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1 Introduction

In the absence of prior anatomical hypotheses regarding the physical location of a particular
function, the statistical analysis of functional mapping experiments must proceed by assessing
the acquired data for evidence of an experimentally induced effect at every intracerebral voxel
individually and simultaneously.

After reconstruction, realignment, spatial normalisation and (possibly) smoothing, the data are
ready for statistical analysis. This involves two steps: Firstly, statistics indicating evidence
against a null hypothesis of no effect at each voxel are computed. An image of these statistics is
then produced. Secondly, this statistical image must be assessed, reliably locating voxels where
an effect is exhibited whilst limiting the possibility of false positives. In this chapter we shall
address the former topic, the formation of an appropriate statistical image.

Current methods for assessing the data at each voxel are predominantly parametric: Specific
forms of probability distribution are assumed for the data, and hypotheses specified in terms
of models assumed for the (unknown) parameters of these distributions. The parameters are
estimated and a statistic reflecting evidence against the null hypothesis formed. Statistics with
a known null distribution are used such that the probability of obtaining a statistic, given
that the null hypothesis is true, can be computed. This is hypothesis testing in the classical
parametric sense. The majority of the statistical models used are special cases of the General
Linear Model.

SPM has become an acronym in common use for the theoretical framework of voxel based
analysis of functional imaging data, for the software package implementing this procedure, and
for the statistical image (Statistical Parametric Map). Here we shall take SPM to refer to
(i) the software package in its current version SPM99 and (ii) the conceptual and theoretical
framework.

In what follows, we first go through the equations for the general linear model with a spherical
error distribution (i.e. we assume an independently and identically distributed error). This
theoretical part is presented without any reference to PET or fMRI data and is orientated
towards a description as it can be found in a classical statistics textbook. In the third section,
we turn to the data in question and illustrate the use of the general linear model on some PET
data examples. In the fourth and final section, we introduce the linear model used for fMRI
data. This model is a linear model with a normally distributed and non-spherical error.

2 The General Linear Model

Before turning to the specifics of PET and fMRI, we consider the general linear model, which
requires some basic matrix algebra and statistical concepts. These will be used to develop an
understanding of classical hypothesis testing. Healy (Healy, 1986) presents a brief summary of
matrix methods relevant to statistics. Newcomers to statistical methods are directed towards
Mould’s excellent text “Introductory Medical Statistics” (Mould, 1989), while the more mathe-
matically experienced will find Chatfield’s “Statistics for Technology” (Chatfield, 1983) useful.
Draper & Smith (Draper and Smith, 1981) give a good exposition of matrix methods for the
general linear model, and go on to describe regression analysis in general. The definitive tome
for practical statistical experimental design is Winer et al. (Winer et al., 1991). An excellent
book about experimental design is (Yandell, 1997). A rather advanced, but very useful, text
on linear models is (Christensen, 1996).



2.1 The General Linear Model — Introduction

Suppose we are to conduct an experiment during which we will measure a response variable (such
as rCBF at a particular voxel) Y;, where j = 1,...,J indexes the observation. Yj is a random
variable, conventionally denoted by a capital letter.! Suppose also that for each observation
we have a set of L (L < J) explanatory variables (each measured without error) denoted by
xji, where [ = 1,...,L indexes the explanatory variables. The explanatory variables may be
continuous (or sometimes discrete) covariates, functions of covariates, or they may be dummy
variables indicating the levels of an experimental factor.

A general linear model explains the response variable Y} in terms of a linear combination of the
explanatory variables plus an error term:

Yi=zppi+...+xubi+... +x;08L + ¢ (1)

Here the (; are (unknown) parameters, corresponding to each of the L explanatory variables
zj;. The errors ¢; are independent and identically distributed normal random variables with

. . jid . . e
zero mean and variance o2, written ¢; ~' N(0,0?). Linear models with other error distributions
are Generalised Linear Models, for which the acronym GLM is usually reserved.

2.1.1 Examples, dummy variables

Many classical parametric statistical procedures are special cases of the general linear model.
We will illustrate this point by going through the equations for two well-known models.

Linear regression

A simple example is linear regression, where only one continuous explanatory variable z; is
measured (without error) for each observation 5 = 1,...,J. The model is usually written as:

Yj=p+ziB+te (2)

where the unknown parameters are u, a constant term in the model, the regression slope 5 and
€ wd (0,0?). This can be re-written as a general linear model by the use of a dummy variable

taking the value zj; = 1 for all j:

Y =zjp+zjob+e¢; (3)

which is of the form of Eq. 1 on replacing 81 with pu.

Two-sample t-test

Similarly the two-sample t-test is a special case of a general linear model: Suppose Y;; and
Yo are two independent groups of random variables: The two-sample ¢-test assumes Y; i

We talk of random variables, and of observations prior to their measurement, because classical (frequentist)
statistics is concerned with what could have occurred in an experiment. Once the observations have been made,
they are known, the residuals are known, and there is no randomness.



N (uq,02), for ¢ = 1,2, and assesses the null hypothesis H : u1 = po. The index j indexes
the data points in both groups. The standard statistical way of writing the model is:

Ygj = pq + € (4)

The ¢ subscript on the pu, indicates that there are two levels to the group effect, ui and po.

iid . . . .
Here, €;; ~ N(0,0?). This can be re-written using two dummy variables z4;1 and 4o as:

Yy = zgjip + Tgjop2 + €gj (5)

which is of the form of Eq. 1 after re-indexing for ¢j. Here the dummy variables indicate group
membership, where z4;; indicates whether observation Y; is from the first group, in which case
0 ifg=1

it has the value 1 when ¢ = 1, and 0 when ¢ = 2. Similarly, 42 = { 1 ifq=2

2.2 Matrix formulation

In the following few subsections, we use the general linear model in its matrix formulation
and derive a least-squares parameter estimation. After this, we describe how one can make
inferences based on a contrast of the parameters. This theoretical treatment of the model is
useful to derive a set of equations that can be used for the analysis of any data set that can be
formulated in terms of the general linear model.

The general linear model can be succinctly expressed using matrix notation. Consider writing
out Eq. 1 in full, for each observation j, giving a set of simultaneous equations:

Yi = zufi+...+zuf+...+z1br + e
Yj = mjlﬂl+...+leﬂl+...+ijﬂL—|—6j

Y; = znbi+...+zpbi+...+x5Br + €

This has an equivalent matrix form:

Y Tyl et Ty ot TIL B1 €1
Y, | =1 zj Tj1 TiL B [+ €
Y; Tji ot Xy ottt TJL BL €7

which can be written in matrix notation as

Y=Xp+e¢ (6)

where Y is the column vector of observations, € the column vector of error terms, and [
the column vector of parameters; 8 = [B1, -+ ,0, -+ ,Bz]’. The J x L matrix X, with 4Ith



element xz; is the design matriz. This has one row per observation, and one column (explanatory
variable) per model parameter. The important point about the design matrix is that it is a near
complete description of our model with the remainder of the model being in the error term.
The design matrix is where the experimental knowledge about the expected signal is quantified.

2.3 Parameter estimation

Once an experiment has been completed, we have observations of the random variables Y},
which we denote by y;. Usually, the simultaneous equations implied by the general linear
model (with € = 0) cannot be solved, because the number of parameters L is typically chosen
to be less than the number of observations J. Therefore, some method of estimating parameters
that “best fit” the data is required. This is achieved by the method of ordinary least squares.

Denote a set of parameter estimates by ﬁ [51, ey B L] These parameters lead to ﬁtted values

[Yl, : YJ] = X8, glvmg re51dual errors e = [e1,...,es]l =Y — Y =Y — XB. The

T

reszdual sum-of-squares S = Z = e e is the sum of the square differences between the

J=1 ]
actual and fitted values, and thus measures the fit of the model with these parameter estimates.?
The least squares estimates are the parameter estimates which minimise the residual sum-of-

squares. In full:

- N\ 2
S = Z (Yj —zj1fB1— ... —ﬂEjLﬁL)
=1
This is minimized when:
J ~
=2 —T —x — X =0
35: ; m, ( 161 — ]LﬁL)

This equation is the 0 yow of XTY = (XTXx )B Thus, the least squares estimates, denoted
by B, satisfy the normal equations:

X7y = (Xx"Xx) (7)

For the general linear model, the least squares estimates are the mazimum likelihood estimates,
and are the Best Linear Unbiased Estimates®. That is, of all linear parameter estimates con-
sisting of linear combinations of the observed data whose expectation is the true value of the
parameters, the least squares estimates have the minimum variance.

If (XTX) is invertible, which it is if and only if the design matrix X is of full rank, then the
least squares estimates are:
B=(xTx)" xTy (8)

2.3.1 Overdetermined models

If X has linearly dependent columns, it is rank deficient, (X* X) is singular, and has no inverse.
In this case the model is overparameterised: There are infinitely many parameter sets describing

2¢Te is the Ly norm of e — geometrically equivalent to the distance between the model and data
3Gauss-Markov theorem



the same model. Correspondingly, there are infinitely many least squares estimates B satisfying
the normal equations. We will illustrate the overdetermined case by an example and discuss
the solution that is adopted in SPM.

2.3.2 One way ANOVA Example

A simple example of such a model is the classic Q group one-way analysis of variance (ANOVA)
model. Generally, an Anova determines the variability in the measured response which can be
attributed to the effects of factor levels. The remaining unexplained variation is used to assess
the significance of the effects (Yandell, 1997), page 4 and pages 202ff. The model for a one-way
Anova is given by

Yoj = p+ g+ €gj 9)

where Y, is the jth observation in group ¢ = 1,...,Q. This model clearly does not uniquely
specify the parameters: For any given p and «y, the parameters ' = p+d and af] = ag —d give
an equivalent model for any constant d. That is, the model is indeterminate up to the level of
an additive constant between the constant term p and the group effects a,. Similarly for any
set of least squares estimates fi, &,. Here there is one degree of indeterminacy in the model,
resulting in the design matrix having rank (), which is one less than the number of parameters
(the number of columns of X). If the data vector Y has observations arranged by group, then
for three groups (@ = 3), the design matrix and parameter vectors are

(1 1 0 0]

1100

1010 H
_ . I !
X = : B—OQ

1 010 s

100 1

|1 0 0 1|

Clearly this matrix is rank deficient: The first column is the sum of the others. Therefore, in this
model, one cannot test in this model for the effect of one or more groups. However, note that the
addition of the constant u does not effect the relative differences between pairs of group effects.
Therefore, differences in group effects are uniquely estimated regardless of the particular set of
parameter estimates used. In other words, even if the model is overparameterised, there are still
useful linear combinations of parameters (i.e. differences between pairs of group effects). This
important concept will emerge in many designs, especially for PET and multi-subject data. It
will be treated more thoroughly in §2.5.3 (Estimable functions, contrasts).

2.3.3 The pseudoinverse constraint

In the overdetermined case, a set of least squares estimates may be found by imposing con-
straints on the estimates, or by inverting (X X) using a pseudoinverse technique which essen-
tially implies a constraint. In either case it is important to remember that the actual estimates



obtained depend on the particular constraint or pseudoinverse method chosen. This has impli-
cations for inference (§2.5): It is only meaningful to consider functions of the parameters that
are uninfluenced by the particular constraint chosen.

There are some obvious constraints that are based on removing columns from the design matrix.
In the one-way ANOVA example, one can remove the constant term to construct a design
matrix which has linearly independent columns. For more complex designs, the form of the
design matrix can change a lot such that it becomes difficult to visually recognize the original
model. Therefore, in SPM, the overall principle is that each experimentally induced effect is
represented by one or more regressors. This excludes the removal of columns as an option to
deal with overdetermined models.

