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Abstract

This chapter describes a method of segmenting MR images into different tissue
classes, using a modified Gaussian Mixture Model. By knowing the prior spatial
probability of each voxel being grey matter, white matter or cerebro-spinal fluid, it
is possible to obtain a more robust classification. In addition, a step for correcting
intensity non-uniformity is also included, which makes the method more applicable
to images corrupted by smooth intensity variations.

5.1 Introduction

Healthy brain tissue can generally be classified into three broad tissue types on the basis of an MR
image. These are grey matter (GM), white matter (WM) and cerebro-spinal fluid (CSF). This
classification can be performed manually on a good quality T1 image, by simply selecting suitable
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Figure 5.1: The a priori probability images of GM, WM, CSF and non-brain tissue. Values range
between zero (white) and one (black).

image intensity ranges which encompass most of the voxel intensities of a particular tissue type.
However, this manual selection of thresholds is highly subjective.

Some groups have used clustering algorithms to partition MR images into different tissue
types, either using images acquired from a single MR sequence, or by combining information
from two or more registered images acquired using different scanning sequences or echo times
(eg. proton-density and T2-weighted). The approach described here is a version of the ‘mixture
model’ clustering algorithm [3], which has been extended to include spatial maps of prior belonging
probabilities, and also a correction for image intensity non-uniformity that arises for many reasons
in MR imaging. Because the tissue classification is based on voxel intensities, partitions derived
without the correction can be confounded by these smooth intensity variations.

The model assumes that the MR image (or images) consists of a number of distinct tissue
types (clusters) from which every voxel has been drawn. The intensities of voxels belonging to
each of these clusters conform to a normal distribution, which can be described by a mean, a
variance and the number of voxels belonging to the distribution. For multi-spectral data (e.g.
simultaneous segmentation of registered T2 and PD images), multivariate normal distributions
can be used. In addition, the model has approximate knowledge of the spatial distributions of
these clusters, in the form of prior probability images.

Before using the current method for classifying an image, the image has to be in register with
the prior probability images. The registration is normally achieved by least squares matching
with template images in the same stereotaxic space as the prior probability images. This can be
done using nonlinear warping, but the examples provided in this chapter were done using affine
registration (see Chapter 3).

One of the greatest problems faced by tissue classification techniques is non-uniformity of the
images intensity. Many groups have developed methods for correcting intensity non-uniformities,
and the scheme developed here shares common features. There are two basic models describing
image noise properties: multiplicative noise and additive noise. The multiplicative model de-
scribes images that have noise added before being modulated by the non-uniformity field (i.e.,
the standard deviation of the noise is multiplied by the modulating field), whereas the additive
version models noise that is added after the modulation (standard deviation is constant). The
current method uses a multiplicative noise model, which assumes that the errors originate from
tissue variability rather than additive Gaussian noise from the scanner. Figure 5.2 illustrates the
model used by the classification.

Non-uniformity correction methods all involve estimating a smooth function that modulates
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Figure 5.2: The MR images are modeled as a number of distinct clusters (top left), with different
levels of Gaussian random noise added to each cluster (top right). The intensity modulation is
assumed to be smoothly varying (bottom left), and is applied as a straightforward multiplication
of the modulation field with the image (bottom right).



4 CHAPTER 5. IMAGE SEGMENTATION

the image intensities. If the function is is not forced to be smooth, then it will begin to fit the
higher frequency intensity variations due to different tissue types, rather than the low frequency
intensity non-uniformity artifact. Spline [17, 13] and polynomial [14, 15] basis functions are
widely used for modeling the intensity variation. In these models, the higher frequency intensity
variations are restricted by limiting the number of basis functions. In the current method, a
Bayesian model is used, where it is assumed that the modulation field (U) has been drawn from a
population for which the a priori probability distribution is known, thus allowing high frequency
variations of the modulation field to be penalized.

5.2 Methods

The explanation of the tissue classification algorithm will be simplified by describing its applica-
tion to a single two dimensional image. A number of assumptions are made by the classification
model. The first is that each of the I x J voxels of the image (F) has been drawn from a known
number (K) of distinct tissue classes (clusters). The distribution of the voxel intensities within
each class is normal (or multi-normal for multi-spectral images) and initially unknown. The dis-
tribution of voxel intensities within cluster k is described by the number of voxels within the
cluster (hy), the mean for that cluster (vg), and the variance around that mean (cy).

