not designed to test for plasticity, 

the usefulness of DCM, in studies of learning and priming, should be self-evident. 

 

C Reproducibility 

The analysis above was repeated identically for each and every 120-scan session to 

provide 10 sets of Bayesian estimators.  Drifts were modelled with the first 4 components 

of a discrete cosine set.  The estimators are presented graphically in Figure 14 and 

demonstrate extremely consistent results.  In the upper panels the intrinsic connections 

are shown to be very similar in their profile again reflecting a hierarchical connectivity 

architecture.  The conditional means and 90% confidence regions for two connections are 

shown in Figure 14a.  These connections included the forward connection from A1 to A2 

that is consistently estimated to be very strong.  The backward connection from WA to 

A2 was weaker but was certainly greater than zero in every analysis.  Equivalent results 



were obtained for the modulatory effects or bilinear terms, although the profile was less 

consistent (Figure 14b).  However, the posterior density of the contrast testing for 

average time-dependent adaptation or plasticity is relatively consistent and again almost 

certainly greater than zero, in each analysis. 

   To illustrate the stability of hyperparameter estimates, over the 10 sessions, the 

standard deviations of observation error are presented for each session over the three 

areas in Figure 15.  As typical of studies at this field strength the standard deviation of 

noise is about 0.8-1% whole brain mean.  It is pleasing to note that the session to session 

variability in hyperparameter estimates was relatively small, in relation to region to 

region differences. 

   In summary, independent analyses of data acquired under identical stimulus conditions, 

on the same subject, in the same scanning session, yield remarkably similar results.  

These results are biologically plausible and speak to the interesting notion that time-

dependent changes, following the onset of a stream of words, are prominent in forward 

connections among auditory areas. 

 

    Figure 14 and 15 about here 

 

 

V. CONSTRUCT VALIDITY – AN ANALYSIS OF ATTENTIONAL EFFECTS ON CONNECTIONS 

 

A Introduction 

In this final section we address the face validity of DCM.  In previous chapters we have 

seen that attention positively modulates the backward connections in a distributed system 

of cortical regions mediating attention to radial motion.  We use the same data in this 

section.  In brief, subjects viewed optic flow stimuli comprising radially moving dots at a 

fixed velocity.  In some epochs, subjects were asked to detect changes in velocity (that 

did not actually occur).  This attentional manipulation was validated post-hoc using 

psychophysics and the motion after-effect.  Analyses using structural equation modelling 

(Büchel & Friston 1997) and a Volterra formulation of effective connectivity (Friston & 

Büchel 2000) have established a hierarchical backwards modulation of effective 



connectivity where a higher area increases the effective connectivity among two 

subordinate areas.  These analyses have been extended using variable parameter 

regression and Kalman filtering (Büchel & Friston 1998) to look at the effective of 

attention directly on interactions between V5 and the posterior parietal complex.  In this 

context, the Volterra formulation can be regarded as a highly finessed regression model 

that embodies nonlinear terms and some dynamic aspects of fMRI time-series.  However, 

even simple analyses, such as those employing psychophysiological interactions, point to 

the same conclusion that attention generally increases the effective connectivity among 

extrastriate and parietal areas.  In short, we have established that the superior posterior 

parietal cortex (SPC) exerts a modulatory role on V5 responses using Volterra-based 

regression models (Friston and Büchel 2000) and that the inferior frontal gyrus (IFG) 

exerts a similar influence on SPC using structural equation modelling (Büchel and 

Friston 1997).  The aim of this section was to show that DCM leads one to the same 

conclusions but using a completely different approach.   

 

1 Analysis 

The experimental paradigm and data acquisition parameters are described in the legend to 

Figure 16.  This Figure also shows the location of the regions that entered into the DCM 

(Figure 16b - insert).  These regions were based on maxima from conventional SPMs 

testing for the effects of photic stimulation, motion and attention.  As in the previous 

section, regional time courses were taken as the first eigenvariate of spherical volumes of 

interest centred on the maxima shown in the figure.  The inputs, in this example, 

comprise one sensory perturbation and two contextual inputs.  The sensory input was 

simply the presence of photic stimulation and the first contextual one was presence of 

motion in the visual field.  The second contextual input, encoding attentional set, was 

unity during attention to speed changes and zero otherwise.  The outputs corresponded to 

the four regional eigenvariates in (Figure 16b).  The intrinsic connections were 

constrained to conform to a hierarchical pattern in which each area was reciprocally 

connected to its supraordinate area.  Photic stimulation entered at, and only at, V1.  The 

effect of motion in the visual field was modelled as a bilinear modulation of the V1 to V5 



connectivity and attention was allowed to modulate the backward connections from IFG 

and SPC. 