Alternatively a pseudoinverse method can be used. Let (X7 X)~ denote the pseudoinverse of
(XTX). Then we can use (X7 X)~ in place of (X7 X)™! in Eq. 8. A set of least squares
estimates are given by 8 = (X7X)~ XTY = X Y. The pseudoinverse function implemented in
MATLAB gives the Moore-Penrose pseudoinverse.* This results in the least squares parameter
estimates with the minimum sum-of-squares (minimum Ly norm ||3||2). For example, for the
one-way ANOVA model, this can be shown to give parameter estimates /i = Zngl(YQ') /(14+Q)

and dg = Yq. — . By 7(1. we denote the average of Y over the observation index j, i.e. the
average of the data in group gq.

Using the pseudoinverse for parameter estimation in overdetermined models is the solution
adopted in SPM. As mentioned above, this does still not allow to test for those linear combi-
nations of effects for which there exist an infinite number of parameter estimates. (This topic
is covered in great detail in chapter 8.) Note that the pseudoinverse constraint leaves us with
all columns of X.

2.4 Geometrical Perspective

For some, a geometrical perspective provides an intuitive feel for the procedure. (This section
can be omitted without loss of continuity.)

The vector of observed values Y defines a single point in R/, J-dimensional Euclidean space.
X} is a linear combination of the columns of the design matrix X. The columns of X are
J-vectors, so X for a given 8 defines a point in ®’. This point lies in the subspace of R’
spanned by the columns of the design matrix, the X-space. The dimension of this subspace is
rank(X). Recall that the space spanned by the columns of X is the set of points Xe¢ for all
¢ € RL. The residual sum-of-squares for parameter estimates 3 is the distance from X2 to
Y. Thus, the least squares estimates B correspond to the point in the space spanned by the
columns of X that is nearest to the data Y. The perpendicular from Y to the X-space meets
the X-space at V=X B . It is now clear why there are no unique least squares estimates if X
is rank-deficient; for then any point in the X-space can be obtained by infinitely many linear
combinations of the columns of X, i.e. the solution exists on a hyperplane and is not a point.

If X is of full rank, then define the projection matrix as Px = X (XTX) L XT. ThenV = PxY,
and geometrically Px is a projection onto the X-space. Similarly, the residual forming matrix is
R = (Iy — Px), where I is the identity matrix of rank J. Thus RY = e, and R is a projection
matrix onto the space orthogonal to the X-space.

As a concrete example, consider a linear regression with only three observations. The observed
data y = [y1,92,3]7 defines a point in three-dimensional Euclidean space (R?). The model

*If X is of full rank, then (X7 X)~ is an inefficient way of computing (X7 X)~'.



1 I

(Eq. 2) leads to a design matrix X = | 1 =z |. Provided the z;’s are not all the same, the
1 I3

columns of X span a two dimensional subspace of ®3, a plane (Fig.1).

[Figure 1 about here.]

2.5 Inference

Here, we derive the t- and F-statistics which are used to test for a linear combination of
effects. We will also return to the issue of overdetermined models and determine which linear
combinations (contrasts) we can test.

2.5.1 Residual Sum of Squares

2

The residual variance o“ is estimated by the residual sum-of-squares divided by the appropriate

2
degrees of freedom: 62 = “i;) ~ UQXJJT_; where p = rank(X). See also the Appendix (A2) for a

derivation of this result.

2.5.2 Linear Combinations of the Parameter Estimates

It is not too difficult to show that the parameter estimates are normally distributed: if X is full
rank then 8 ~ N (ﬁ, a?(XTx )*1). From this it follows that for a column vector ¢ containing
L weights (see §2.5.3):

"B~ N (7B, a®cT(XTX)e) (10)

Furthermore, 3 and 62 are independent (Fisher’s Law). Thus, prespecified hypotheses concern-
ing linear compounds of the model parameters ¢’ 3 can be assessed using

BB
V2T (XTX) e

~trp (11)

where ¢;_p is a Student’s t¢-distribution with J — p degrees of freedom. For example, the
hypothesis H : ¢/ 8 = d can be assessed by computing
T CTB —d

V2T (XTX) e

(12)

and computing a p-value by comparing T with a t-distribution having J — p degrees of freedom.
In SPM, all tested null hypotheses are of the form ¢’ 8 = 0. Also note that in SPM tests based
on this t-value are always one-sided.



Example — Two-sample t-test

For example, consider the two-sample ¢-test (§2.1.1). The model (Eq. 4) leads to a design
matrix X with two columns of dummy variables indicating group membership and parameter
vector 8 = [u1, po]”. Thus, the null hypothesis H : u; = po is equivalent to H : ¢I'f = 0
with ¢ = [1, -1].

The first column of the design matrix contains ny 1’s and n9 0’s, indicating the measurements
from group one, while the second column contains n; 0’s and ns 1’s for group two. Thus
1
xTx)y= (™ O xrx)to (VM 0 ) nd T(XTX) e = 1/n1 +1/no, giving
0 N9 0 1/77,2
the t-statistic (by Eq. 11):
T — _ H1 — p2
V&2 (1/n1 +1/n)

which is the standard formula for the two-sample ¢-statistic, with a Student’s ¢-distribution of
n1 + no — 2 degrees of freedom under the null hypothesis.

2.5.3 Estimable functions, contrasts

Recall (§2.3.1) that if the model is overparameterised (i.e. X is rank deficient), then there
are infinitely many parameter sets describing the same model. Constraints or the use of a
pseudoinverse technique pull out only one set of parameters from infinitely many. Therefore,
when examining linear compounds ¢’ 8 of the parameters it is imperative to consider only
compounds that are invariant over the space of possible parameters. Such linear compounds
are called contrasts. In the following, we will characterize contrasts as linear combinations
having two properties, which can be used to determine whether a linear compound is a proper
contrast or not.

In detail (Scheffé, 1959), a linear function ¢’ of the parameters is estimable if there is a
linear unbiased estimate ¢’’'Y for some constant vector of weights ¢. That is ¢! 8 = E(dTY).
(E(Y) is the expectation of the random variable Y.) The natural estimate ¢! 3 is unique for
an estimable function whatever solution, ,3, of the normal equations is chosen (Gauss-Markov
theorem). Further: ¢/'8 = E(¢TY) = ¢TXB = ¢! = ¢ X, so c is a linear combination of the
rows of X.

A contrast is an estimable function with the additional property g =Ty = dTY. Now
dTY =dTY & TPxY = ¢TY & ¢ = Pxd (since Px is symmetric), so ¢ is in the X-space.
In summary, a contrast is an estimable function whose ¢’ vector is a linear combination of the
columns of X°.

One can test, whether ¢ is a contrast vector by combining the two properties (i) ¢! = ¢TX
and (ii) ¢ = Pxc for some vector ¢/. Combining (i) and (ii), it follows that ¢! = ¢/T Px X.
Because of (i), ¢!’ = ¢I'(XTX)~XTX. In other words, c is a contrast, if it is unchanged by
post-multiplication with (X7 X)~ X7 X. This test is used in SPM for user-specified contrasts®.

For a contrast it can be shown that ¢Z8 ~ N (T8, o*dT). Using a pseudoinverse technique,
Px = X(XTX)"XT sod = Pxc = Td =TX(XTX)"XTd = I'(XTX) csince c =cTX
for an estimable function.

°In Statistical Parametric Mapping, one usually refers to the vector ¢ as the wector of contrast weights.
Informally, we will also refer to ¢ as the contrast, a slight misuse of the term.

5The actual implementation of this test is based on a more efficient algorithm using a singular value decom-
position.



This shows that the distributional results given above for unique designs (Eq.10 & Eq.11),
apply for contrasts of the parameters of non-unique designs, where (X7 X)~! is replaced by a
pseudoinverse.

It remains to characterise which linear compounds of the parameters are contrasts. For most
designs, contrasts have weights that sum to zero over the levels of each factor. For example,
for the one-way Anova with parameter vector 8 = [y, a1, ..., ag]”, the linear compound ¢’ 3
with weights vector ¢ = [cg, c1,...,cg]T is a contrast if ¢g = 0 and Z(?:l cq = 0.

2.5.4 Extra Sum of Squares Principle, F-contrasts

The extra sum-of-squares principle provides a method of assessing general linear hypotheses,
and for comparing models in a hierarchy, where inference is based on a F-statistic. Here, we will
describe the classical F-test based on the assumption of an independent identically distributed
error. In SPM, both statistics, the t- and the F-statistic, are used for making inferences.

We first describe the classical F-test as found in nearly all introductory statistical texts. After
that we will point at two critical limitations of this description and derive a more general and
better suited implementation of the F-test for typical models in neuroimaging.

Suppose we have a model with parameter vector # that can be partitioned into two, § =

BT:Y|, and suppose we wish to test H : 41 = 0. The corresponding partitioning of the design

matrix X is X = |:X15X2:|, and the full model is:

ej1
Y = |:X1X2:| e | +€
B2

which when # is true reduces to the reduced model: Y = X985 4+ €. Denote the residual sum-
of-squares for the full and reduced models by S(8) and S(f2) respectively. The eztra sum-of-
squares due to (B after 5 is then defined as S(B1|B2) = S(B2)—S(B). Under H, S(51|82) ~ UQXIQ,
independent of S(f), where the degrees of freedom are p = rank(X)—rank(Xs). (If 4 is not true,
then S(f1|B2) has a non-central chi-squared distribution, still independent of S(3).) Therefore,
the following F'-statistic expresses evidence against H:

5(62)-5(8)
F= % ~ Fppy,1—p (13)
J—p

where p = rank(X) and ps = rank(X3). The larger F' gets the more unlikely it is that F' was
sampled under the null hypothesis H. Significance can then be assessed by comparing this
statistic with the appropriate F-distribution. Draper & Smith (Draper and Smith, 1981) give
derivations.

This formulation of the F-statistic has two limitations. The first is that two (nested) models,
the full and the reduced model, have to be fitted subsequently to the data. In practice, this is
implemented by a two-pass procedure on a, typically, large data set. The second limitation is
that a partitioning of the design matrix into two blocks of regressors is not the only way one
can partition the design matrix space. Essentially, one can partition X into two sets of linear
combinations of the regressors. As an example, one might be interested in the difference between

10



two effects. If each of these two effects is modelled by one regressor, a simple partitioning is not
possible and one cannot use Eq. 13 to test for the difference. Rather, one has to re-parameterize
the model such that the differential effect is explicitly modelled by a single regressor. As we
will show in the following, this re-parameterization is unnecessary.

The key to implement a F-test that avoids these two limitations is the notion of contrast
matrices. A contrast matrix is a generalisation of a contrast vector (2.5.3). Each column of a
contrast matrix consists of one contrast vector. Importantly, the contrast matrix controls the
partitioning of the design matrix X.

A (user-specified) contrast matrix c¢ is used to determine a subspace of the design matrix,
i.e. X, = Xc. The orthogonal contrast to c is given by c¢g = I, — cc™. Then, let Xy = Xco
be the design matrix of the reduced model. We wish to compute what effects X, explain,
after first fitting the reduced model X(y. The important point to note is that although ¢ and
co are orthogonal to each other, X. and Xy are possibly not, because the relevant regressors
in the design matrix X can be correlated. If the partitions Xy and X. are not orthogonal,
the temporal sequence of the subsequent fitting procedure attributes their shared variance to
Xo. However, the subsequent fitting of two models is unnecessary, because one can construct a
projection matrix from the data to the subspace of X., which is orthogonal to X3. We denote
this subspace by X,.

The projection matrix M due to X, can be derived from the residual forming matrix of the
reduced model Xy. This matrix is given by Ry = I; — XXy~ . The projection matrix is then
M = Ry — R, where R is the residual forming matrix of the full model, i.e. R=1; — XX .

The F-statistic can then be written as

(MY)"TMY J—p Y'MY J-p

F= (RY)TRY p1_ YTRY p; ~ Fpia-p

(14)
where p; is the rank of X,. Since M is a projector onto a subspace within X, we can also write

o BTXTMXBJ—p

~F, j_
YTRY 1 p1,J—p

(15)
This equation means that we can conveniently compute a F-statistic for any user-specified
contrast without any re-parameterization. In SPM, all F-statistics are based on the full model
so that Y7 RY needs only to be estimated once and be stored for subsequent use.