Because the images are matched to a particular stereotaxic space, prior probabilities of the
voxels belonging to the grey matter (GM), white matter (WM) and cerebro-spinal fluid (CSF)
classes are known. This information is in the form of probability images — provided by the
Montréal Neurological Institute [5, 4, 6] as part of the ICBM, NIH P-20 project (Principal Inves-
tigator John Mazziotta), and derived from scans of 152 young healthy subjects. These probability
images contain values in the range of zero to one, representing the prior probability of a voxel
being either GM, WM or CSF after an image has been normalized to the same space (see Figure
5.1). The probability of a voxel at co-ordinate 4, j belonging to cluster & is denoted by bijkl.

The final assumption is that the intensity and noise associated with each voxel in the image
has been modulated by multiplication with an unknown smooth scalar field.

There are many unknown parameters to be determined by the classification algorithm, and
estimating any of these requires knowledge of the others. Estimating the parameters that describe
a cluster (hg, vx and c¢g) relies on knowing which voxels belong to the cluster, and also the form
of the intensity modulating function. Estimating which voxels should be assigned to each cluster
requires the cluster parameters to be defined, and also the modulation field. In turn, estimating
the modulation field needs the cluster parameters and the belonging probabilities.

The problem requires an iterative algorithm (see Figure 5.3). It begins by assigning starting
estimates for the various parameters. The starting estimate for the modulation field is typically
uniformly one. Starting estimates for the belonging probabilities of the GM, WM and CSF
partitions are based on the prior probability images. Since there are no prior probability maps for
background and non-brain tissue clusters, they are estimated by subtracting the prior probabilities
for GM, WM and CSF from a map of all ones, and dividing the result equally between the
remaining clusters 2.

Each iteration of the algorithm involves estimating the cluster parameters from the non-

1 Note that ij subscripts are used for voxels rather than the single subscripts used in the previous chapters.
This is to facilitate the explanation of how the modulation field is estimated for 2D images as described in Section
5.2.3.

2Where identical prior probability maps are used for more than one cluster, the affected cluster parameters
need to be modified so that separate clusters can be characterised. This is typically done after the first iteration,
by assigning different values for the means uniformly spaced between zero and the intensity of the white matter
cluster.
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Figure 5.3: A flow diagram for the tissue classification.

uniformity corrected image, assigning belonging probabilities based on the cluster parameters,
checking for convergence, and re-estimating and applying the modulation function. With each
iteration, the parameters describing the distributions move towards a better fit and the belong-
ing probabilities (P) change slightly to reflect the new distributions. This continues until a
convergence criterion is satisfied. The parameters describing clusters with corresponding prior
probability images tend to converge more rapidly than the others. This may be partly due to the
better starting estimates. The final values for the belonging probabilities are in the range of 0 to
1, although most values tend to stabilize very close to one of the two extremes. The algorithm
is in fact an expectation maximization (EM) approach, where the E-step is the computation of
the belonging probabilities, and the M-step is the computation of the cluster and non-uniformity
correction parameters. The individual steps involved in each iteration are now described in more
detail.

5.2.1 Estimating the Cluster Parameters

This stage requires the most recent estimate of the modulation function (U, where u;; is the
multiplicative correction at voxel i,5), and the current estimate of the probability of voxel i, j
belonging to class k, which is denoted by p;;i. The first step is to compute the number of voxels
(h) belonging to each of the K clusters as:

I J
hy = Zzpijk over k = 1..K.

i=1 j=1

Mean voxel intensities for each cluster (v) are computed. This step effectively produces a
weighted mean of the image voxels, where the weights are the current belonging probability
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estimates:

I —J
i 2 Pigk fija
h

Vg over k =1..K.

Then the variance of each cluster (¢) is computed in a similar way to the mean:

I J 2
i1 2oy Pigk(fijuig — vk)

I over k=1..K.

Ck

5.2.2 Assigning Belonging Probabilities

The next step is to re-calculate the belonging probabilities. It uses the cluster parameters com-
puted in the previous step, along with the prior probability images and the intensity modulated
input image. Bayes rule is used to assign the probability of each voxel belonging to each cluster:

TiikSijk
pijk = =252 over i = 1.0, j=1..J and k = 1..K.
D i—1 TijlSil

where p;;i is the a posteriori probability that voxel 4, j belongs to cluster £ given its intensity of
fij, Tijk is the likelihood of a voxel in cluster k having an intensity of fir, and s;;1 is the a priori
probability of voxel 4, j belonging in cluster k.