 

     Figure 16 about here 

 

The results of the DCM are shown in Figure 16a.  Of primary interest here is the 

modulatory effect of attention that is expressed in terms of the bilinear coupling 

parameters for this third input.  As hoped, we can be highly confident that attention 

modulates the backward connections from IFG to SPC and from SPC to V5.  Indeed, the 

influences of IFG on SPC are negligible in the absence of attention (dotted connection in 

Figure 16a).  It is important to note that the only way that attentional manipulation can 

effect brain responses was through this bilinear effect.  Attention-related responses are 

seen throughout the system (attention epochs are marked with arrows in the plot of IFG 

responses in Figure 24b).  This attentional modulation is accounted for, sufficiently, by 

changing just two connections.  This change is, presumably, instantiated by instructional 

set at the beginning of each epoch.  The second thing, this analysis illustrates, is the how 

functional segregation is modelled in DCM.  Here one can regard V1 as a ‘segregating’ 

motion from other visual information and distributing it to the motion-sensitive area V5.  

This segregation is modelled as a bilinear ‘enabling’ of V1 to V5 connections when, and 

only when, motion is present.  Note that in the absence of motion the intrinsic V1 to V5 

connection was trivially small (in fact the MAP estimate was -0.04).  The key advantage 

of entering motion through a bilinear effect, as opposed to a direct effect on V5, is that 

we can finesse the inference that V5 shows motion-selective responses with the assertion 

that these responses are mediated by afferents from V1. 

  The two bilinear effects above represent two important aspects of functional integration 

that DCM was designed to characterise. 

 

 

 

VI CONCLUSION 

 



In this chapter we have presented dynamic causal modelling.  DCM is a causal modelling 

procedure for dynamical systems in which causality is inherent in the differential 

equations that specify the model.  The basic idea is to treat the system of interest, in this 

case the brain, as an input-state-output system.  By perturbing the system with known 

inputs, measured responses are used to estimate various parameters that govern the 

evolution of brain states.  Although there are no restrictions on the parameterisation of 

the model, a bilinear approximation affords a simple re-parameterisation in terms of 

effective connectivity.  This effective connectivity can be latent or intrinsic or, through 

bilinear terms, model input-dependent changes in effective connectivity.  Parameter 

estimation proceeds using fairly standard approaches to system identification that rest 

upon Bayesian inference. 

   Dynamic causal modelling represents a fundamental departure from conventional 

approaches to modelling effective connectivity in neuroscience.  The critical distinction 

between DCM and other approaches, such as structural equation modelling or 

multivariate autoregressive techniques is that the input is treated as known, as opposed to 

stochastic.  In this sense DCM is much closer to conventional analyses of neuroimaging 

time series because the causal or explanatory variables enter as known fixed quantities.  

The use of designed and known inputs in characterising neuroimaging data with the 

general linear model or DCM is a more natural way to analyse data from designed 

experiments.  Given that the vast majority of imaging neuroscience relies upon designed 

experiments we consider DCM a potentially useful complement to existing techniques.  

In the remainder of this section we consider two potential limitations of DCM and 

comment upon extensions.  We develop this point and the relationship of DCM to other 

approaches in the final chapter of this section.  
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Figure Legends 

 

FIGURE 1 

This is a schematic illustrating the concepts underlying dynamic causal modelling.  In 

particular it highlights the two distinct ways in which inputs or perturbations can illicit 

responses in the regions or nodes that comprise the model.  In this example there are five 

nodes, including visual areas V1 and V4 in the fusiform gyrus, areas 39 and 37 and the 

superior temporal gyrus STG.  Stimulus-bound perturbations designated 1u  act as 

extrinsic inputs to the primary visual area V1.  Stimulus-free or contextual inputs 2u  

mediate their effects by modulating the coupling between V4 and BA39 and between 

BA37 and V4.  For example, the responses in the angular gyrus (BA39) are caused by 

inputs to V1 that are transformed by V4, where the influences exerted by V4 are sensitive 

to the second input.  The dark square boxes represent the components of the DCM that 

transform the state variables iz  in each region (neuronal activity) into a measured 

(hemodynamic) response iy . 