In summary, the formulation of the F-statistic (Eq. 15) is a powerful tool, because by using
a contrast matrix ¢ we can test for a subspace spanned by contrasts of the design matrix
X. Importantly, we do not need to reparameterise the model and estimate an additional
parameter set, but use estimated parameters of the full model. More about F-contrasts and
their applications can be found in chapter 8.

Example — one-way ANOVA

For example, consider a one-way ANOVA (§2.3.2, Eq. 9), where we wish to assess the omnibus

null hypothesis that all the groups are identical: H : oy = ag = ... = ag. Under H the model
reduces to Yy; = pu + €4j. Since the ANOVA model contains a constant term, p, H is equivalent
toH:a =as=...=ag=0. Thus, let B = (av,...,aq)T, and B2 = u. Eq. 13 then gives

an F-statistic which is precisely the standard F'-statistic for a one-way ANOVA.

11



Alternatively, we can apply Eq. 15. The contrast matrix ¢ is a diagonal @ + l-matrix with
Q@ ones on the upper main diagonal and a zero in the ) + 1st element on the main diagonal
(Fig. 2). This contrast matrix tests, whether there was an effect due to any group after taking
into account a constant term across groups. Application of Eq. 15 results in the same F-value
as compared to Eq. 13, but without the need to explicitly fit two models.

[Figure 2 about here.]

2.6 Adjusted and fitted data

Adjusted data can be used to illustrate the nature of an effect, some effects having been removed
from the raw data Y. For example, when looking at the difference between two groups (two-
sample t-test), the effect that is of no interest is the mean over the two groups. Removing
this overall mean allows one to have a better chance of visually assessing the difference which
is otherwise hidden away, because its amplitude is typically only a small fraction of the mean
amplitude. This principle of removing effects of no interest to better visually assess the overall
effects of interest can be applied to any kind of design.

The question to answer is which effects are of interest and which are not. The partitioning of
the design matrix into these two parts is based on the same principles as the F-test developed
in the preceding subsection. We can use an F-contrast for the partitioning, which is equivalent
to the specification of a full and reduced model. In this context, adjusted data are the residuals
of the reduced model, i.e. components that can be explained by the reduced model have been
removed from the data. In other words, to compute adjusted data the user needs to tell SPM
which part of the design matrix is of no interest (the reduced model). SPM then takes the
part of the design matrix, which is orthogonal to the reduced model, as the effects of interest.
This process will be illustrated below by an example. Note that the partitioning of the design
matrix follows the same logic as the F-test: First, any effect due to the reduced model is
removed and only the remaining effects are taken to be of interest. An important point is that
any overlap (correlation) between the reduced model and our partition of interest is explained
by the reduced model. In the context of adjusted data this means that the adjusted data will
not contain that component of the effects that can be explained by the reduced model.

Operationally, we compute the adjusted data using the same procedure as used to calculate the
F-statistic. A user-specified contrast matrix ¢ induces a partitioning of the design matrix X.
The reduced model is given by Xy = Xc¢g and its residual forming matrix Ry = I; — XX .
The adjusted data can then be computed by ¥ = RyY. Note that this projection technique
makes a re-parameterization redundant.

An alternative way of computing the adjusted data Y is to compute the data explained by the
design matrix partition orthogonal to X and add the residuals of the full model, i.e. Y = Yi+e.
The residuals are given by e = RY, where R is the residual forming matrix of the full model,
and Yy = MY, where Y} is referred to as fitted data. The projection matrix M is computed by
M = Ry — R (§2.5.4). In other words, the fitted data is equivalent to the adjusted data minus
the estimated error, i.e. Y; = Y —e.

In SPM, both adjusted and fitted data can be plotted for any voxel. For these plots, SPM
requires the specification of an F-contrast, which encodes the partitioning of the design matrix
into effects of interest and no interest.
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2.6.1 Example

As an example, we look at a one-way anova with four groups. The design matrix consists of four
columns which indicate group membership. Each group has 12 measurements so that we have
altogether 48 measurements. In our example, we are interested in the average of two differences.
The first difference is between group 1 and 2 and the second difference between group 2 and 3. If
we want to test this difference with a t-statistic, the contrast vector will be ¢ = [-1, 1, —1, 1],
In Fig. 3 (left), we show what the actual data looks like. It is easy to see that there is a difference
between the average of the first two groups compared to the average of the last two groups.
(This difference could be tested by using the contrast vector ¢ = [-1, — 1, 1, 1]7.) However,
by visual inspection, it is hard to tell, whether there is a difference between the average of group
1 and 3 compared to the average of group 2 and 4. This is a situation, where a plot of adjusted
and fitted data is helpful. First, we have to specify a reduced model. One way of doing this is
to specify a contrast vector or matrix that defines our effect of interest. In our example, the
difference is represented by the contrast vector ¢ = [-1, 1, — 1, 1]7. The contrast matrix co
is given by ¢y = Iy — cc—. With ¢y, we can compute Xy, Ry and M, all of which are needed to
compute the adjusted and fitted data. In Fig. 3 (right), we show the fitted and adjusted data.
In this plot, it is obvious that there actually is a difference between group 1 and 2 and between
group 3 and 4. This example illustrates that plots of fitted and adjusted data are helpful, when
the effect of interest is masked by a comparably large effect of no interest. This is very often
the case in neuroimaging, where typically the effect of interest is very small compared to large
confounding effects.

Note that a plot of adjusted or fitted data can never substitute for a test of significance.
However, for illustration purposes, a plot of the adjusted/fitted data is the closest one can get
to the effect that one wishes to test.

[Figure 3 about here.]

2.7 Design matrix images

SPM uses greyscale images of the design matrix to represent linear models. An example for a
single subject PET activation study with four scans under each of three conditions is shown
in Fig. 4. The first three columns contain indicator variables (consisting of zeros and ones)
indicating the condition. The last column contains the (mean corrected) global cerebral blood
flow (gCBF) values (see below).

In the greyscale design matrix images, —1 is black, 0 mid-gray, and +1 white. Columns con-
taining covariates are scaled by subtracting the mean (zero for centered covariates). For display
purposes regressors are divided by their absolute maximum, giving values in [-1, 1]. Design ma-
trix blocks containing factor by covariate interactions (§3.3.5) are scaled such that the covariate
values lie in (0,1], thus preserving representation of the padding zeros as mid-grey.

[Figure 4 about here.]
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3 PET and basic models

With the details of the general linear model covered, we turn our attention to some actual
models used in functional brain mapping, discuss the practicalities of their application, and
introduce some terminology used in SPM. As the approach is mass univariate, we must consider
a model for each and every voxel. Bear in mind that in the mass univariate approach, the same
model is used at every voxel simultaneously, with different parameters for each voxel. We shall
concentrate on PET data, with its mature family of standard statistical experimental designs.
Models of fMRI data will be presented in the next section.

Although most PET functional mapping experiments are on multiple subjects, many of the key
concepts are readily demonstrated using single subject data.

3.1 Heteroscedacity

Heteroscedacity in the context of neuroimaging means that the error variance is allowed to vary
between voxels. In PET data, there is substantial evidence against an assumption of constant
variance (homoscedasticity) at all points of the brain. This fact is perhaps to be expected, con-
sidering the different constituents and activities of grey and white matter. This is unfortunate,
as the small sample sizes leave few degrees of freedom for variance estimation. If homoscedas-
ticity can be assumed, variance estimates can legitimately be pooled across all voxels. Provided
the image is much greater in extent than its smoothness, this gives an estimate with sufficiently
high (effective) degrees of freedom such that its variability is negligible. (Since the images are
smooth, neighbouring voxels are correlated and hence the variance estimates at neighbouring
voxels are correlated.) t-statistics based on such a variance estimate are approximately normally
distributed, the approximation failing only in the extreme tails of the distribution.

3.2 Global normalization

In neuroimaging, one can differentiate between regional and global activity. By regional activity
one typically means the activity measured in a single voxel or a small volume of voxels. Global
activity refers to a global measure of brain activity. These two informal descriptions of regional
and global activity reflect that there may be a number of different definitions. However, the
reason why the concept of global activity is important is that there are effects in a single voxel
that are caused by global effects. These are usually difficult to model. Typically, we use simple
models for global effects. Modelling global effects enhances the sensitivity and accuracy of the
subsequent inference step about experimentally induced effects.

As an example, consider a simple single subject PET experiment. The subject is scanned
repeatedly under both baseline (control) and activation (experimental) conditions. Inspection
of regional activity, (used as a measure of regional cerebral blood flow (rCBF)), alone at a single
voxel may not indicate an experimentally induced effect. However, the additional consideration
of global activity (the global cerebral blood flow (gCBF)) for the respective scans may clearly
differentiate between the two conditions (Fig. 5).

[Figure 5 about here.]

In Statistical Parametric Mapping, the precise definition of global activity is user-dependent.
The default definition is that global activity is the global average of image intensities of intrac-
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erebral tissue. If ij is the image intensity at voxel £k = 1,..., K of scan j, then denote the
estimated global activity by g; = ?; = Z,ﬁ(zl Y]’C /K.

Having estimated the global activity for each scan, a decision must be made about what model of
global activity should be used. In SPM, there are basically two alternatives or various mixtures
between them. The first is proportional scaling and the second is an AnCova approach.

3.2.1 Proportional scaling

One way to account for global changes is to adjust the data by scaling each scan by its esti-
mated global activity. This approach is based on the assumption that the measurement process
introduces a (global) scaling of the image intensities at each voxel, a gain factor. This has the
advantage of converting the raw data into a physiological range to give parameters in inter-
pretable scale. The mean global value, is usually chosen to be the canonical normal gCBF of
50ml/min/dl. The scaling factor is thus %. We shall assume that the count rate recorded in the
scanner (counts data) has been scaled into a physiologically meaningful scale. The normalised
data are Yj'k = 3—?1/}-]“. The model is then

kE_ 95 k k
vf =T+ (16)
where €¥ ~ N(0,02 x diag((g;/50)?)). The diag() operator transforms a column vector to a
diagonal matrix with the vector on its main diagonal and zero elsewhere. This is a weighted
regression, i.e. the shape of the error covariance matrix is no longer I;, but a function of the
estimated global activity. Also note that the jth row of X is weighted by g;.

The adjustment of data, from Y to Y’ is illustrated in Fig. 6a.

[Figure 6 about here.]

3.2.2 Ancova approach

Another approach is to include the mean corrected global activity vector g as an additional
regressor into the model. In this case the model (Eq. 6) becomes

VP =(X8);+ Mg —g.) + ¢ (17)

where €8 ~ N (O,a,%] 7) and (j is the slope parameter for the global activity vector. In this
model, the data is explained as the sum of experimentally induced regional activity and some
global activity which varies over scans. Note that the model of Eq. 17 can be considerably
extended by allowing for different slopes between replications, conditions, subjects and groups.

3.2.3 Proportional scaling versus ancova

Clearly a decision has to be made which global normalization approach shall be used for a given
data set. One cannot apply both, because proportional scaling will normalize the global mean
activity such that the mean corrected g in the AnCova approach will consists of a zero vector.
The proportional scaling approach is most appropriate for any data set for which there is a gain
(multiplicative) factor that varies over scans. This is a useful assumption for fMRI data (see
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next section). In contrast to this, an AnCova approach is appropriate, if the gain factor does not
change over scans. This is the case for PET scans acquired on modern scanners using protocols
which control for the administered dose rate. This means that a change in estimated global
activity reflects a change in a subject’s global activity and not a change in a global (machine
specific) gain factor. Moreover, the AnCova approach assumes that regional experimentally
induced effects are independent of changes in global activity. Note that the AnCova approach
should not be used for PET data, where the administered dose is not controlled and varies over
scans. In this case, the true underlying gCBF might be constant over scans, but the global gain
factor varies. Similarly, for SPECT scans, it is known that the global gain factor can vary over

scans, so that it is recommended to prefer proportional scaling over the AnCova approach for
SPECT data.