The likelihood function is obtained by evaluating the probability density functions for the
clusters at each of the voxels:
. (g — 2
Tijk = Llﬂ exp (M> overi=1.I j=1.J and k=1.K.
(27T0k) 2¢y

The prior (s;j) is based on two factors: the number of voxels currently belonging to each
cluster (hy), and the prior probability images derived from a number of images (b;;x). With no
knowledge of the spatial prior probability distribution of the clusters or the intensity of a voxel,
then the a priori probability of any voxel belonging to a particular cluster is proportional to the
number of voxels currently included in that cluster. However, with the additional data from the
prior probability images, a better estimate for the priors can be obtained:

hibiji

i = overi=1.1,7=1.J and k =1..K.
211 2am—1 Dimk

Sijk =

Convergence is ascertained by following the log-likelihood function:

I

J K
53 o (z )
k=1

i=1 j=1

The algorithm is terminated when the change in log-likelihood from the previous iteration becomes
negligible.

5.2.3 Estimating the Modulation Function

To reduce the number of parameters describing an intensity modulation field, it is modeled
by a linear combination of low frequency discrete cosine transform (DCT) basis functions (see
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Section ?7?), which were chosen because there are no constraints at the boundary. A two (or
three) dimensional discrete cosine transform (DCT) is performed as a series of one dimensional
transforms, which are simply multiplications with the DCT matrix. The elements of a matrix
(D) for computing the first M coefficients of the one dimensional DCT of a vector of length I is
given by:

di1 = % i=1.1
dim = /% cos (2P0 G =1 Lm = 2.M (5.1)

The matrix notation for computing the first M x N coefficients of the two dimensional DCT
of a modulation field U is Q = D7 UDs, where the dimensions of the DCT matrices Dy and
D5 are I x M and J x N respectively, and U is an I x J matrix. The approximate inverse DCT
is computed by U ~ D;QD-”. An alternative representation of the two dimensional DCT is
obtained by reshaping the I x J matrix U so that it is a vector (u). Element ¢ 4+ (5 — 1) x I of
the vector is then equal to element i, j of the matrix. The two dimensional DCT can then be
represented by g = DTu, where D = D2 ® Dy (the Kronecker tensor product of Dy and Dy),
and u ~ Dq.

The sensitivity correction field is computed by re-estimating the coeflicients (q) of the DCT
basis functions such that the product of the likelihood and a prior probability of the parameters
is increased. This can be formulated as an iteration of a Gauss-Newton optimisation algorithm
(compare with Section ?77):

q(n+1) = (Coil + A)_l <CoilqO + Aq(") - b) (52)

where qg and Cg are the means and covariance matrices describing the a priori probability distri-
bution of the coefficients. Vector b contains the first derivatives of the log-likelihood cost function
with respect to the basis function coefficients, and matrix A contains the second derivatives of
the log-likelihood. These can be constructed efficiently using the properties of Kronecker tensor
products (see Figure 7?7 in Chapter 3):

_ J I -1 K pijr(fijuij—vk)
by = )y dagn, Sy v, (gt iy S P
_ J . . I . . -2 2 \~K Pk
A, = Zj:l d2jny d2jny Y i1 Aiimy drim, (uij + Jij Py Cck

where I; =m1 + M(n; — 1) and Il = mo + M(ny — 1).

Once the coefficients have been re-estimated, then the modulation field U can be computed
from the estimated coefficients (Q) and the basis functions (D1 and D3).

N M
Uij = Z Z d?jnqmndlim over ¢ = 1..1 and j =1..J.

n=1m=1

The Prior Probability Distribution

In Eqn. 5.2, qo and Cg represent a multi-normal a priori probability distribution for the basis
function coefficients. The mean of the prior probability distribution is such that it would generate
a field that is uniformly one. For this, all the elements of the mean vector are set to zero, apart
from the first element that is set to v/1.J.