 

FIGURE 2 

This schematic (upper panel) recapitulates the architecture in Figure 1 in terms of the 

differential equations implied by a bilinear approximation.  The equations in each of the 

white areas describe the change neuronal activity iz  in terms of linearly separable 

components that reflect the influence of other regional state variables.  Note particularly, 

how the second contextual inputs enter these equations.  They effectively increase the 

intrinsic coupling parameters ( ija ) in proportion to the bilinear coupling parameters ( k
ijb ).  

In this diagram the hemodynamic component of the DCM illustrates how the neuronal 

states enter a region-specific hemodynamic model to produce the outputs iy  that are a 

function of the region’s biophysical states reflecting deoxyhemoglobin content and 

venous volume ( iq  and iv ).  The lower panel reformulates the differential equations in 

the upper panel into a matrix format.  These equations can be summarised more 

compactly in terms of coupling parameter matrices A, jB  and C.  This form of 



expression is used in the main text and shows how it relates to the underlying differential 

equations that describe the state dynamics. 

 

FIGURE 3 

This schematic shows the architecture of the hemodynamic model for a single region 

(regional subscripts have been dropped for clarity).  Neuronal activity induces a 

vasodilatory and activity-dependent signal s that increases the flow f.  Flow causes 

changes in volume and deoxyhemoglobin (v and q).  These two hemodynamic states enter 

the output nonlinearity Eq(4) to give the observed BOLD response y.  This 

transformation from neuronal states iz  to hemodynamic response iy  is encoded 

graphically by the dark-grey boxes in the previous figure and in the insert above. 

 

FIGURE 4 

Prior probability density functions for the temporal scaling parameter or self-connection 

σ .  This has a Gaussian form (left panel) that translates into a skewed distribution, when 

expressed in terms of the characteristic half-life of neural transients zτ  in any particular 

region (right panel).  This prior distribution implies that neuronal activity will decay with 

a half-life of roughly 500 milliseconds, falling in the range of 300 ms to 2s.   

 

FIGURE 5 

Prior probability density on the intrinsic coupling parameters for a specific intrinsic 

coupling matrix A.  The left-hand panel shows the real value of the largest eigenvalue of 

A (the principal Lyapunov exponent) as a function of the connection from the first to the 

second region and the reciprocal connection from the second to the first.  The remaining 

connections were held constant at 0.5.  This density can be thought of as a slice through a 

multidimensional spherical distribution over all connections.  The right panel shows the 

prior probability density function and the boundaries at which the largest real eigenvalue 

exceeds zero (dotted lines).  The variance or dispersion of this probability distribution is 

chosen to ensure that the probability of excursion into unstable domains of parameter 

space is suitably small.  These domains are the upper right and lower left bounded 

regions. 



 

 

FIGURE 6 

This is a schematic of the architecture used to generate simulated data.  Non-zero 

intrinsic connections are shown as directed black arrows with the strength or true 

parameter alongside.  Here, the perturbing input is the presentation of words (sensory 

inputs) and acts as an intrinsic influence on A1.  In addition, this input modulates the self-

connection of A3 to emulate saturation like-effects (see main text and Figure 7).  The 

contextual input is a decaying exponential of within-epoch time and positively modulates 

the forward connection from A1 to A2.  The lower panel shows how responses were 

simulated by mixing the output of the system described above with drifts and noise as 

described in the main text.  

 

FIGURE 7 

This is a plot of the simulated response with saturation against the equivalent response 

with no saturation.  These simulated responses were obtained by setting the bilinear 

coupling parameter 1
33b  labelled “neuronal saturation” in the previous figure to -0.4 and 

zero respectively.  The key thing to observe is a saturation of responses at high levels.  

The broken line depicts the response expected in the absence of saturation.  This 

illustrates how bilinear effects can introduce nonlinearities into the response.   

 

FIGURE 8 

Results summarising the conditional estimation based upon the simulated data of Figure 

6.  The upper panels show the conditional estimates and posterior probabilities pertaining 

to the intrinsic coupling parameters.  The lower panels show the equivalent results for 

bilinear coupling parameters mediating the effect of within-epoch time.  Conditional or 

MAP estimates of the parameters are shown in image format with arbitrary scaling.  The 

posterior probabilities that these parameters exceeded a threshold of ln(2)/4 per sec. are 

shown as three-dimensional bar charts.  True values and probabilities are shown on the 

left whereas the estimated values and posterior probabilities are shown on the right.  This 

illustrates that the conditional estimates are a reasonable approximation to the true values 



and, in particular, the posterior probabilities conform to the true probabilities, if we 

consider values of 90% or more.   