Special considerations apply if there are condition dependent changes in global activity.

Implicit in allowing for changes in gOBF (either by proportional scaling or ANCOVA) when as-
sessing condition specific changes in rCBF, is the assumption that gCBF represents the underlying
background flow, above which regional differences are assessed. That is, gCBF is independent
of condition. Clearly, since gCBF is calculated as the mean intracerebral rCBF, an increase of
rCBF in a particular brain region must cause an increase of gCBF unless there is a corresponding
decrease of rCBF elsewhere in the brain. Similar problems can arise when comparing a group of
subjects with a group of patients with brain atrophy, or when comparing pre and post-operative
rCBF.

If goBF actually varies considerably between conditions, as in pharmacological activation stud-
ies, then testing for an activation after allowing for global changes involves extrapolating the
relationship between regional and global flow outside the range of the data. This extrapolation
might not be valid, as illustrated in figure 7a.

If gCBF is increased by a large activation that is not associated with a corresponding deac-
tivation, then comparison at a common gCBF will make non-activated regions (whose rCBF
remained constant) appear falsely de-activated, and the magnitude of the activation will be
similarly decreased. (Figure 7b illustrates the scenario for a simple single subject activation
experiment using ANCOVA.) In such circumstances a better measure of the underlying back-
ground flow should be sought, for instance by examining the flow in brain regions known to be
unaffected by the stimulus.

[Figure 7 about here.]

3.2.4 Grand Mean Scaling

Grand mean scaling multiplies all scans by some factor such that the resulting estimated mean
global activity is a (user specified) constant over scans. 7 Note that this common factor has no
effect on the inference, because in the t- and F-statistic (Egs. 12 and 14) such a factor cancels
out. It will also not change relative interpretations of the fitted or adjusted data. The default
behaviour of SPM with respect to PET and fMRI data is described in §3 and §4.

3.2.5 Mixtures of scaling and AnCova

For PET and SPECT data, the user can choose from a wide range of global normalization models
that lie in between proportional scaling and an AnCova approach. An intermediate approach

"Clearly grand mean scaling is redundant when followed by proportional scaling.
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is possible by scaling groups of scans. These groups can be scaling by replication, condition,
subject and group grand mean. This can be then applied together with an AnCova approach
that estimates different slopes for such a grouping. For example, one can apply proportional
scaling by the grand mean within-subject and combine this with a (within-) subject AnCova
approach.

3.3 PET models

In the following subsections, the flexibility of the general linear model is demonstrated using
models for various PET functional mapping experiments. For generality, ANCOVA style models
are used, with gCBF included as a confounding covariate. The corresponding ANCOVA mod-
els for data adjusted by proportional scaling can be obtained by omitting the global terms.
Voxel level models are presented in the usual statistical notation, alongside the spM descrip-
tion and design matrix images. The form of contrasts for each design are indicated, and some
practicalities of the SPM interface are discussed.

Single subject models
3.3.1 Single subject activation design

The simplest experimental paradigm is the single subject activation experiment. Suppose there
are () conditions, with M, scans under condition g. Let Yq’;’ denote the rCBF at voxel k in scan
Jj =1,..., My under condition ¢ = 1,...,Q. The model is:

Y=ol + pF + Mgy — 7) + € (18)

There are () + 2 parameters for the model at each voxel: The @) condition effects, the constant
term p*, and the global regression effect, giving parameter vector 5% = (a’f, eee ,a’é, pk AT at
each voxel. In this model, replications of the same condition are modelled with a single effect.
The model is overparameterised, having only @ + 1 degrees of freedom, leaving N — @ — 1
residual degrees of freedom, where N = ) M, is the total number of scans.

[Figure 8 about here.]

Contrasts are linear compounds ¢’ ¥ for which the weights sum to zero over the condition
effects, and give zero weight to the constant term, i.e. 25:1 cq = 0 (Fig. 8). Therefore, linear
compounds that test for a simple group effect or for an average effect over groups cannot be
contrasts. However, one can test for differences between groups. For example, to test the null
hypothesis H* : o} = (ak + a%)/2 against the one sided alternative H ok > (af + of)/2,
the appropriate contrast weights would be ¢ = [1, -1 —%, 0,...,0]T. In words, one tests for a
(positive) difference between the effect of group 1 compared to the average of groups 2 and 3?
Large positive values of the t-statistic express evidence against the null hypothesis, in favour of
the alternative hypothesis.

3.3.2 Single subject parametric design
Consider the single subject parametric experiment where a single covariate of interest, or

“score”, is measured. For instance, the covariate may be a physiological variable, a task dif-
ficulty rating, or a performance score. It is desired to find regions where the rCBF values are
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highly correlated with the covariate, taking into account the effect of global changes. Figure 9a
depicts the situation. If ij is the rCBF at voxel k of scan j = 1,...,J and s; is the independent
covariate, then a simple ANCOVA style model is a multiple regression with two covariates:

Vf = (i = 50) + i+ (g5 —9) + ¢ (19

Here, p is the slope of the regression plane in the direction of increasing score, fitted separately
for each voxel.

There are three model parameters, leaving J — 3 residual degrees of freedom. The design matrix
(Fig. 9b) has three columns, a column containing the (centered) score covariate, a column of
dummy 1’s corresponding to p*, and a column containing the (centered) global values.

In spM this is a “Single subject: Covariates only” design. The design is uniquely specified, so
any linear combination of the three parameters is a contrast. The null hypothesis of no score
effect at voxel k, H* : o = 0, can be assessed against the one sided alternative hypotheses
H" oF > 0 (rCBF increasing with score) with contrast weight for the effect of interest c; = +1,

and against H 0F < 0 (rCBF decreasing as score increases) with contrast weight ¢; = —1.
[Figure 9 about here.]

This simple model assumes a linear relationship between rCBF and the covariate (and other ex-
planatory variables). More general relationships may be modelled by including other functions
of the covariate. These functions are essentially new explanatory variables, which if linearly
combined still fit in the framework of the general linear model. For instance, if an exponential
relationship is expected, the logarithm of s, i.e. In(s;), would be used in place of s;. Fitting
powers of covariates as additional explanatory variables leads to polynomial regression. More
generally, a set of basis functions can be used to expand the covariate to allow flexible modelling.
This theme will be developed later in this chapter (for fMRI), and in other chapters.

3.3.3 Simple single subject activation revisited

As discussed in the general linear model section (§2), it is often possible to reparameterise the
same model in many ways. As an example, consider a two condition (@ = 2) single subject
experiment, discussed above (§3.3.1). The model (Eq. 18) is:

Y5 = aq + 1"+ CF (945 — Taa) + g5

The model is over-determined, so consider a sum-to-zero constraint on the condition effects.
For two conditions this implies of = —ak. Substituting for of the resulting design matrix has
a column containing +1’s and —1’s indicating the condition ¢ = 1 or ¢ = 2 respectively, a
column of 1’s for the overall mean, and a column containing the (centered) gcBF (Fig.10). The
corresponding parameter vector is ¥ = [a’f, pk, C¥]T. Clearly this is the same design matrix
as that for a parametric design with (non-centered) “score” covariate indicating the condition
as active or baseline with +1 or —1 respectively. The hypothesis of no activation at voxel k,
H* : of = 0 can be tested against the one sided alternatives H af > 0 (activation) and

H of < 0 with contrast weights for the effects of interest ¢; = 1 and ¢; = —1 respectively.
This example illustrates how the sPM interface may be used to enter “hand-built” blocks of
design matrix as non-centered covariates.
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[Figure 10 about here.]

3.3.4 Single subject: conditions and covariates

Frequently there are other confounding covariates in addition to gCBF that can be added into
the model. For example, a linear time component could be modeled simply by entering the
scan number as covariate. In SPM these appear in the design matrix as additional covariate
columns adjacent to the global flow column.

3.3.5 Factor by covariate interactions

A more interesting experimental scenario is when a parametric design is repeated under multiple
conditions in the same subject(s). A specific example would be a PET language experiment
in which, during each of twelve scans, lists of words are presented. Two types of word list
(the two conditions) are presented at each of six rates (the parametric component). Interest
may lie in locating regions where there is a difference in rCBF between conditions (accounting
for changes in presentation rate), the main effect of condition; locating regions where rCBF
increases with rate (accounting for condition), the main effect of rate; and possibly assessing
evidence for condition specific responses in rCBF to changes in rate, an interaction effect.® Let

Yq’; ; denote the rCBF at voxel k for the j-th measurement under rate r = 1,..., R and condition
g=1,...,Q, with s4 the rate covariate (some function of the rates). A suitable model is:
= k k — k
Y;]k;"j = O‘I(; + Ql(;(sq’r' - 300) +u +C (quj - gooo) + €qrj (20)

Note the ¢ subscript on the parameter Q’,;, indicating different slopes for each condition. Ignoring
for the moment the global flow, the model describes two simple regressions with common error
variance (Fig. 11a). The sPM interface describes such factor by covariate interactions as “factor
specific covariate fits”. The interaction between condition and covariate effects is manifest as
different regression slopes for each condition. There are 2¢Q) + 2 parameters for the model at
each voxel, g¥ = [o},.. .,a’é,g’f, el g’é,uk,(k]T, with 2Q + 1 degrees of freedom. A design
matrix image for the two condition example is shown in figure 11b. The factor by covariate
interaction takes up the third and fourth columns, corresponding to the parameters o} and o,
the covariate being split between the columns according to condition, the remaining cells filled

with zeros.

Only the constant term and global slope are designated confounding, giving 2(Q) effects of interest
to specify contrast weights for, gF = [af,... ,ag, ok, ..., gg]T. As with the activation study
model, contrasts have weights which sum to zero over the condition effects. For the 2 condition
word presentation example, contrast weights c¢; = [0,0,1,0]7 for the effects of interest express
evidence against the null hypothesis that there is is no covariate effect in condition one, with
large values indicating evidence of a positive covariate effect. Weights ¢; = [0, 0, %, %]T address
the hypothesis that there is no average covariate effect across conditions, against the one sided
alternative that the average covariate effect is positive. Weights ¢; = [0,0, —1,+1]7 address
the hypothesis that there is no condition by covariate interaction, that is, that the regression
slopes are the same, against the alternative that the condition 2 regression is steeper.

Conceptually, contrast weights ¢; = [—1,+1,0,0]" and ¢; = [+1,-1,0,0]7 for the effects of
interest assess the hypothesis of no condition effect against appropriate one-sided alternatives.

8Two experimental factors interact if the level of one affects the expression of the other.
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However, the comparison of main effects is confounded in the presence of an interaction: In
the above model, both gCBF and the rate covariate were centered, so the condition effects a’q“
are the relative heights of the respective regression lines (relative to u*) at the mean gCBF and
mean rate covariate. Clearly if there is an interaction, then difference in the condition effects
(the separation of the two regression lines) depends on where you look at them. Were the rate
covariate not centered, the comparison would be at mean gCBF and zero rate, possibly yielding

a different result.

Thus main effects of condition in such a design must be interpreted with caution. If there is
little evidence for a condition dependent covariate effect then there is no problem. Otherwise,
the relationship between rOBF and other design factors should be examined graphically to assess
whether the perceived condition effect is sensitive to the level of the covariate.

[Figure 11 about here.]

Multi-subject designs

Frequently, experimentally induced changes of rCBF are subtle, such that analyses must be
pooled across subjects to find statistically significant evidence of an experimentally induced
effect. In this chapter, we will discuss some fixed effects models. Random or mixed effects
models are covered in chapter 12.