The covariance matrix Cg is such that (q — qo)”Co *(q — qo) produces an “energy” term
that penalizes modulation fields that would be unlikely a priori. There are many possible forms
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Figure 5.4: Randomly generated modulation fields generated using the membrane energy cost
function (left), the bending energy cost function (center) and the squares of the third derivatives
(right). These can be referred to as 1st, 2nd and 3rd order regularization.

for this penalty function (see Section ??). Some widely used simple penalty functions include
the “membrane energy” and the “bending energy”, which (in three dimensions) have the forms

_ 3 du(x;) \ 2 _ 3 3 0%u(x:) )2 : f
h=30,2"00A (Tﬂ) and h =373 1> 1 A ( ) respectively. In these formulae,

3mjiamki

% is the gradient of the modulating function at the ith voxel in the jth orthogonal direc-

tion, and A is a user assigned constant. However, for the purpose of modulating the images, a
smoother cost function is used that is based on the squares of the third derivatives (third order
regularization):

h:zziik(%y

1 j=1k=11=1

This model was chosen because it produces slowly varying modulation fields that can represent
the variety of non-uniformity effects that are likely to be encountered in MR images (see Figure
5.4). In two dimensions it can be computed from:

Co~' = A(Dy D2) @ (Di"Ds) +3) (B2 Bs) @ (By Dy ) +
31 (D2 D) @ (Bi' Bi1) + 2 (D2"Da ) @ (Dy D)

where the notation Dy, Dy and D; refer to the first, second and third derivatives (by differ-
entiating Eqn. 5.1 with respect to i) of Dy, and A is a user specified hyper-parameter.

5.3 Examples

Figure 5.5 shows a single sagittal slice through six T1-weighted images. The initial registration to
the prior probability images was via the 12-parameter affine transformation described in Section
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Figure 5.5: A single sagittal slice through six T1-weighted images (2 Tesla scanner, with an
MPRAGE sequence, 12° tip angle, 9.7ms repeat time, 4ms echo time and 0.6ms inversion time).
Contours of extracted grey and white matter are shown superimposed on the images.

?7?. The images were automatically classified using the method described here, and contours of
extracted grey and white matter are shown superimposed on the images.

Tissue classification methods are often evaluated using simulated images generated by the
BrainWeb simulator [2, 9, 3]. It is then possible to compare the classified images with ground
truth images of grey and white matter using the & statistic (a measure of inter-rater agreement):

Po — Pe

1_pe

where p, is the observed proportion of agreement, and p. is the expected proportion of agreements
by chance. If there are N observations in K categories, the observed proportional agreement is:

K
Po=> frx/N
k=1

where fir is the number of agreements for the kth category. The expected proportion of agree-
ments is given by:

K
Pe = Zrkck/N2
k=1
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Figure 5.6: The classification of the simulated BrainWeb image. The top row shows the original
simulated T1-weighted MR image with 100% non-uniformity, and the non-uniformity corrected
version. From left to right, the middle row shows the a priori spatial distribution of grey matter
used for the classification, grey matter extracted without non-uniformity correction, grey matter
extracted with non-uniformity correction and the “true” distribution of grey matter (from which
the simulated images were derived). The bottom row is the same as the middle, except that it
shows white matter rather than grey. Without non-uniformity correction, the intensity variation
causes some of the white matter in posterior areas to be classified as grey. This was also very
apparent in the cerebellum because of the intensity variation in the inferior-superior direction.
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where 7, and ¢, are the total number of voxels in the kth class for both the “true” and estimated
partitions.

The classification of a single plane of the simulated T1 weighted BrainWeb image with 100%
non-uniformity is illustrated in Figure 5.6. It should be noted that no pre-processing to remove
scalp or other non-brain tissue was performed on the image. In theory, the tissue classification
method should produce slightly better results if this non-brain tissue is excluded from the compu-
tations. As the algorithm stands, a small amount of non-brain tissue remains in the grey matter
partition, which has arisen from voxels that lie close to grey matter and have similar intensities.

5.4 Discussion

The current segmentation method is fairly robust and accurate for high quality T1 weighted im-
ages, but is not beyond improvement. Currently, each voxel is assigned a probability of belonging
to a particular tissue class based only on its intensity and information from the prior probability
images. There is a great deal of other knowledge that could be incorporated into the classifi-
cation. For example, if all a voxel’s neighbors are grey matter, then there is a high probability
that it should also be grey matter. Other researchers have successfully used Markov random field
models to include this information in a tissue classification model [17, 16, 15, 11, 18]. Another
very simple prior, that can be incorporated, is the relative intensity of the different tissue types
[7]. For example, when segmenting a T'1 weighted image, it is known that the white matter should
have a higher intensity than the grey matter, which in turn should be more intense than the CSF.
When computing the means for each cluster, this prior information could sensibly be used to bias
the estimates.