 

FIGURE 9 

These results are based upon the conditional or MAP estimates of the previous Figure.  

The upper panels show the implied first-order kernels for neuronal responses (upper-left) 

and equivalent hemodynamic responses (upper-right) as a function of peri-stimulus time 

for each of the three regions.  The lower panels show the predicted response based upon 

the MAP estimators and a comparison of this response to the true response.  The 

agreement is self-evident. 

 

FIGURE 10 

Posterior densities as a function of noise levels: The analysis, summarised in the previous 

two figures, was repeated for simulated data sequences at different levels of noise ranging 

from 0 to 2 units of standard deviation.  Each graph shows the conditional expectation or 

MAP estimate of a coupling parameter (solid line) and the 90% confidence region (grey 

region).  The true value for each parameter is also shown (broken line).  The top row 

shows the temporal scaling parameter and the extrinsic connection between the first input 

and the first area.  The middle row shows some intrinsic coupling parameters and the 

bottom row bilinear parameters.  As anticipated the conditional variance of these 

estimators increases with noise, as reflected by a divergence of the confidence region 

with increasing standard deviation of the error.   

 

FIGURE 11 

Region selection for the empirical word processing example:  Statistical Parametric Maps 

of the F ratio, based upon a conventional SPM analysis, are shown in the left panels and 

the spatial locations of the selected regions are shown on the right.  These are 

superimposed on a T1-weighted reference image.  The regional activities shown in the 

next Figure correspond to the first eigenvariates of a 4mm-radius sphere centred on the 

following coordinates in the standard anatomical space of Talairach and Tournoux.  

Primary auditory area A1; -50, -26, 8mm.  Secondary auditory area A2;  -64, -18, 2mm 



and Wernicke’s area WA; -56, -48, 6mm.  In brief, we obtained fMRI time-series from a 

single subject at 2 Tesla using a Magnetom VISION (Siemens, Erlangen) whole body 

MRI system, equipped with a head volume coil.  Contiguous multi-slice T2*-weighted 

fMRI images were obtained with a gradient echo-planar sequence using an axial slice 

orientation (TE = 40ms, TR = 1.7 seconds, 64x64x16 voxels).  After discarding initial 

scans (to allow for magnetic saturation effects) each time-series comprised 1,200 volume 

images with 3mm isotropic voxels.  The subject listened to monosyllabic or bisyllabic 

concrete nouns (i.e. 'dog', 'radio', 'mountain', 'gate') presented at 5 different rates (10 15 

30 60 and 90 words per minute) for epochs of 34 seconds, intercalated with periods of 

rest.  The 5 presentation rates were successively repeated according to a Latin Square 

design.  The data were processed within SPM99 (Wellcome Department of Cognitive 

Neurology, http://www.fil.ion.ucl.ac.uk/spm).  The time-series were realigned, corrected 

for movement-related effects and spatially normalised.  The data were smoothed with a 

5mm isotropic Gaussian kernel.  The SPM{F} above was based on a standard regression 

model using word presentation rate as the stimulus function and convolving it with a 

canonical hemodynamic response and its temporal derivative to form regressors. 

 

FIGURE 12 

Results of a DCM analysis applied to the data described in the previous Figure.  The 

display format follows that of Figure 6.  The coupling parameters are shown alongside 

the corresponding connections.  The values in brackets are the percentage confidence that 

these values exceed a threshold of ln(2)/8 per sec.. 

 

FIGURE 13 

This Figure provides a more detailed characterisation of the conditional estimates.  The 

images in the top-row are the MAP estimates for the intrinsic and bilinear coupling 

parameters, pertaining to saturation and adaptation.  The middle panel shows the 

posterior density of a contrast of all bilinear terms mediating adaptation, namely the 

modulation of intrinsic connections by the second time-dependent experimental effect.  

The predicted responses based upon the conditional estimators are shown for each of the 

three regions on the lower left (solid lines) with the original data (dots) after removal of 



confounds.  A re-parameterisation of the conditional estimates, in terms of the first-order 

kernels, is shown on the lower right.  The hemodynamic (left) and neuronal (right) 

kernels should be compared with the equivalent kernels for the simulated data in Figure 

9. 