The single subject designs presented above must be extended to account for subject to subject
differences. The simplest type of subject effect is an additive effect, otherwise referred to as a
block effect. This implies that all subjects respond in the same way, save for an overall shift in
rCBF (at each voxel). We extend our notation by adding subscript i for subjects, so Yi’;j is the
rCBF at voxel k of scan j under condition ¢ on subject ¢ =1,..., N.

3.3.6 Multi subject activation (replications)

For instance, the single subject activation model (Eq.18) is extended by adding subject effects
7% giving the model:

A schematic plot of rCBF vs. gCBF for this model is shown in figure 12a. In SPM terminology,
this is a “multi-subject: replication of conditions” design. The parameter vector at voxel k
is gF = [of,.. .,ag,yf, ooy, ¢FT. The design matrix (Fig.12b) has N columns of dummy
variables corresponding to the subject effects. (Similarly a multi-subject parametric design
could be derived from the single subject case (§3.3.2) by including appropriate additive subject
effects.)

Again, the model is overparameterised, though this time we have omitted the explicit constant
term from the confounds, since the subject effects can model an overall level. Adding a constant
to each of the condition effects and subtracting it from each of the subject effects gives the same
model. Bearing this in mind, it is clear that contrasts must have weights that sum to zero over
both the subject effects and the condition effects.

[Figure 12 about here.]
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3.3.7 Condition by replication interactions

The above model assumes that (accounting for global and subject effects) replications of the
same condition give the same (expected) response. There are many reasons why this assumption
may be inappropriate, such as learning effects or more generally effects that change as a function
of time. For example, some time effects can be modelled by including appropriate functions
of the scan number as confounding covariates. With multi-subject designs we have sufficient
degrees of freedom available to enable the consideration of replication by condition interactions.
Such interactions imply that the (expected) response to each condition is different between
replications (having accounted for other effects in the model). Usually in statistical models,
interaction terms are added to a model containing main effects. However, such a model is so
overparameterised that the main effects may be omitted, leaving just the interaction terms.
The model is:

Vi = a9y + 7 + CF(Gigj — Tose) + by (22)
where aﬂ?qj) is the interaction effect for replication j of condition ¢, the condition-by-replication
effect. As with the previous model, this model is overparameterised (by one degree of freedom),
and contrasts must have weights which sum to zero over the condition-by-replication effects.
There are as many of these condition-by-replication terms as there are scans per subject. (An
identical model is arrived at by considering each replication of each experimental condition as a
separate condition.) If the scans are reordered such that the j-th scan corresponds to the same
replication of the same condition in each subject, then the condition-by-replication corresponds
to the scan number. An example design matrix for 5 subjects scanned twelve times is shown
in figure 13a, where the scans have been reordered. In SPM this is termed a “Multi-subject:
conditions only” design.

This is the “classic” sPM ANCOVA described by Friston et al. (Friston et al., 1990), and im-
plemented in the original SPM software.’ Tt offers great latitude for specification of contrasts.
Appropriate contrasts can be used to assess main effects, specific forms of interaction, and
even parametric effects. For instance, consider the verbal fluency data-set described by Fris-
ton et al. (Friston et al., 1995)'0: Five subjects were scanned twelve times, six times under each
of two conditions, word shadowing (condition A) and intrinsic word generation (condition B).
The scans were reordered to ABABABABABAB for all subjects. Then a contrast with weights (for
the condition-by-replication effects) of ¢; = [-1,1,—1,1,—1,1,—1,1,—1,1, —1,1]7 assesses the
hypothesis of no main effect of word generation (against the one-sided alternative of activation).
A contrast with weights of ¢; = [55,42,31,22.15, 5, -1, 11, —21 31 47 —52]7 is sensi-
tive to linear decreases in rCBF over time, independent of condition, and accounting for subject
effects and changes in gCBF. A contrast with weights of ¢; = [1,—1,1,-1,1,—1,-1,1,-1,1,-1,1]T
assesses the interaction of time and condition, subtracting the activation in the first half of the
experiment from that in the latter half.

[Figure 13 about here.]

3.3.8 Interactions with subject

While it is (usually) reasonable to use ANCOVA style models to account for global flow, with
regression parameters constant across conditions, the multi-subject models considered thus

9The original sPM software is now fondly remembered as spmclassic.
10This data set is available via http://www.filion.ucl.ac.uk/spm/data/
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far assume additionally that this regression parameter is constant across subjects. It is quite
possible that rCBF at the same location for different subjects will respond differentially to
changes in gCBF — a subject by gCBF covariate interaction. The gCBF regression parameter can
be allowed to vary from subject to subject. Extending the multi-subject activation (replication)
model (Eq. 21) in this way gives:

Yigi = 0 9 + ((Gigj — Tase) + €ly )

Note the ¢ subscript on the global slope term, Cf, indicating a separate parameter for each
subject. A schematic plot of rCBF vs. gCBF for this model and an example design matrix
image are shown in figure 14. In the terminology of the sPM interface, this is an “ANCOVA by
subject”. The additional parameters are of no interest, and contrasts are as before.

[Figure 14 about here.]

Similarly, the sPM interface allows subject by covariate interactions, termed “subject specific
fits”. Subject by condition interactions can be entered by using “Multi-subject: Conditions x
subject interaction and covariates”.

3.4 Multi-study designs

The last class of sPM models for PET we consider are the “multi-study” models. In these models,
subjects are grouped into two or more studies. The “multi-study” designs fit separate condition
effects for each study. In statistical terms this is a split plot design. As an example consider
two multi-subject activation studies, the first with five subjects scanned twelve times under
two conditions (as described above in section 3.3.6), the second with three subjects scanned six
times under three conditions. An example design matrix image for a model containing study
specific condition effects, subject effects and study specific global regression (termed “ANCOVA
by group” in SPM) is shown in figure 15. The first two columns of the design matrix correspond
to the condition effects for the first study, the next two to the condition effects for the second
study, the next eight to the subject effects, and the last to the gCBF regression parameter.
(The corresponding scans are assumed to be ordered by study, by subject within study, and by
condition within subject.)

Contrasts for multi-study designs in sPM have weights, when considered for each of the studies
individually, would define a contrast for the study. Thus, contrasts must have weights which
sum to zero over the condition effects within each study. There remain three types of useful
comparison available. The first is a comparison of condition effects within a single study,
carried out in the context of a multi-study design; the contrast weights appropriate for the
condition effects of the study of interest is entered, padded with zeros for the other study,
e.g. ¢ = [1,—1,0,0,0]7 for the first study in our example. This may have additional power
when compared to an analysis of this study in isolation, since the second study observations
change the variance estimates. The second is an average effect across studies; contrasts for
a particular effect in each of the studies are concatenated, the combined contrast assessing
a mean effect across studies. For example, if the second study in our example has the same
conditions as the first, plus an additional condition, then such a contrast would have weights for
the effects of interest ¢; = [-1,1,—1,1,0]7. Lastly, differences of contrasts across studies can
be assessed, such as differences in activation. The contrasts weights for the appropriate main
effect in each study are concatenated, with some studies contrasts negated. In our example,
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c1 = [~1,1,1,—1,0]" would be appropriate for locating regions where the first study activated
more than the second, or where the second deactivated more than the first.

[Figure 15 about here.]

Assumption of model fit in this case includes the assumption that the error terms have equal
variance (at each voxel) across studies. For very different study populations, or studies from
different scanners or protocols (possibly showing large differences in the measured global activity
between studies), this assumption may not be tenable and the different variances should be
modelled (chapter 9).

3.5 Basic models

In this section, we will discuss some of the models that are referred to in Statistical Parametric
Mapping as Basic models. Typically, basic models are used for analyses at the second level
to implement mixed effects models (chapter 12). For example, basic models include the one-
sample t-test, the two-sample t-test, the paired t-test and a one-way AnCova, all of which are
described in the following. For clarity, we shall drop the voxel index superscript k.

3.5.1 Omne-sample t-test

The one-sample t-test can be used to test the null hypothesis that the mean of J scans equals
zero. This is the simplest model available in SPM and the design matrix consists of just a
constant regressor. The model is

Y=x161+c¢€ (24)

where z1 is a constant vector of ones and € ~ N (0,02I5). The null hypothesis is # : 81 = 0
and the alternative hypothesis is # : $; > 0. The t-value is computed using Eq. 12 as

~

_ b
NI

where 62 = YTRY/(J — 1), where R is the residual forming matrix (see above). In other
words, YT RY is the sum of squares of the residuals. This could also be expressed as Y/ RY =
j=1 (Y = Y5)?, where ¥ = (a1/1); = Bi.

~tj_1 (25)

3.5.2 Two-sample t-test

The two-sample t-test allows one to test the null hypothesis that the means of two groups are
equal. The resulting design matrix (in SPM) consists of three columns, the first two encode
the group membership of each scan and the third models a common constant across scans of
both groups. This model is overdetermined by one degree of freedom, i.e. the sum of the first
two regressors equals the third regressor. Notice the difference in parameterization compared
to the two-sample t-test example in §2.5. As it turns out, the resulting t-value is nevertheless
the same for a differential contrast. Let the number of scans in the first and second group be
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J1 and Jo, where J = J; + Jo. The three regressors consists of ones and zeros, where the first
regressor consists of J; ones, followed by Jo zeros. The second regressor consists of J; zeros,
followed by Jo ones. The third regressor contains ones only.

Let the contrast vector be ¢ = [—1,1,0]7, i.e. the alternative hypothesis is H : 51 < 2. Then

Ju 0 N
(XTX)=| 0 Jo Jo |. Thismatrix is rank deficient so we use the pseudo-inverse (X7 X)~
Ju S J

to compute the t-statistic. We sandwich (X7 X)~ with the contrast and get ¢! (XTX) ¢ =
1/J; + 1/J5. The t-statistic is then given by
N
V&2 /(1] J1 +1/J2)

ty—2 (26)

and 62 = YTRY/(J — 2). Note that one assumption for the two-sample t-test is that J; = Jo,
i.e. the number of scans in both groups is the same. However, it turns out that the two-sample
t-test is rather robust against a violation of this assumption. Another assumption which we
implicitly made in Eq. 26 is that we have equal variance in both groups. This assumption may
not be tenable (e.g. when comparing normal subjects with patients) and we potentially have to
take this non-sphericity into account (chapter 9).

3.5.3 Paired t-test

The model underlying the paired t-test is an extension to the model underlying the two-sample
t-test. It is assumed that the scans come in pairs, i.e. one scan of each pair is in the first
group and the other is in the second group. The extension is that the means over pairs are not
assumed to be equal, i.e. the mean of each pair has to be modelled separately. For instance,
let the number of pairs be Npgirs = 5, i.e. the number of scans is J = 10. The design matrix
consists of 7 regressors. The first two model the deviation from the pair-wise mean within group
and the last five model the pair-specific means. The model has degrees of freedom one less than
the number of regressors.

Let the contrast vector be ¢ = [—1,1,0,0,0,0,0]7, i.e. the alternative hypothesis is H : £; < fa.
This leads to

T Bo — B
V&2 [(1) T +1/Js)

~tyog/2-1 (27)

The difference to the two-sample t-test lies in the degrees of freedom J — J/2 — 1. The two-
sample t-test and the paired t-test are an example of compromising when selecting a model.
The paired t-test can be a more appropriate model for a given data set, but more effects are
modelled, i.e. there are less error degrees of freedom. This might come at the price of a decrease
in sensitivity so that the two-sample t-test can be less appropriate, but more sensitive. This
compromise is increasingly harder to make with a smaller number of scans J.