In order to function properly, the classification method requires good contrast between the
different tissue types. However, many central grey matter structures have image intensities that
are almost indistinguishable from that of white matter, so the tissue classification is not always
very accurate in these regions. Another related problem is that of partial volume. Because the
model assumes that all voxels contain only one tissue type, the voxels that contain a mixture of
tissues may not be modeled correctly. In particular, those voxels at the interface between white
matter and ventricles will often appear as grey matter. This can be seen to a small extent in
Figures 5.5 and 5.6. Each voxel is assumed to be of only one tissue type, and not a combination
of different tissues, so the model’s assumptions are violated when voxels contain signal from more
than one tissue type. This problem is greatest when the voxel dimensions are large, or if the
images have been smoothed, and is illustrated using simulated data in Figure 5.7. The effect
of partial volume is that it causes the distributions of the intensities to deviate from normal.
Some authors have developed more complex models than mixtures of Gaussians to describe the
intensity distributions of the classes [1]. A more recent commonly adopted approach involves
modeling separate classes of partial volumed voxels [10, 11, 12].

In order for the Bayesian classification to work properly, an image volume must be in register
with a set of prior probability images used to instate the priors. Figure 5.8 shows the effects of
mis-registration on the accuracy of segmentation. This figure also gives an indication of how far
a brain can deviate from the normal population of brains (that constitute the prior probability
images) in order for it to be segmented adequately. Clearly, if the brain cannot be well registered
with the probability images, then the segmentation will not be as accurate. This fact also has
implications for severely abnormal brains, as they are more difficult to register with images that
represent the prior probabilities of voxels belonging to different classes. Segmenting such abnormal
brains can be a problem for the algorithm, as the prior probability images are based on normal
healthy brains. The profile in Figure 5.8 depends on the smoothness or resolution of the prior
probability images. By not smoothing the prior probability images, the segmentation would be
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Figure 5.7: Simulated data showing the effects of partial volume on the intensity histograms. On
the upper left is a simulated image consisting of three distinct clusters. The intensity histogram
of this image is shown on the lower left and consists of three Gaussian distributions. The image
at the top right is the simulated image after a small amount of smoothing. The corresponding
intensity histogram no longer shows three distinct Gaussian distributions.
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Figure 5.8: Segmentation accuracy with respect to misregistration with the prior probability
images.

optimal for normal, young and healthy brains. However, these images may need to be smoother
in order to encompass more variability when patient data are to be processed.

As an example, consider a subject with very large ventricles. CSF may appear where the
priors suggest that tissue should always be WM. These CSF voxels are forced to be misclassified
as WM, and the intensities of these voxels are incorporated into the computation of the WM
means and variances. This results in the WM being characterized by a very broad distribution,
so the algorithm is unable to distinguish it from any other tissue. For young healthy subjects,
the classification is normally good, but caution is required when the method is used for severely
pathological brains.

MR images are normally reconstructed by taking the modulus of complex images. Normally
distributed complex values are not normally distributed when the magnitude is taken. Instead,
they obey a Rician distribution. This means that any clusters representing the background are
not well modeled by a single Gaussian, but it makes very little difference for most of the other
clusters.

The segmentation is normally run on unprocessed brain images, where non-brain tissue is
not first removed. This results in a small amount of non-brain tissue being classified as brain.
However, by using morphological operations on the extracted GM and WM segments, it is possible
to remove most of this extra tissue. The procedure begins by eroding the extracted WM image, so
that any small specs of misclassified WM are removed. This is followed by conditionally dilating
the eroded WM, such that dilation can only occur where GM and WM were present in the original
extracted segments. Although some non-brain structures (such as part of the sagittal sinus) may
remain after this processing, most non-brain tissue is removed. Figure 5.9 shows how the GM
and WM partitions can be cleaned up using this procedure, and surface rendered images of brains
automatically extracted this way are shown in Figure ?7.
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Figure 5.9: Example of automatically cleaned up segmented images. The top row shows the
original T1 weighted MR image, next to an automatically generated mask of brain derived from
the initial grey and white matter partitions. The second row shows the initial extracted grey and
white matter. The bottom row shows the grey and white matter partitions after cleaning up by
multiplying with the brain mask.
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