 

FIGURE 14 

Results of the reproducibility analyses: a) Results for the intrinsic parameters.  The 

profile of conditional estimates for the 10 independent analyses described in the main text 

are shown in image format, all scaled to the maximum.  The posterior densities, upon 

which these estimates are based, are shown for two selected connections in the lower two 

graphs.  These densities are displayed in terms of their expectation and 90% confidence 

intervals (grey bars) for the forward connection from A1 to A2.  The equivalent densities 

are shown for the backward connection from WA to A2.  Although the posterior 

probability that the latter connections exceeded the specified threshold was less than 

90%, it can be seen that this connection is almost certainly greater than zero.  b) 

Equivalent results for the bilinear coupling matrices mediating adaptation.  The lower 

panels here refer to the posterior densities of a contrast testing for the mean of all bilinear 

parameters (left) and the extrinsic connection to A1 (right).   

 

FIGURE 15 

ReML hyperparameter variance estimates for each region and analysis: These estimates 

provide an anecdotal characterisation of the within- and between-area variability, in 

hyperparameter estimates, and show that they generally lie between 0.8 and 1 

(adimensional units corresponding to % whole brain mean).   

 

FIGURE 16 

Results of the empirical analysis of the attention study.  a) Functional architecture based 

upon the conditional estimates displayed using the same format as Figure 12.  The most 

interesting aspects of this architecture involved the role of motion and attention in 

exerting bilinear effects.  Critically, the influence of motion is to enable connections from 

V1 to the motion sensitive area V5.  The influence of attention is to enable backward 



connections from the inferior frontal gyrus (IFG) to the superior parietal cortex (SPC).  

Furthermore, attention increases the latent influence of SPC on the V5.  Dotted arrows 

connecting regions represent significant bilinear affects in the absence of a significant 

intrinsic coupling.  b) Fitted responses based upon the conditional estimates and the 

adjusted data are shown using the same format as in Figure 13.  The insert shows the 

location of the regions, again adopting the same format in previous Figures.  The location 

of these regions centred on the primary visual cortex V1; 6, -84, -6mm: motion sensitive 

area V5; 45, -81, 5mm.  Superior parietal cortex, SPC; 18, -57, 66mm.  Inferior frontal 

gyrus, IFG, 54, 18, 30mm.  The volumes from which the first eigenvariates were 

calculated corresponded to 8mm radius spheres centred on these locations. 

   Subjects were studied with fMRI under identical stimulus conditions (visual motion 

subtended by radially moving dots) whilst manipulating the attentional component of the 

task (detection of velocity changes).  The data were acquired from normal subjects at 2 

Tesla using a Magnetom VISION (Siemens, Erlangen) whole body MRI system, 

equipped with a head volume coil.  Here we analyse data from the first subject.  

Contiguous multi-slice T2*-weighted fMRI images were obtained with a gradient echo-

planar sequence (TE = 40ms, TR = 3.22 seconds, matrix size = 64x64x32, voxel size 

3x3x3mm).  Each subject had 4 consecutive 100-scan sessions comprising a series of 10-

scan blocks under 5 different conditions D F A F N F A F N S.  The first condition (D) 

was a dummy condition to allow for magnetic saturation effects.  F (Fixation) 

corresponds to a low-level baseline where the subjects viewed a fixation point at the 

centre of a screen.  In condition A (Attention) subjects viewed 250 dots moving radially 

from the centre at 4.7 degrees per second and were asked to detect changes in radial 

velocity.  In condition N (No attention) the subjects were asked simply to view the 

moving dots.  In condition S (Stationary) subjects viewed stationary dots.  The order of A 

and N was swapped for the last two sessions.  In all conditions subjects fixated the centre 

of the screen.  In a pre-scanning session the subjects were given 5 trials with 5 speed 

changes (reducing to 1%).  During scanning there were no speed changes.  No overt 

response was required in any condition.   

 

 



Table 1 

Priors on biophysical parameters 

 

Paramet

er 

Description Prior mean θη  Prior variance θC  

κ rate of signal decay 0.65 per sec 0.015 

γ rate of flow-dependent elimination 0.41 per sec 0.002 

τ hemodynamic transit time 0.98 sec 0.0568 

α Grubb's exponent 0.32 0.0015 

ρ resting oxygen extraction fraction 0.34 0.0024 
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