3.5.4 one-way AnCova

A one-way AnCova allows one to model group effects, i.e. the mean of each of @) groups. This
model includes the one-sample and two-sample t-tests, i.e. the cases, when 1 < Q < 2.
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In our example, let the number of groups be () = 3, where there are 5 scans within each group,
ie. J, =5 for ¢ =1,...,Q. There are a range of different contrasts available. For instance,
we could test the null hypothesis that the group means are all equal using the F-contrast as
described in example §2.5.4. Here, we wish to test the null hypothesis, whether the mean of the
first two groups is equal to the mean of the third group, i.e. H : (81 + 52)/2 — f3 = 0 and our
alternative hypothesis is H : (81 + 82)/2 < B3- This can be tested based on a t-statistic, where
we use the contrast ¢ = [—1/2,—1/2,1,0]7. The resulting t-statistic and its distribution is

_ (B1 + B2)/2 — B3
V& /(1) JL+1/Ja +1/J3)

~tj-q (28)
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4 fMRI models

In this section, we describe the analysis of functional magnetic resonance imaging (fMRI) data.
For PET, we showed that we can use the general linear model to analyze the data. The
models used to interpret fMRI data are modified due to differences in the character of fMRI
data compared to PET. These differences include (i) serial temporal correlations, (ii) fast event-
related designs, (iii) the large number of observations. A linear model can still be used, however,
the normally distributed error term is non-spherical'.

Historically, SPM was developed for and applied to PET data and therefore it is not a surprise
that SPM for fMRI data was initially based on the understanding that SPM would just need
some extensions to cope with the new kind of data. In this section, we therefore not only
describe these extensions, but also describe the model from scratch. This has the benefits (i)
that the modelling issues in fMRI analysis are described without the need to refer to PET issues
and (ii) that one can skip most of the PET section if trying to learn about fMRI analysis.

The topics of this section are a linear time series model for fMRI data, temporal serial correla-
tions and their estimation, temporal filtering, parameter estimation and inference.

4.1 A linear time series model

One of the main stays of SPM is that we use the same temporal model at each voxel, i.e. we
use a mass-univariate model and perform the same analysis at each voxel. Therefore, we can
describe the complete temporal model for fMRI data by looking at how the data from a single
voxel (a time series) is modelled. A time series consists of the sequential measures of fMRI
signal intensities over the period of the experiment. Usually, fMRI data is acquired for the
whole brain with a sample time of roughly 2 to 4 seconds using an echo planar imaging (EPI)
sequence. This means that a time series at a single voxel is acquired with a sample time of 2
to 4 seconds.

Multi-subject data is acquired in sessions, there being one or more sessions for each subject!?.
Here, we only talk about a model for one of these sessions, i.e. a single subject analysis. Multi-

subject studies are based on multiple single-subject models and are described in chapter 12.

The process which we are going to describe in the following is at the heart of SPM. We take
as an input a single time-series and transform it to a single statistical value. This statistic can
then be used to derive a p-value. This is done simultaneously at all voxels so that a Statistical
Parametric Map is formed with one statistic at each voxel.

Suppose we have a time series of N observations Y7,...,Ys,...,Yn, acquired at one voxel at
times tg, where s = 1,..., N is the scan number. The approach is to model at each voxel the
observed time series as a linear combination of explanatory functions, plus an error term:

Ys = ,Blfl(ts) +... +/Blfl(ts) +... +,8LfL(ts) + € (29)

Here the L functions f1(.),..., f¥(.) are a suitable set of regressors, designed such that linear
combinations of them span the space of possible fMRI responses for this experiment, up to the

"' Non-sphericity refers to the deviation of the error covariance matrix from a diagonal shape or a shape that
can be transformed into a diagonal shape. See also chapter 9
12The term session will be defined below in 4.3.1.
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level of error. Consider writing out the above Equation 29 for all time points ¢, to give a set
of equations:

Vio= Buftt)+...+Bf )+ + fFLt)BL+ e
Ys = ,Blfl(ts)+---+/3lfl(ts)+---+fL(ts),8L+€s

Yn = Bift(twn)+...+Bif (tn) +. ..+ fE(EN)BL + en

swhich in matrix form is:

Y; i) ..o M) ... fE) b1 €1
v, |=| £t . ey o e | oA || e (30)
Yy Fln) o fy) e R )\ B ex

or in matrix notation

Y=Xp+e¢ (31)

Here each column of the design matrix X contains the values of one of the continuous regressors
evaluated at each time point ¢; of fMRI time series. That is, the columns of the design matrix
are the discretised regressors.

The regressors must be chosen to span the space of all possible fMRI responses for the exper-
iment in question, such that the error vector e is normally distributed with zero mean. As
will be discussed later, € is not assumed to be spherically distributed. Rather, we will consider
other forms for the covariance matrix of e. This leads us out of the realm of the General Linear
Model to the much broader class, the Generalized Linear Model (GLM). However, because we
are modelling the data with a normally distributed error term and do not consider other error
distributions or so called link functions, we look at a rather constrained class of GLMs.

4.2 Proportional and grand mean scaling

Before we proceed to the description of how the regressors in the design matrix are generated,
we want to mention the issue of global normalization. fMRI data is known to be subject to
various processes that cause globally distributed confounding effects, e.g. (Andersson et al.,
2001). A rather simple global confounding source is the scanner gain. This volume-wise gain
is a factor that scales the whole image and is known to slowly vary during a session. A simple
way to remove the effect of such a varying gain is to estimate this gain per image and multiply
all image intensities by this gain estimate. This method is known as proportional scaling.

If one does not use proportional scaling, SPM performs by default a session-specific scaling.
This type of scaling divides each volume by a session-specific gain. This is known in SPM as
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grand mean scaling. Session-specific grand mean scaling is highly recommended, because the
session-specific gains can strongly vary between sessions, masking any activations.

To estimate the gain factors, SPM uses a rough estimate of the volume-wise intracerebral mean
intensity. Note that both kinds of scaling also scale the mean global activity (either of a volume
or of a session) to 100. The data and a signal change can then be conveniently interpreted as
percent with respect to the estimated global intracerebral mean.

4.3 Generation of regressors

In the following, we will describe how the regressors in Eq. 30 are generated and what the
underlying model of the BOLD response is. This process consists of several stages. Although
these are mostly hidden from the user, it can be helpful to know about intermediate processing
steps and their temporal sequence.

The overall aim of regressor generation is to come up with a design matrix that models the
expected fMRI response at any voxel as a linear combination of its columns. Basically, there
are two things SPM needs to know to construct the design matrix. The first is the timings of
the experiment and the second is the expected shape of the BOLD response due to stimulus
presentation. Given this information, SPM computes the design matrix. In the following, we
will go through the stages of this process.

4.3.1 Timings

We describe how a design matrix for one session of functional data is generated. Let the number
of scans in a session be Ng.qns. Furthermore, it is important that the data is ordered according
to acquisition order.

In SPM a session starts at session time zero. This time point is given when the first slice of
the first scan was started to be acquired by the scanner. Session time can be measured both
in scans or in seconds. In both cases the session starts at time zero whatever the units. The
duration of a session is the number of scans multiplied by the volume repetition time (RT)
which is the time spent from the beginning of the acquisition of one scan to the beginning of
the acquisition of the next scan. We assume that RT stays constant throughout a session. The
RT and the number of scans of a given session completely define the start and the end of a
session. Moreover, because we assume that RT stays constant throughout the experiment, one
also knows the onset of each scan.

The design of the experiment is described as a series of trials or events, where each trial is
associated with a trial type. Let N ., be the number of trials of trial type m and Nyypes
the number of trial types. For each trial j of trial type m, one needs to specify its onset and
duration. Note that we do not need to make a distinction between event-related or blocked
designs so that a trial can be either a short event or an epoch. Let the onset vector of trial type
m be O™ so that O;-" is the onset of trial j of trial type m. For example, the onset of a trial
that started at the beginning of scan 4 is at session time 3 (in scans) or at session time 3 - RT

(in seconds).
Let vector D™ contain the user-specified stimulus durations of each trial for trial type m.

Given all onsets O™ and durations D™, SPM generates an internal representation of the session
and the experiment. This representation consists of the discretized stimulus function S™ for
each trial type m. All time bins of a session are covered such that the vectors S™ represent a
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contiguous series of time bins. These time bins typically do not cover a time period of length
RT, but a fraction of it to provide a well sampled discretized version of the stimulus functions
S™. i.e. they are over-sampled.

The occurrence of a stimulus is binarily represented in the stimulus functions. The elements
of the stimulus function can also contain other values. An important application of this lies in
the concept of parametric modulation, see §4.3.3.

Note that the degree of discretization of the stimulus functions is controlled by the user. Time
bin size is specified in number of time bins per RT'3.

For example, assume the RT is 3.2 seconds. Then each time bin given the default of 16 bins/RT
covers 200 milliseconds. The length of the vector S™ is 16 Nseqns. Note that choosing a smaller
time bin size does not necessarily provide a higher temporal precision for the resulting regressors
in the design matrix. This is because the expected BOLD response is located in a rather low
frequency band. Therefore, responses to trials being only a few milliseconds apart from each
other are virtually indistinguishable.

4.3.2 High-resolution basis functions

After the generation of the stimulus functions, we need to describe the shape of the expected
response. This is done using temporal basis functions. During the development of Statistical
Parametric Mapping over the last few years, some effort has gone into designing sets of basis
functions which appropriately model the expected blood oxygen level dependent (BOLD) re-
sponse. The underlying model is that the BOLD response for a given trial type m is generated
by feeding the stimulus function through a linear finite impulse response (FIR) system, whose
output is the observed data Y. This is expressed by the model

Ntypes

Y=d() h"eS™) +e (32)

where h™ is the impulse response function for trial type m. The ® operator denotes the
convolution of two vectors (Bracewell, 1986). d(-) denotes the down-sampling operation which is
needed to sample the convolved stimulus functions at each sampled time point. In other words,
the observed data Y is modelled by summing the output of Ny, different linear systems.
Additionally, we add some (measurement) noise €. The input to the mth linear system is the
stimulus function of trial type m.

The impulse response functions ™ are not known, but we assume that they can be modelled

as linear combinations of some basis functions b;:

Ntypes Nbf

Y=Y > dbip"@S™) +e (33)

m=1 =1
where ;" is the ith coefficient for trial type m and Ny is the number of basis functions b;.

We can move the coefficients outside the sampling operator so that we get

Y =d([(6® 8B+ + (b @ §Nwwer) phimwes]) 4 e (34)

13The effective time bin size is accessible in SPM as variable fMRI_T. Its default value is 16.
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T
where b = [bl, .. .,bNbf] and ™ = [ﬂ{”T,,ﬂﬁ;] . Note that we define the convolution

to operate on the columns of matrix b. If we let X = [(b@ Sh):---i(b® SNwres)| and B =

T
[ﬂlT, ... ,ﬁN“ﬂ’esT] , we see that Eq. 34 is a linear model like Eq. 31. The columns of the

design matrix X are given by the discretely sampled convolution of each of the Nyy,es stimulus
functions with each of the Ny, basis functions. Note that although we assumed different impulse
response functions for each trial type m, our parameterization leads to the same basis functions
b; for each trial type, but different parameter vectors £, ... ,ﬂﬁbf.

In summary, when we choose a specific basis function set b;, we express our belief that a
linear combination of the convolved basis functions is able to model an experimentally induced
effect. The question remains which basis function set is appropriate for fMRI data. In SPM,
the default choice is a parameterised model of the expected impulse response function. This
function is a superposition of two gamma, functions. To form an appropriate basis function set,
one usually complements this function with its first partial derivatives with respect to some
generating parameters. In SPM, the default choice is to add partial derivatives with respect to
two generating parameters, the onset and dispersion. This gives a basis function set with three
basis functions; by is the expected response function, by its partial derivative with respect to
onset (time) and bs its partial derivative with respect to dispersion. In SPM, this set is usually
referred to as the ’haemodynamic response function (HRF) with derivatives’. In practice, this
set can model a BOLD response that (i) can be slightly shifted in time with respect to the
expected delay or (ii) has a different width than the HRF model b;. This issue is dealt within
more detail in chapter 10.

4.3.3 Parametric Modulation

When we first introduced the stimulus functions S™ they were described as vectors consisting
of ones and zeros. However, one can also assign numbers other than 1 to the S™. More
interestingly, one can assign different values to different individual trials. As one can see from
Eq. 34, after convolution of the S™ with the basis functions b;, different weights in S™ essentially
control the relative height of the expected response of all trials. This weighting allows models
where one can parametrically modulate the relative response height over trials. There is a wide
range of applications for parametric modulations. For instance, one can weight events by a
linear function of time, which models a linear change in the individual responses over time.
Another application is the weighting of S™ with some external measure that was acquired
trial-wise, e.g. reaction times. Such a modulated regressor would allow one to test for a linear
dependence between reaction times and height of response while taking into account all other
modelled effects. Higher order modulations can be modelled by polynomial expansions of the
modulation, which give us multiple parametrically modulated regressors per trial type.

4.3.4 Low-resolution basis functions

In Eq. 34, a down-sampling operator d was applied to sample the high-resolution (continuous)
regressors to the low-resolution space of the data Y. Here, one has to be aware of a slight
limitation of the SPM model for event-related data that arises due to the use of the same
temporal model at each voxel.

fMRI data is typically acquired slice-wise so that a small amount of time elapses from the
acquisition of one slice to the next. Given standard EPI sequences, acquisition of one slice
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takes roughly 100 ms. Therefore, an optimal sampling of the high-resolution basis functions
does not exist, because any chosen sampling will only be optimal for one slice, but not for all the
others. The largest timing error is given for a slice that lies in acquisition order | Ngjces/2] slices
away from the slice for which the temporal model is exact'*. This sampling issue is only relevant
for event-related designs, where one typically uses short stimulus durations that elicit BOLD
responses lasting only some seconds. For these transient responses, an appropriate temporal
model is critical. Any difference in expected and actual onset may decrease the sensitivity of
the analysis, if one uses a naive HRF model (e.g. only the HRF model without its derivatives).
For blocked designs, timing errors are small compared to epoch length so that the potential
loss in sensitivity is negligible.

In SPM, there are two ways to solve this timing issue and take the different slice acquisition
times into account. The first is to choose one time point within volume acquisition time and
temporally interpolate all slices at this time. This is called slice timing correction. However,
note that this interpolation requires rather short RT (< 3 seconds), because the sampling should
be dense enough in relation to the width of the BOLD response to capture its interesting peak.
The second option is to model latency differences with the temporal derivative of the HRF set.
As discussed above, the temporal derivative can model a temporal shift of the expected BOLD
response. This temporal shift can not only capture onset timing differences due to different slice
times, but also differences due to, for example, a different vascular response onset. However,
due to the linear nature of the model, the temporal derivative can only model small shifts
(forwards or backwards in time). With the HRF basis functions set, the temporal derivative
can accommodate a shift backwards or forwards of slightly more than one second. The slice
timing interpolation is recommended if one looks for voxel-specific timing differences between
conditions. Independently of this, we recommend the use of the temporal derivative as part of
the model to capture any potential latency differences.

One also needs to specify at what time bin, in scan time, SPM samples the regressors to generate
the design matrix. The SPM default is 1, i.e. the first time bin after the start of a scan.!'®

Finally, the down-sampled basis functions are mean corrected and entered column-wise into the
design matrix X (Eq. 30). A baseline is modelled by adding a constant regressor to the design
matrix.

4.3.5 Additional regressors

It is possible to use additional regressors in the model without going through the process
described above. For instance, consider the case that an additional physiological measurement
was acquired during the session at a high temporal resolution. These measurements can be
added to the design matrix after suitable down-sampling. Another important example for user-
specified regressors is the modelling of movement correlated effects. These can be taken into
account to a first order by adding the estimated movement parameters as regressors (see chapter
2). Note that all user-specified regressors are automatically mean-corrected by SPM.

4.4 Serial correlations

fMRI data exhibits short range serial temporal correlations. By this we mean that the error
€s at a given scan s is correlated with its temporal neighbours. This has to be modelled,

| x| denotes the nearest integer less or equal to z
15This sampling point is accessible in SPM as variable fMRIrq and lies between 1 and fMRIr, the number
of time bins.
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because correlations play an important role when assessing the significance of a test statistic.
Ignoring correlations leads to an inappropriate estimate of the error covariance matrix, which
is propagated to the estimated parameter covariance matrix. In other words, when forming
a t- or F-statistic, we have a biased estimate of the variability of a contrast. Additionally,
when using ordinary least squares estimates, the null statistic, which is used when computing
p-values, is also dependent on the error covariance matrix. This dependency enters when
estimating the effective degrees of freedom of a null distribution'®. With serial correlations
present and modelled, the effective degrees of freedom are lower than in the independent case.
The overall picture is that ignoring serial correlations leads generally to too lenient and therefore
invalid tests. To derive correct tests we have to appropriately estimate the error covariance
matrix by assuming some kind of non-sphericity (chapter 9). Then, we use this estimate in the
computation of the statistic and the effective degrees of freedom.

Note that we are only concerned about the serial correlations of the error component € of the
time series (Eq. 31). The correlations induced by the experimental design should be modelled
by the design matrix X.

Serial correlations in fMRI data are caused by various sources including cardiac, respiratory
and vasomotor sources (Mitra et al., 1997).

There are two issues that need to be resolved. The first is how to estimate the error covariance
matrix and the second is how to incorporate this estimate into our modelling framework and
derive a valid statistical test. In what follows we describe the statistics that are based on
ordinary least squares (OLS) parameter estimates.

One model that seems to capture the observed form of serial correlations in fMRI data is the
autoregressive (order 1) plus white noise model (AR(1)+wn) (Purdon and Weisskoff, 1998)'7.
This model accounts for short range correlations. Note that the order of the model (one) means
that the form and amount of correlations can be modelled by one (AR) coefficient. The model
order does not refer to the range of the serial correlations in time, which can be up to 6 to
8 scans. We only need to model short range correlations, because we also apply a highpass
filter to the data (s. 4.5). The highpass filter removes any low frequency components and thus
long range correlations from the data. We refer the interested reader to the Appendix for a
mathematical description of the AR(1)+wn model.

4.4.1 Estimation of the error covariance matrix

Having decided that the AR(1)+wn is an appropriate model for the fMRI error covariance
matrix, we need to estimate its three hyperparameters (s. Appendix) at each voxel. The
hyperparameterised model gives an autocovariance matrix at each voxel (Eq. 45), which we
want to estimate. In SPM, an additional assumption is made to estimate this matrix more
efficiently, which is described in the following.

Mathematically, the error covariance matrix can be partitioned into two components. The first
component is the correlation matrix and the second component is the variance. The assumption
made by SPM is that the correlation matrix is the same at all voxels of interest (see chapter 9 for
further details). The variance is assumed to be different between voxels. In other words, SPM
assumes that the pattern of serial correlations is the same over all interesting voxels, but its
amplitude is different at each voxel. This assumption seems to be quite a sensible one, because

16 Effective degrees of freedom refer to the degrees of freedom of an approximation to the underlying null
distribution (Worsley and Friston, 1995).
"The AR(1)+wn is also known as the autoregressive moving-average model of order (1,1) (ARMA(1,1))
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we observed that the serial correlations over voxels within tissue types are very similar. The
estimate of the serial correlations is therefore extremely precise because of the large number
of voxels involved in the estimation. Therefore, the correlation matrix at each voxel can be
assumed to be known.

In the following, we describe the model and estimation of the error covariance matrix. Let us
start with the linear model for voxel k£

Yk =XxpgF 4 & (35)

where Y* is a N x 1 observed time series vector at voxel k, X is a N x L design matrix, ¥ is
the parameter vector and €* is the error at voxel k. The error €* is normally distributed with
e ~ N(0, akQV). The critical difference to Eq. 6 is the distribution of the error term where the
identity matrix I is replaced by the correlation matrix V. Note that V' does not depend on the
voxel position k, i.e. we make the above mentioned assumption that the correlation matrix V

k2

is the same for all voxels £k = 1,..., K. However, the variance ¢”” is assumed to be different

for each voxel.

How can the correlation matrix V' be estimated over all voxels? Since we made the assumption
that V is the same at each voxel, we can either estimate V at each voxel and then pool
our estimate, or we can pool data from all voxels and then estimate V' on this pooled data.
We use the second method, because it is computationally much more efficient. The pooled
data is given by summing the sampled covariance matrix of all interesting voxels k, i.e. Vy =
1/K Y, Y*Y*". Note that the pooled V3 is a mixture of two variance components, the
experimentally induced variance and the error variance component:

Ve =3 XBFEHTXT 4 bk (36)
k

One way of estimating the error covariance matrix Cov(e*) = o**V is to use the Restricted
Maximum Likelihood (ReML) method (Harville, 1977; Friston et al., 2002). ReML takes the
space spanned by the design matrix into account and is an unbiased estimator of the hyperpa-
rameters. ReML works with linear covariance constraints, i.e. the estimated covariance matrix
is modelled as a linear combination of some covariance constraints. The concept of covariance
constraints is a very general concept that can be used to model all kinds of non-sphericity (see
chapter 9). The model described in the Appendix (Eq. 44) is nonlinear in the hyperparameters
so ReML cannot be used directly. But if we linearize the covariance constraints

V= Z Q@ (37)
1

where (); are N x N constraint matrices and the A; are the hyperparameters, ReML can be
applied. We are interested in specifying the @Q; such that they form an appropriate model for
serial correlations of fMRI data when using standard EPI sequences. The default model in
SPM is to use two constraints Q1 and Q2. These are ()1 = Iy and

_ e”li=il s g4

Fig. 16 shows the shape of @1 and Q.
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[Figure 16 about here.]

A voxel-wide estimate of V' is then derived by rescaling V such that V is a correlation matrix.

This method of estimating the covariance matrix at each voxel uses the two voxel-wide (global)
hyperparameters A\; and Ay. A third voxel-wise (local) hyperparameter (the variance o?) is
estimated at each voxel using the usual estimator (Worsley and Friston, 1995)

& Y RY*k

- trace(RV) (39)

where R is the residual forming matrix. This completes the estimation of the serial correlations
at each voxel k. Before we can use these estimates to derive statistical tests, we still need to
describe the highpass filter and what role it plays in modelling fMRI data.

4.5 Temporal filtering

The concept of filtering is based on the observation that certain frequency bands in the data
contain more noise than others. In an ideal world, our experimentally induced effects would
live in one frequency band and all the noise in another. Applying a filter that removes the noise
frequency range from the data would then give us increased sensitivity. However, the data is a
mixture of activation and noise that can share some frequency bands. One of the experimenter’s
tasks is therefore to make sure that the interesting effects do not lie in a frequency range which
is especially exposed to noise processes. In fMRI, the low frequencies (say less than half a cycle
per minute, i.e. 1/120 Hz) are known to contain scanner drifts and possibly cardiac/respiratory
artifacts. Any activations that lie within this frequency range are virtually undistinguishable
from these noise processes. This is why (i) fMRI data should be highpass filtered to remove
noise and (ii) the experimenter should take care to construct a design that puts the interesting
contrasts into higher frequencies than 1/120 Hz. This issue is especially important for event-
related designs and is dealt with in chapter 10. Here, we describe how the highpass filter is
implemented.

The highpass filter is implemented using a set of discrete cosine transform (DCT) basis functions.
These are part of the design matrix. To the user of SPM, they are invisible in the sense that the
DCT regressors are never plotted. This is simply to save space on the display. In practice, the
parameters of the DCT part of the design matrix are not estimated, but the residual forming
matrix of the DCT regressors are applied to the data. Only after this step, the other (visible)
part of the design matrix is fitted to the resulting residuals. This procedure is equivalent to
estimating all model parameters simultaneously, where all tests of hypotheses automatically
take low frequency noise components into account.

Mathematically, for time points ¢ = 1,..., N, the discrete cosine set functions are f,.(t) =
V2/N (cos (Tﬂ'%)) See Fig. 17 for an example. The integer index r ranges from 1 (giving half
a cosine cycle over the N time points), to a user-specified maximum R. Note that SPM asks
for a highpass cutoff dg,; in seconds. R is then chosen as R = |2NRT /d¢y; + 1].

[Figure 17 about here.]

To summarize, the following picture emerges. The regressors in the design matrix X must
account for all components in the fMRI time series up to the level of residual noise. The high-
pass filter is part of the design matrix and removes unwanted low-frequency components from
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the data. The estimation of the error covariance matrix is based on a model similar to the
AR(1)4+wn model and uses the ReML-method for estimation of the hyperparameters. In the
next section, we describe how the model parameter estimates are used to form a t- or F-statistic
at each voxel.

4.6 Parameter estimates and distributional results

In this section, we describe the equations that lead to a t- or F-statistic. These statistics can
be used to make inferences about the data by computing a p-value at each voxel. For clarity,
we shall drop the voxel index superscript k.

Ordinary least-squares parameter estimates B are given by

B=(XTX) XTY =X"Y (40)

As described above, we estimate the error correlation matrix V using the ReML method. The
error covariance matrix is then given by 2V (Eq. 39). The covariance matrix of the parameter
estimate is

Var(f) =o?X VX T (41)

A t-statistic can then be formed by dividing a contrast of the estimated parameters CTB by its
estimated standard deviation:

_ '
V62T X-VX-Te

(42)

2

where 0 is estimated using Eq. 39.

The key difference to the spherical case, i.e. when the error is i.i.d. is that the correlation
matrix V enters into the denominator of the t-value. This gives us a more accurate t-statistic.
However, because of V' the denominator of Eq. 42 is not the square root of a y2-distribution.
(The denominator would be exactly x? distributed, when V describes a spherical distribution.)
This means that Eq. 42 is not t-distributed and we cannot simply make inferences by comparing
with a t- null distribution with ¢trace(RV) degrees of freedom.

Instead, one approximates the denominator with a x2-distribution (Eq. 42). Consequently, T is
then approximated by a t-distribution. The approximation proposed in (Worsley and Friston,
1995) is the Satterthwaite approximation (see also (Yandell, 1997)) which is based on fitting
the first two moments of the denominator distribution with a x? distribution. The degrees of
freedom of the approximating x2-distribution are called the effective degrees of freedom and
are given by

L 2E(62)?  trace(RV)?
~ Var(6%2)  trace(RVRV)

(43)

See the Appendix for a derivation of this Satterthwaite approximation.
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Similarly, the null distribution of an F-statistic in the presence of serial correlations can be ap-
proximated. In this case, both the numerator and denominator of the F-value are approximated
by a x?-distribution.

4.7 Summary

After reconstruction, realignment, spatial normalisation and smoothing, functional imaging
data are ready for statistical analysis. This involves two steps: Firstly, statistics indicating
evidence against a null hypothesis of no effect at each voxel are computed. An image of these
statistics is then produced. Secondly, this statistical image must be assessed, reliably locating
voxels where an effect is exhibited whilst limiting the possibility of false positives. These two
steps are referred to as (1) Modelling and (2) Inference and they are covered separately in
sections 2 and 3 of this book.

As models are designed with inference in mind it is often difficult to separate the two issues.
However, the inference section, section 3, in this book is largely concerned with the multiple
comparison, that is, how to correctly make inferences from large volumes of statistic images.
A distinction can be made between such ’image-level’ inference and statistical inference at a
single voxel. This second sort of inference has been covered in this chapter and will be dealt
with further in the remainder of section 2.

We have shown how the general linear model, the workhorse of functional imaging analysis,
provides a single framework for many statistical tests and models, giving great flexibility for
experimental design and analysis. The use of such models will be further highlighted in the
following chapters, especially Chapters 8 and 9. Additionally, to incorporate non-spherical error
distributions, SPM uses covariance constraints and the ReML estimator. This is described
further in Chapter 9.

In Chapters 10 and 11 we focus on modelling issues specific to fMRI and in chapters 12 and 13
consider making inferences from multiple subject fMRI and PET studies. In Chapter 13 we take
up recent developments in the field which make used of hierarchical models. This introduction
to the area paves the way for further development in section 2, in particular Chapter 17.

Appendix

A1 — The autoregressive model of order 1 plus white noise

Mathematically, the AR(1)+wn model at voxel k can be written in state-space form:

e(s) = z(s)+ de(s)
z(s) = az(s—1)+0,(s) (44)

where 6.(s) ~ N(0,0.2), §,(s) ~ N(0,0,%) and a is the AR(1) coefficient. This model describes
the error component e(s) at time point s and at voxel k as the sum of an autoregressive
component z(s) plus white noise d.(s). We have three hyperparameters'® at each voxel F,
the variances of the two error components d. and J, and the autoregressive coefficient a. The
resulting error covariance maftrix is then given by

18We call these parameters hyperparameters to distinguish them from the parameter vector 3
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E(eel) = 0,2(Iy — A) Iy — A) T + 0.2 (45)

where A is a matrix with all elements of the first lower off-diagonal set to a and zero elsewhere.
Iy is the identity matrix of dimension N.

A2 — The Satterthwaite approximation

The unbiased estimator for 2 is given by dividing the sum of the squared residuals by its
expectation (Worsley and Friston, 1995). Let e be the residuals e = RY, where R is the
residual forming matrix.

E(eTe) = E(trace(ee))
E(trace(RYYTRT))
trace(Ro*V RT)

= o’trace(RV)

. . 2 . . A2 eTe
An unbiased estimator of o is given by §° = Trace(RV)"

non-zero elements, trace(RV') = trace(R) = J — p, where J is the number of observations and
p the number of parameters.

If V is a diagonal matrix with identical

In what follows, we derive the Satterthwaite approximation to a x2-distribution given a non-
spherical error covariance matrix.

We approximate the distribution of the squared denominator of the t-value (Eq. 42) d =
72N (XTX)"XTV X (XTX)~c 62 with a scaled y?-variate, i.e.

d ~ p(ay) (46)

where p(y) ~ x?(v). We want to estimate the effective degrees of freedom v. Note that, for a
x%(v) distribution, E(y) = v and Var(y) = 2v. The approximation is made by matching the
first two moments of d to the first two moments of ay:

E(d) = av (47)
Var(d) = a?2v (48)

If the correlation matrix V' (Eq. 42) is assumed to be known, it follows that

2E(62)?
el 4
v Var(62) (49)
With E(6%) = ¢? and
E(eTeeTe) = E(2trace((e;el)?) + trace(e;el)?)

= o*(2trace(RV RV) + trace(RV)?)

37



we have

Var(6?)

Using Eq. 49, we get

E(6%) — E(6%)?
o*(2trace(RV RV) + trace(RV)?)

trace(RV)?
20*trace(RVRV)
trace(RV)?

L trace(RV)?
~ trace(RVRV)
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Figure 1: Geometrical perspective on linear regression: The three-dimensional data Y lies in
a three-dimensional space. In this observation space, the (two-column) design matrix spans a
subspace. Note that the axes of the design space are not aligned with the axes of the observation
space. The least-squares estimate is the point in the space spanned by the design matrix that
has minimal distance to the data point.
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Figure 2: Example of ANOVA design and contrast matrix. Both matrices are displayed as
images, where 0s are coded by black and 1s by white, cf. 2.7. (Left:) Design matrix, where
five groups are modelled by their mean and overall mean. The model is overdetermined by one
degree of freedom. (Right:) F-contrast matrix which tests for any group-specific deviation from
the overall mean.
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Figure 3: Adjusted and fitted data. Left: Plot of raw data. Right: (Solid line:) adjusted data,
(Dashed line:) fitted data
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Figure 4: Single subject activation experiment, ANCOVA design (§3.3.1). Illustrations for a
three-condition experiment with four scans in each of three conditions, ANCOVA design. Design
matrix image, with columns labelled by their respective parameters. The scans are ordered by
condition.
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Figure 5: Single subject PET experiment, illustrative plots of rCBF at a single voxel: (a) Dot-
plots of rcBF(b) Plot of rCBF vs. gCBF. Both plots indexed by condition: o for baseline, x for
active.
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Figure 6: (a) Adjustment by proportional scaling (b) Simple single subject activation as a t-test
on adjusted rCBF: Weighted proportional regression
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Figure 7: Single subject data, illustrative (ANCOVA) plots of rCBF vs. gCBF at a single voxel
showing potential problems with global changes: (a) Large change in gCBF between conditions.
The apparent activation relies on linear extrapolation of the baseline and active condition regres-
sions (assumed to have the same slope) beyond the range of the data. The actual relationship
between regional and global for no activation may be given by the curve, in which case there
is no activation effect. (b) Large activation inducing increase in gCBF measured as brain mean
rCBF. Symbol o denotes rest, x denotes active condition values if this is a truly activated voxel
(in which case the activation is underestimated), while + denotes active condition values where
this voxel is not activated (in which case an apparent deactivation is seen).
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Figure 8: Single subject study, ANCOVA design (§3.3.1). Illustration of a three-condition
experiment with four scans in each of three conditions, ANCOVA design. (a) Illustrative plot of
rCBF vs. gCBF. (b) Design matrix image with columns labelled by their respective parameters.
The scans are ordered by condition.
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Figure 9: Single subject parametric experiment (§3.3.2): (a) Plot of rCBF vs. score and gCBF.
(b) Design matrix image for Eq.19, illustrated for a 12 scan experiment. Scans are ordered in
the order of acquisition.
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Figure 10: Example design matrix image for single subject activation study, with six scans
in each of two conditions, formulated as a parametric design (§3.3.3). The twelve scans are
ordered alternating between baseline and activation conditions, as might have been the order
of acquisition.
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Figure 11: Single subject experiment with conditions, covariate, and condition by covariate
interaction. (§3.3.5): (a) Illustrative plot of rCBF vs. rate. (b) Design matrix image for Eq. 20.
Both illustrated for the two condition 12 scan experiment described in the text. The scans have
been ordered by condition.
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Figure 12: Multi-subject activation experiment, replication of conditions (§3.3.6), model Eq.21.
Ilustrations for a 5 subject study, with six replications of each of two conditions per subject: (a)
Ilustrative plot of rCBF vs. gCBF. (b) Design matrix image: The first two columns correspond
to the condition effects, the next five to the subject effects, the last to the gCBF regression
parameter. The design matrix corresponds to scans ordered by subject, and by condition
within subjects.



Figure 13: Multi-subject activation experiment, “classic” SPM design, where each replication of
each experimental condition is considered as a separate condition (Eq.22). Illustrative design
matrix image for five subjects, each having 12 scans, the scans having been ordered by subject,
and by condition and replication within subject. The columns are labelled with the correspond-
ing parameter. The first twelve columns correspond to the “condition” effects, the next five to
the subject effects, the last to the gCBF regression parameter.
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Figure 14: Multi-subject activation experiment, replication of conditions, ANCoOVA by subject.
Model Eq.23. Tllustrations for a 5 subject study, with six replications of each of two conditions
per subject: (a) Illustrative plot of rCBF vs. gCOBF. (b) Design matrix image: The first two
columns correspond to the condition effects, the next five to the subject effects, the last five the
gCBF regression parameters for each subject. The design matrix corresponds to scans ordered
by subject, and by condition within subjects.



Figure 15: Design matrix image for the example multi-study activation experiment described
in section 3.4.
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Figure 16: Graphical illustration of the two covariance constraints which are used for estimating
the error correlation matrix. (Left:) Constraint ()1 that imposes a stationary variance onto the
estimate, (Right:) Constraint Q2 that implements the AR(1) model part with an autoregressive
coefficient of 1/e.
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Figure 17: A discrete cosine transform set.
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